International Journal of Mathematics and Soft Computing Vol.5, No.1. (2015), 23 - 29.

Even-Odd Harmonious graphs

N. Adalin Beatress¹, P. B. Sarasija²

¹ Department of Mathematics, All Saint College of Education Kaliyakkavilai, Tamil Nadu. adalinkamal@yahoo.in

² Department of Mathematics Noorul Islam Centre for Higher Education Kumaracoil,Tamil Nadu. sijavk@gmail.com

Abstract

A graph G(V, E) with *n* vertices and *m* edges is said to be even-odd harmonious if there exists an injection $f : V(G) \rightarrow \{1, 3, 5, ..., 2n-1\}$ such that the induced mapping $f *:E(G) \rightarrow \{0, 2, 4, ..., 2(m-1)\}$ defined by $f^*(uv) = [f(u) + f(v)] \pmod{2m}$ is a bijection. The function f is called even-odd harmonious labeling of G. In this paper, we prove that the bistar graph $B_{m,n}$, cycle with one pendent edge, crown graph, the graph $K_{1,m,n}$. the prism graph C_3Y_n and the graph nP_2 are even-odd harmonious graphs.

Keywords: Harmonious labeling, bistar, complete bipartite graph.

AMS Subject Classification (2010): 05C78.

1 Introduction

In this paper, we consider finite, undirected, simple connected graphs. For notations and terminology we follow Bondy and Murthy [1].

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. Graph labeling was introduced in the late 1960s. For a detailed survey on graph labeling we refer to Gallian [2]. Harmonious graphs naturally arose in the study by Graham and Sloane [3] of modular versions of additive base problems. Odd and even harmonious graphs were introduced in [4,6].

The even - odd harmonious labeling of a graph G with *n* vertices and *m* edges is an injection $f:V(G) \rightarrow \{1,3,5,...,(2n-1)\}$ such that the induced mapping $f^*:E(G) \rightarrow \{0,2,4,...,2(m-1)\}$ defined by $f^*(uv) = [f(u) + f(v)] \pmod{2m}$ is a bijection. The function *f* is called even-odd harmonious labeling of G.A graph which admits an even-odd harmonious labeling is called an even-odd harmonious graph.

In this paper we prove that the path P_{n} cycle C_n , complete bipartite graph $K_{m,n}$, star graph $K_{1,n}$, bistar graph $B_{m,n}$, cycle with one pendant edge, crown graph, comb, the graph $K_{1,m,n}$. the prism graph C_3Y_n and the graph nP_2 are even-odd harmonious graphs.

Definition 1.1. The graph obtained by joining a pendant edge at each vertex of a path P_n is called a comb and is denoted by $P_n \odot K_{I_n}$. The graph obtained by joining a pendant edge at each vertex of a cycle C_n is called crown and is denoted by $C_n \odot K_{I_n}$.

Definition 1.2. The graph obtained by joining a single pendant edge at one vertex of a cycle C_n is denoted by $C_n @ K_l$.

Definition 1.3. The graph obtained by joining *n* pendant edge at one vertex of the cycle C_3 is denoted by $C_3 \odot nK_1$.

Definition 1.4. The bistar graph $B_{m,n}$ is the graph obtained from K_2 by joining m pendant edges to one end of K_2 and *n* pendant edges to the other end of K_2 .

Definition 1.5. P_n^k , the k^{th} power of P_n , is the graph obtained from the path P_n by adding the edges that join all the vertices u and v with distance d(u, v) = k.

2 Main Results

Theorem 2.1. Every path P_n is an even-odd harmonious graph.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of the path P_n . We consider two cases.

Case (i): n is even.

Define $f : V(P_n) \to \{1, 3, 5, \dots, (2n-1)\}$ by $f(v_i) = 2i - 1, 1 \le i \le n$.

Case (ii): *n* is odd.

Define $f : V(P_n) \rightarrow \{1, 3, 5, \dots, (2n-1)\}$ as follows:

 $f(v_{2i-1}) = 2i - 1, 1 \le i \le \lceil \frac{n}{2} \rceil$ and $f(v_{2i}) = n + 2i, 1 \le i \le \lfloor n/2 \rfloor$.

In both the cases, the edge labels are distinct. Hence, P_n is an even –odd harmonious graph.

Theorem 2.2. Any cycle of odd length is an even-odd harmonious graph.

Proof: Let C_{2n-1} ($n \ge 2$) be the cycle of odd length with vertices $v_1, v_2, ..., v_{2n-1}$. Since the odd cycle has (2n-1) edges, the modulo taken is 2(2n-1).

Define $f: V(C_{2n-1}) \rightarrow \{1,3,5,\ldots,4n-3\}$ by $f(v_i) = 2i - 1$, $1 \le i \le 2n - 1$. The edge labels are distinct. Then f is an even -odd harmonious labeling of odd cycles.

Theorem 2.3. The comb $P_n \odot K_1$ is an even-odd harmonious graph.

Proof: Let $P_n \odot K_1$ be the comb graph with 2n vertices. Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n and $v_1, v_2, ..., v_n$ be the vertices adjacent to each vertex of the path P_n . The edge set of the graph is given by $E(P_n \odot K_1) = \{ u_i \ u_{i+1} : 1 \le i \le n-1; u_i v_i : 1 \le i \le n \}$. |V| = 2n and |E| = 2n - 1 = m.

Define
$$f: V(P_n \odot K_1) \to \{1, 3, 5, ..., 4n - 1\}$$
 by

 $f(u_{2i-1}) = 2n + 4i - 3, \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil \text{ and } f(u_{2i}) = 4i - 1, \ 1 \le i \le \lfloor n/2 \rfloor.$ $f(v_{2i-1}) = 4i - 3, \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil \text{ and } f(v_{2i}) = 2n + 4i - 1, \ 1 \le i \le \lfloor n/2 \rfloor.$

Then f induces a bijection $f^* : E(P_n \odot K_1) \to \{0, 2, 4, \dots, 4n-4\}$. Hence the comb $P_n \odot K_1$ is an even - odd harmonious graph.

The following example shows that the graph $P_5 \odot K_1$ is an even-odd harmonious graph.

Figure 1: An even-odd harmonious labeling of $P_5 \odot K_1$.

Theorem 2.4. The complete bipartite graph $K_{m,n}$ is an even-odd harmonious graph for all *m* and *n*. **Proof:** Let $u_1, u_2, ..., u_m$ and $v_1, v_2, ..., v_n$ be the vertices of the graph $K_{m,n}$.

Define $f: V(K_{m,n}) \to \{1, 3, 5, ..., 2mn + 1\}$ by

 $f(u_i) = 2 i - 1, \ 1 \le i \le m \text{ and } f(v_i) = 2mj + 1, \ 1 \le j \le n.$

Then f induces a bijection $f^* : E(K_{m,n}) \rightarrow \{0, 2, 4, \dots, 2mn - 2\}$

Then the complete bipartite graph is an even -odd harmonious graph.

Corollary 2.5. The star graph $K_{I,n}$ is an even –odd harmonious graph. **Proof:** Replace m = 1 in Theorem 2.5.

Let *u* be the vertex of degree *n* and v_i , v_2 , ..., v_n be the pendant vertices of $K_{1,n}$. Total number of vertices is (n+1). Define $f: V(K_{1,n}) \rightarrow \{1,3,5,...,2n+1\}$ by f(u) = 1 and $f(v_i) = 2i + 1$, $1 \le i \le n$. Hence, *f* is an even - odd harmonious labeling of the star graph.

Theorem 2.6. An odd cycle with a single pendant edge attached, $C_{2n-1} @ K_1$, $(n \ge 2)$ is an even-odd harmonious graph.

Proof: Let $u_1, u_2, ..., u_{2n-1}, u_{2n}$ be the vertices of the graph C_{2n-1} @ K_1 . We label the vertices of C_{2n-1} @ K_1 so that the pendant vertex is adjacent to the vertex u_{2n-1} as shown in Figure 2.

Figure 2: *C*_{2*n*-1} @ *K*_{1.}

Here, |V| = |E| = 2n.

Define $f: V(C_{2n-1} @ K_1) \to \{1,3,5,\ldots,4n-1\}$ by $f(u_{2i-1}) = 2i - 1$ for $1 \le i \le n$ and $f(u_{2i}) = 2(n+i) - 1$ for $1 \le i \le n$.

Then *f* induces a bijection $f^* : E(C_{2n-1} \otimes K_1) \to \{0, 2, 4, ..., 4n - 2\}$. Hence the graph is an even-odd harmonious graph.

Theorem 2.7. The crown graph $C_{2n-1} \odot K_1$, $(n \ge 2)$ is an even-odd harmonious graph.

Proof: Let $u_1, u_2, ..., u_{2n-1}$ be the vertices of the cycle C_{2n-1} and $v_1, v_2, ..., v_{2n-1}$ be the vertices adjacent to each vertex of the cycle. We label the vertices of $C_{2n-1} \odot K_1$, $(n \ge 2)$ as shown in Figure 3. Here, |V| = |E| = 4n - 2.

Define $f: V(C_{2n-1} \odot K_1) \rightarrow \{1, 3, 5, \dots, 8n - 5\}$ by

 $f(u_i) = 2 \ i - 1, \ 1 \le i \le 2n - 1$ and $f(v_i) = 2(2n+i) - 3, \ 1 \le i \le 2n-1$. Then *f* is even-odd harmonious and hence, $C_{2n-1} \odot K_1$ is an even-odd harmonious graph.

Figure 3: $C_{2n-1} \odot K_1$.

Theorem 2.8. The graph $C_3 \odot nK_1$ is an even-odd harmonious graph.

Proof: Let *u*, *v*, *w* be the vertices of the cycle C_3 and $w_1, w_2, ..., w_n$ be the vertices of the *n* pendant edges. We denote the vertices of $C_3 \odot nK_1$ as shown in Figure 4. |V| = |E| = n+3.

Figure 4: $C_3 \odot nK_1$.

Define $f: V(C_3 \odot nK_1) \rightarrow \{1,3,5,\ldots,2(n+3) - 1\}$ by $f(u_i) = 1, f(v) = 2n+3, f(w) = 2n+5$ and $f(w_i) = 2i+1, 1 \le i \le n$. Then *f* is even-odd harmonious and hence, $C_3 \odot nK_1$ is an even - odd harmonious graph.

Theorem 2.9. The bistar graph $B_{m,n}$ is an even - odd harmonious.

Proof: Let u, v be the vertices of K_2 in $B_{m,n}$ and $U = \{u_j, 1 \le j \le m\}$, $V = \{v_i, 1 \le i \le n\}$ be the vertices adjacent to u and v respectively.

Define $f: V(B_{m,n}) \rightarrow \{1,3,5,...,2(m+n)+3\}$ by $f(u) = 1, f(v) = 2(m+n)+3, f(u_j) = 2n+2j+1, 1 \le j \le m$ and $f(v_i) = 2i+1, 1 \le i \le n$. Here we take the modulo 2(m+n+1). Then f induces a bijection $f^*: E(C_{2n-1} @ K_1) \rightarrow \{0, 2, 4, ..., 2(m+n)\}$. Hence, f is an even- odd harmonious labeling of the bistar $B_{m,n}$. ■

An even-odd harmonious labeling of the bistar $B_{5,6}$ is shown in Figure 5.

Figure 5: An even-odd harmonious labeling of the bistar $B_{5,6}$.

Theorem 2.10. The graph $K_{1,m,n}$ is an even -odd harmonious graph.

Proof: Let $V(c) = \{ u, u_j, v_i, j = 1, 2, ..., m \text{ and } i = 1, 2, ..., n \}$

and $E(C_3Y_n) = \{ uv_i, uu_j, v_iu_j, j = 1, 2, ..., m \text{ and } i = 1, 2, ..., n \}$

Also the number of vertices and edges of the graph is (n + m + 1) and ((m + n + mn) respectively.

Define $f: V(K_{1,m,n}) \to \{1,3,5,...,2(n+mn)+1\}$ by

f(u) = 1, $f(u_j) = 2j + 1$, $1 \le j \le m$ and $f(v_i) = 2(m+1)(n - i+1) + 1$, $1 \le i \le n$.

Then *f* induces a bijection $f^* : E(K_{1,m,n}) \to \{0, 2, 4, ..., 2(m+n+mn) - 2\}.$

Therefore, $K_{1,m,n}$ admits an even -odd harmonious labeling. Hence this graph is an even - odd harmonious graph.

The following example shows that the graph $K_{1,3,4}$ is an even odd harmonious graph.

Figure 6: An even-odd harmonious labeling of $K_{1,3,4}$.

Theorem 2.11. The graph P_n^2 $(n \ge 4)$ is an even- odd harmonious graph.

Proof: Let $u_1, u_2, ..., u_n$ be the vertices of P_n^2 . We arrange the vertices of the graph P_n^2 as shown in Figure 7.

Define $f(u_i) = 2i - 1$, $1 \le i \le n$. Since the graph P_n^2 has 2n - 3 edges, the modulo is 2(2n-3). Then, f is an even-odd harmonious labeling.

Theorem 2.12. The prism graph C_3Y_n is an even - odd harmonious graph. **Proof:** We denote the vertices of the graph C_3Y_n as shown in Figure 8.

Figure 8: *C*₃*Y*_n.

Let the vertices of the prism graph $C_3 Y_n$ be { $u_i, v_i, w_i, 1 \le i \le n$ }. The number of vertices and edges of the graph are 3n and 6n - 3 respectively.

Define $f: V(C_3Y_n) \to \{ 1,3,5,...,6n - 1 \}$ by $f(u_{2i-1}) = 12i - 11, 1 \le i \le \lceil \frac{n}{2} \rceil, f(u_{2i}) = 12i - 1, 1 \le i \le \lfloor n/2 \rfloor$ $f(v_{2j-1}) = 12j - 9, 1 \le j \le \lceil \frac{n}{2} \rceil, f(v_{2j}) = 12j - 5, 1 \le j \le \lfloor n/2 \rfloor$ $f(w_{2k-1}) = 12k - 7, 1 \le k \le \lceil \frac{n}{2} \rceil$ and $f(w_{2k}) = 12k - 3, 1 \le k \le \lfloor n/2 \rfloor$.

It can be verified that f is an even - odd harmonious labeling.

Therefore, C_3Y_n admits an even - odd harmonious labeling. Hence, C_3Y_n is an even - odd harmonious graph.

Theorem 2.13. The graph nP_2 is an even odd harmonious graph. **Proof:** Let $u_k v_k$ be the k^{th} copy of the graph nP_2 .

Define $f: V(nP_2) \rightarrow \{1,3,5,\ldots,4n-1\}$ by $f(u_k) = 2k-1, 1 \le k \le n; f(v_k) = 2k-1, n+1 \le k \le 2n.$

f is an even - odd harmonious labeling. Hence, nP_2 is an even - odd harmonious graph. An even odd harmonious labeling of nP_2 is given in Figure 9.

Figure 9: An even-odd harmonious labeling of nP_2 .

Acknowledgement: The authors are thankful to the reviewers for their valuable comments and suggestions.

References

- [1] J. A. Bondy and U.S.R. Murthy, *Graph Theory with Applications*, Macmillan, London, 1976.
- [2] J.A. Gallian, A dynamic survey of graph labeling, The Electronics J. of Combinatorics, 16, 2012.
- [3] R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth., 1(1980), 382-404.
- [4] Z.H. Liang and Z.L. Bai, On *the odd harmonious graphs with applications*, J. Appl. Math. Comput., 29(2009), 105-116.
- [5] B. Liu and X. Zhang, On harmonious labeling of graphs, Ars. Combin., 36 (1993), 315 326.
- [6] P. B. Sarasija and R. Binthiya, *Even harmonious graphs with applications*, International Journal of Computer Science and Information Security, Vol.9, No.7 (2011), 161-163.
- [7] T. Tharmaraj and P.B. Sarasija, *Square graceful graphs*, International Journal of Mathematics and Soft Computing, Vol.4 No.1.(2014), 129-137.