Wiener Index and Some Hamiltonian Properties of Graphs

Rao Li
Department of Mathematical Sciences
University of South Carolina Aiken
Aiken, SC 29801
USA.
raol@usca.edu

Abstract

The Wiener index of a connected graph is defined as the sum of distances between all pairs of vertices in the graph. Yang presented a sufficient condition in terms of the Wiener index for a graph to be traceable. Motivated by Yang's result, we present sufficient conditions based on the Wiener index for a graph to be Hamiltonian or Hamilton-connected in this note.

Keywords: Wiener Index, Hamiltonian.
AMS Subject Classification(2010): 05C12, 05C45.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [2]. For a graph $G=(V, E)$, we use n and e to denote its order $|V|$ and size $|E|$, respectively. For two vertices u and v in a graph G, we use $d_{G}(u, v)$ to denote the distance between them. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. A graph G is called Hamilton-connected if for each pair of vertices in G there is a Hamiltonian path between them. If G and H are two vertex-disjoint graphs, we use $G \vee H$ to denote the join of G and H. We use $C(n, r)$ to denote the number of r-combinations of a set with n elements.

For a connected graph G, its Wiener index [8], denoted by $W(G)$, is defined as

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)
$$

If we use $\widehat{D}_{G}(v)$ to denote $\sum_{u \in V(G)} d_{G}(u, v)$, then $W(G)=\frac{1}{2} \sum_{v \in V(G)} \widehat{D}_{G}(v)$. It can be easily verified that $\widehat{D}_{G}(v) \geq d(v)+2(n-1-d(v))$.

For a nontrivial connected graph G, its Harary index [5, 7] is defined as $\sum_{\{u, v\} \subseteq V(G)} \frac{1}{d_{G}(u, v)}$.
In [4], Hua and Wang presented a sufficient condition for a graph to be traceable by using Harary index. Li [6] presented sufficient conditions in terms of the Harary index for a graph to be Hamiltonian or Hamilton-connected using some proof ideas in [4].

In [9], Yang presented the following sufficient condition for a graph to be traceable by using Wiener index.

Theorem 1.1. [9]. Let G be a connected graph of order $n \geq 4$. If $W(G) \leq \frac{(n+5)(n-2)}{2}$, then G is traceable, unless $G=K_{1} \vee\left(K_{n-3} \cup 2 K_{1}\right)$ or $K_{2} \vee\left(3 K_{1} \cup K_{2}\right)$ or $K_{4} \vee 6 K_{1}$.

In this paper, we combine the ideas in [9] and [6] to present the following sufficient conditions in terms of the Wiener index for a graph to be Hamiltonian or Hamilton-connected.

Theorem 1.2. Let G be a connected graph of order $n \geq 3$. If $W(G) \leq \frac{n^{2}+n-4}{2}$, then G is Hamiltonian, unless $G=K_{1} \vee\left(K_{1} \cup K_{n-2}\right)$ or $K_{2} \vee\left(K_{2}^{c} \cup K_{1}\right)$.

Theorem 1.3. Let G be a connected graph of order $n \geq 4$. If $W(G) \leq \frac{n^{2}+n-6}{2}$, then G is Hamiltonconnected, unless $G=K_{2} \vee\left(K_{1} \cup K_{n-3}\right)$ or $K_{3} \vee\left(3 K_{1}\right)$.

Theorem 1.4. Let $G=(X, Y ; E)$, where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and $n \geq 2$ be a connected bipartite graph. If $W(G) \leq 3 n^{2}-2 n+2$, then G is Hamiltonian, unless $G=P_{4}$, a path having four vertices and three edges.

Theorem 1.5. Let G be a 2 -connected graph of order $n \geq 12$. If $W(G) \leq \frac{n^{2}+3 n-13}{2}$, then G is Hamiltonian, unless $G=K_{2} \vee\left(\left(2 K_{1}\right) \cup K_{n-4}\right)$.

Theorem 1.6. Let G be a 3 -connected graph of order $n \geq 18$. If $W(G) \leq \frac{n^{2}+5 n-29}{2}$, then G is Hamiltonian, unless $G=K_{3} \vee\left(\left(3 K_{1}\right) \cup K_{n-6}\right)$.

Theorem 1.7. Let G be a k-connected graph of order n. If $W(G) \leq \frac{n(n-1)+(k+1)(n-k-1)-1}{2}$, then G is Hamiltonian.

2 Preliminary Results

Lemma 2.1. Let G be a graph of order $n \geq 3$ with degree sequence $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. If $d_{k} \leq k<\frac{n}{2} \Longrightarrow d_{n-k} \geq n-k$, then G is Hamiltonian.

Lemma 2.2. Let G be a graph of order $n \geq 3$ with degree sequence $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. If $2 \leq k \leq \frac{n}{2}, d_{k-1} \leq k \Longrightarrow d_{n-k} \geq n-k+1$, then G is Hamilton-connected.

Lemma 2.3. Let $G=(X, Y ; E)$ be a bipartite graph such that $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, $n \geq 2$, and $d_{G}\left(x_{1}\right) \leq d_{G}\left(x_{2}\right) \leq \cdots \leq d_{G}\left(x_{n}\right), d_{G}\left(y_{1}\right) \leq d_{G}\left(y_{2}\right) \leq \cdots \leq d_{G}\left(y_{n}\right)$. If $d_{G}\left(x_{k}\right) \leq k<$ $n \Longrightarrow d_{G}\left(y_{n-k}\right) \geq n-k+1$, then G is Hamiltonian.

Lemma 2.4. [3] Let G be a 2 -connected graph of order $n \geq 12$. If $e(G) \geq C(n-2,2)+4$, then G is Hamiltonian or $G=K_{2} \vee\left(\left(2 K_{1}\right) \cup K_{n-4}\right)$.

Lemma 2.5. [3] Let G be a 3 -connected graph of order $n \geq 18$. If $e(G) \geq C(n-3,2)+9$, then G is Hamiltonian or $G=K_{3} \vee\left(\left(3 K_{1}\right) \cup K_{n-6}\right)$.

Lemma 2.6. [3] Let G be a k-connected graph of order n. If $e(G) \geq C(n, 2)-(k+1)(n-k-1) / 2+1$, then G is Hamiltonian.

Note that Lemma 2.1 is Corollary 3 on Page 209 in [1], Lemma 2.2 is Theorem 12 on Page 218 in [1], Lemma 2.3 is Corollary 5 on Page 210 in [1], and Lemmas 2.4, 2.5, and 2.6 can be found in [3].

3 Main Results

Proof of Theorem 1.2. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose that G is not Hamiltonian. Then, from Lemma 2.1, there exists an integer $k<\frac{n}{2}$ such that $d_{k} \leq k$ and $d_{n-k} \leq n-k-1$. Obviously, $k \geq 1$.
Therefore,

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{v \in V(G)} \widehat{D}_{G}(v) \geq \frac{1}{2} \sum_{v \in V(G)}\left(d_{G}(v)+2\left(n-1-d_{G}(v)\right)\right) \\
& =\frac{1}{2} \sum_{v \in V(G)}\left(2(n-1)-d_{G}(v)\right)=n(n-1)-\frac{1}{2} \sum_{v \in V(G)} d_{G}(v) \\
& \geq n(n-1)-\frac{1}{2}\left(k^{2}+(n-2 k)(n-k-1)+k(n-1)\right) \\
& =\frac{n^{2}+n-4}{2}+\frac{(k-1)(k-2)}{2}+(k-1)(n-2 k-1) .
\end{aligned}
$$

From $W(G) \leq \frac{n^{2}+n-4}{2}, k \geq 1$ and $n>2 k$, we have that $W(G)=\frac{n^{2}+n-4}{2}, k=1$ or $(k=2$ and $n=2 k+1), d_{1}=\cdots=d_{k}=k, d_{k+1}=\cdots=d_{n-k}=n-k-1$ and $d_{n-k+1}=\cdots=d_{n}=n-1$.

If $k=1$, then $d_{1}=1, d_{2}=d_{3}=\cdots=d_{n-1}=n-2$ and $d_{n}=n-1$. Thus $G=K_{1} \vee\left(K_{1} \cup K_{n-2}\right)$, which is not Hamiltonian.

If $k=2$ and $n=2 k+1$, then we have $n=5$. Therefore $d_{1}=2, d_{2}=2, d_{3}=2, d_{4}=4$ and $d_{5}=4$. Hence $G=K_{2} \vee\left(K_{2}^{c} \cup K_{1}\right)$, which is not Hamiltonian.
This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let G be a graph satisfying the conditions in Theorem 1.3. Suppose that G is not Hamilton-connected. Then, from Lemma 2.2, there exists an integer k with $2 \leq k \leq \frac{n}{2}$ such that $d_{k-1} \leq k$ and $d_{n-k} \leq n-k$.
Therefore,

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{v \in V(G)} \widehat{D}_{G}(v) \geq \frac{1}{2} \sum_{v \in V(G)}\left(d_{G}(v)+2\left(n-1-d_{G}(v)\right)\right) \\
& =\frac{1}{2} \sum_{v \in V(G)}\left(2(n-1)-d_{G}(v)\right)=n(n-1)-\frac{1}{2} \sum_{v \in V(G)} d_{G}(v) \\
& \geq n(n-1)-\frac{1}{2}(k(k-1)+(n-2 k+1)(n-k)+k(n-1))
\end{aligned}
$$

$$
=\frac{n^{2}+n-6}{2}+\frac{(k-2)(k-3)}{2}+(k-2)(n-2 k) .
$$

From $W(G) \leq \frac{n^{2}+n-6}{2}, k \geq 2$, and $n \geq 2 k$, we have that $W(G)=\frac{n^{2}+n-6}{2}, k=2$ or $(k=3$ and $n=2 k), d_{1}=\cdots=d_{k-1}=k, d_{k}=\cdots=d_{n-k}=n-k$ and $d_{n-k+1}=\cdots=d_{n}=n-1$.

If $k=2$, then $d_{1}=2, d_{2}=d_{3}=\cdots=d_{n-2}=n-2$ and $d_{n-1}=d_{n}=n-1$. Thus $G=K_{2} \vee\left(K_{1} \cup K_{n-3}\right)$, which is not Hamilton-connected.

If $k=3$ and $n=2 k$, then we have that $n=6$. Therefore $d_{1}=3, d_{2}=3, d_{3}=3, d_{4}=5, d_{5}=5$ and $d_{6}=5$. Hence $G=K_{3} \vee\left(3 K_{1}\right)$, which is not Hamilton-connected.
This completes the proof of Theorem 1.3.

Proof of Theorem 1.4. Let G be a graph satisfying the conditions in Theorem 1.4. Suppose that G is not Hamiltonian. Then, from Lemma 2.3, there exists an integer $k<n$ such that $d_{G}\left(x_{k}\right) \leq k$ and $d_{G}\left(y_{n-k}\right) \leq n-k$. Next we find an upper bound for $\widehat{D}_{G}\left(x_{1}\right)$. Let $N_{G}\left(x_{1}\right):=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$ be the neighbors of x_{1}, where $s=d_{G}\left(x_{1}\right)$. Then $d_{G}\left(x_{1}, z_{i}\right)=1$ for each $z_{i} \in N_{G}\left(x_{1}\right), d_{G}\left(x_{1}, x_{i}\right) \geq 2$ for each x_{i} with $2 \leq i \leq n$, and $d_{G}\left(x_{1}, y_{i}\right) \geq 3$ for each $y_{i} \in Y-N_{G}\left(x_{1}\right)$. Thus

$$
\widehat{D}_{G}\left(x_{1}\right) \geq d_{G}\left(x_{1}\right)+2(n-1)+3\left(n-d_{G}\left(x_{1}\right)\right)=5 n-2-2 d_{G}\left(x_{1}\right)
$$

Similarly, we have that for each i with $2 \leq i \leq n$ and each j with $1 \leq j \leq n$,

$$
\begin{aligned}
& \widehat{D}_{G}\left(x_{i}\right) \geq d_{G}\left(x_{i}\right)+2(n-1)+3\left(n-d_{G}\left(x_{1}\right)\right)=5 n-2-2 d_{G}\left(x_{i}\right) \\
& \widehat{D}_{G}\left(y_{j}\right) \geq d_{G}\left(y_{j}\right)+2(n-1)+3\left(n-d_{G}\left(y_{j}\right)\right)=5 n-2-2 d_{G}\left(y_{j}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{v \in V(G)} \widehat{D}_{G}(v) \geq \frac{1}{2}\left(10 n^{2}-4 n-2 \sum_{i=1}^{n}\left(d_{G}\left(x_{i}\right)+d_{G}\left(y_{i}\right)\right)\right) \\
& \geq \frac{1}{2}\left(10 n^{2}-4 n-2\left(k^{2}+(n-k) n+(n-k)^{2}+k n\right)\right) \\
& =\frac{1}{2}\left(10 n^{2}-4 n-2\left((k+(n-k))^{2}-2 k(n-k)+n^{2}\right)\right) \\
& =\frac{1}{2}\left(10 n^{2}-4 n-2\left(2 n^{2}-2 k(n-k)\right)\right)=3 n^{2}-2 n+2 k(n-k) \\
& \geq 3 n^{2}-2 n+2 * 1 * 1=3 n^{2}-2 n+2
\end{aligned}
$$

From $W(G) \leq 3 n^{2}-2 n+2,1 \leq k<n$, we have that $k=1, n-k=1, d_{G}\left(x_{1}\right)=1, d_{G}\left(x_{2}\right)=2$, $d_{G}\left(y_{1}\right)=1$ and $d_{G}\left(y_{2}\right)=2$. Thus $G=P_{4}$, which is not Hamiltonian.
This completes the proof of Theorem 1.4.

Proof of Theorem 1.5. Let G be a graph satisfying the conditions in Theorem 1.5. Note that if $G=$ $K_{2} \vee\left(\left(2 K_{1}\right) \cup K_{n-4}\right)$, then $W(G)=\frac{n^{2}+3 n-14}{2}$. Suppose that G is not Hamiltonian and G is not $K_{2} \vee\left(\left(2 K_{1}\right) \cup K_{n-4}\right)$. Then, from Lemma 2.4, we have that $e(G) \leq C(n-2,2)+3$. Therefore,

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{v \in V(G)} \widehat{D}_{G}(v) \geq \frac{1}{2} \sum_{v \in V(G)}\left(d_{G}(v)+2\left(n-1-d_{G}(v)\right)\right) \\
& =\frac{1}{2} \sum_{v \in V(G)}\left(2(n-1)-d_{G}(v)\right)=n(n-1)-\frac{1}{2} \sum_{v \in V(G)} d_{G}(v) \\
& =n(n-1)-e(G) \geq n(n-1)-C(n-2,2)-3=\frac{n^{2}+3 n-12}{2}
\end{aligned}
$$

which is a contradiction.
This completes the proof of Theorem 1.5.

Proof of Theorem 1.6. Let G be a graph satisfying the conditions in Theorem 1.6. Note that if $G=$ $K_{3} \vee\left(\left(3 K_{1}\right) \cup K_{n-6}\right)$, then $W(G)=\frac{n^{2}+5 n-30}{2}$. Suppose that G is not Hamiltonian and G is not $K_{3} \vee\left(\left(3 K_{1}\right) \cup K_{n-6}\right)$. Then, from Lemma 2.5, we have that $e(G) \leq C(n-3,2)+8$. Therefore,

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{v \in V(G)} \widehat{D}_{G}(v) \geq \frac{1}{2} \sum_{v \in V(G)}\left(d_{G}(v)+2\left(n-1-d_{G}(v)\right)\right) \\
& =\frac{1}{2} \sum_{v \in V(G)}\left(2(n-1)-d_{G}(v)\right)=n(n-1)-\frac{1}{2} \sum_{v \in V(G)} d_{G}(v) \\
& =n(n-1)-e(G) \geq n(n-1)-C(n-3,2)-8=\frac{n^{2}+5 n-28}{2},
\end{aligned}
$$

which is a contradiction.
This completes the proof of Theorem 1.6.

Proof of Theorem 1.7. Let G be a graph satisfying the conditions in Theorem 1.7. Suppose that G is not Hamiltonian. Then, from Lemma 2.6, we have that $e(G) \leq C(n, 2)-(k+1)(n-k-1) / 2$. Therefore,

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{v \in V(G)} \widehat{D}_{G}(v) \geq \frac{1}{2} \sum_{v \in V(G)}\left(d_{G}(v)+2\left(n-1-d_{G}(v)\right)\right) \\
& =\frac{1}{2} \sum_{v \in V(G)}\left(2(n-1)-d_{G}(v)\right)=n(n-1)-\frac{1}{2} \sum_{v \in V(G)} d_{G}(v) \\
& =n(n-1)-e(G) \geq n(n-1)-C(n, 2)+(k+1)(n-k-1) / 2 \\
& =\frac{n(n-1)+(k+1)(n-k-1)}{2}, \quad \text { which is a contradiction. }
\end{aligned}
$$

This completes the proof of Theorem 1.7.

Acknowledgment

The author would like to thank the referee for the suggestions and comments which improve the first version of this paper.

References

[1] C. Berge, Graphs and Hypergraphs, Second edition, American Elsevier Publishing Company (1976).
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).
[3] W. Byer and D. Smeltzer, Edge bounds in nonhamiltonian k-connected graphs, Discrete Math., 307(2007), 1572-1579.
[4] H. Hua and M. Wang, On Harary index and traceable graphs, MATCH Commun. Math. Comput. Chem., 70(2013), 297-300.
[5] O. Ivanciuc, T. S. Balaban and A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem., 12(1993), 309-318.
[6] R. Li, Harary index and some Hamiltonian properties of graphs, manuscript, Nov. 2013.
[7] D. Plavšić, S. Nikolić, N. Trinajstić and Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem., 12(1993), 235-250.
[8] H. Wiener, Structural determination of paraffin boiling points, Journal of the American Chemical Society, 69(1947), 17-20.
[9] L. Yang, Wiener index and traceable graphs, Bulletin of the Australian Mathematical Society, 88(2013), 380-383.

