

ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215

Wiener Index and Some Hamiltonian Properties of Graphs

Rao Li Department of Mathematical Sciences University of South Carolina Aiken Aiken, SC 29801 USA. raol@usca.edu

Abstract

The Wiener index of a connected graph is defined as the sum of distances between all pairs of vertices in the graph. Yang presented a sufficient condition in terms of the Wiener index for a graph to be traceable. Motivated by Yang's result, we present sufficient conditions based on the Wiener index for a graph to be Hamiltonian or Hamilton-connected in this note.

Keywords: Wiener Index, Hamiltonian. AMS Subject Classification(2010): 05C12, 05C45.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [2]. For a graph G = (V, E), we use n and e to denote its order |V|and size |E|, respectively. For two vertices u and v in a graph G, we use $d_G(u, v)$ to denote the distance between them. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. A graph G is called Hamilton-connected if for each pair of vertices in G there is a Hamiltonian path between them. If G and H are two vertex-disjoint graphs, we use $G \vee H$ to denote the join of G and H. We use C(n, r) to denote the number of r - combinations of a set with n elements.

For a connected graph G, its Wiener index [8], denoted by W(G), is defined as

$$W(G) = \sum_{\{u,v\}\subseteq V(G)} d_G(u,v)$$

If we use $\widehat{D}_G(v)$ to denote $\sum_{u \in V(G)} d_G(u, v)$, then $W(G) = \frac{1}{2} \sum_{v \in V(G)} \widehat{D}_G(v)$. It can be easily verified that $\widehat{D}_G(v) \ge d(v) + 2(n - 1 - d(v))$.

For a nontrivial connected graph G, its Harary index [5, 7] is defined as $\sum_{\{u,v\}\subseteq V(G)} \frac{1}{d_G(u,v)}$.

In [4], Hua and Wang presented a sufficient condition for a graph to be traceable by using Harary index. Li [6] presented sufficient conditions in terms of the Harary index for a graph to be Hamiltonian or Hamilton-connected using some proof ideas in [4].

In [9], Yang presented the following sufficient condition for a graph to be traceable by using Wiener index.

Theorem 1.1. [9]. Let G be a connected graph of order $n \ge 4$. If $W(G) \le \frac{(n+5)(n-2)}{2}$, then G is traceable, unless $G = K_1 \lor (K_{n-3} \cup 2K_1)$ or $K_2 \lor (3K_1 \cup K_2)$ or $K_4 \lor 6K_1$.

In this paper, we combine the ideas in [9] and [6] to present the following sufficient conditions in terms of the Wiener index for a graph to be Hamiltonian or Hamilton-connected.

Theorem 1.2. Let G be a connected graph of order $n \ge 3$. If $W(G) \le \frac{n^2+n-4}{2}$, then G is Hamiltonian, unless $G = K_1 \lor (K_1 \cup K_{n-2})$ or $K_2 \lor (K_2^c \cup K_1)$.

Theorem 1.3. Let G be a connected graph of order $n \ge 4$. If $W(G) \le \frac{n^2+n-6}{2}$, then G is Hamiltonconnected, unless $G = K_2 \lor (K_1 \cup K_{n-3})$ or $K_3 \lor (3K_1)$.

Theorem 1.4. Let G = (X, Y; E), where $X = \{x_1, x_2, ..., x_n\}$, $Y = \{y_1, y_2, ..., y_n\}$ and $n \ge 2$ be a connected bipartite graph. If $W(G) \le 3n^2 - 2n + 2$, then G is Hamiltonian, unless $G = P_4$, a path having four vertices and three edges.

Theorem 1.5. Let G be a 2-connected graph of order $n \ge 12$. If $W(G) \le \frac{n^2+3n-13}{2}$, then G is Hamiltonian, unless $G = K_2 \lor ((2K_1) \cup K_{n-4})$.

Theorem 1.6. Let G be a 3-connected graph of order $n \ge 18$. If $W(G) \le \frac{n^2+5n-29}{2}$, then G is Hamiltonian, unless $G = K_3 \lor ((3K_1) \cup K_{n-6})$.

Theorem 1.7. Let G be a k-connected graph of order n. If $W(G) \leq \frac{n(n-1)+(k+1)(n-k-1)-1}{2}$, then G is Hamiltonian.

2 **Preliminary Results**

Lemma 2.1. Let G be a graph of order $n \ge 3$ with degree sequence $d_1 \le d_2 \le \cdots \le d_n$. If $d_k \le k < \frac{n}{2} \Longrightarrow d_{n-k} \ge n-k$, then G is Hamiltonian.

Lemma 2.2. Let G be a graph of order $n \ge 3$ with degree sequence $d_1 \le d_2 \le \cdots \le d_n$. If $2 \le k \le \frac{n}{2}, d_{k-1} \le k \Longrightarrow d_{n-k} \ge n-k+1$, then G is Hamilton-connected.

Lemma 2.3. Let G = (X, Y; E) be a bipartite graph such that $X = \{x_1, x_2, ..., x_n\}, Y = \{y_1, y_2, ..., y_n\}, n \ge 2$, and $d_G(x_1) \le d_G(x_2) \le \cdots \le d_G(x_n), d_G(y_1) \le d_G(y_2) \le \cdots \le d_G(y_n)$. If $d_G(x_k) \le k < n \implies d_G(y_{n-k}) \ge n-k+1$, then G is Hamiltonian.

Lemma 2.4. [3] Let G be a 2-connected graph of order $n \ge 12$. If $e(G) \ge C(n-2,2) + 4$, then G is Hamiltonian or $G = K_2 \lor ((2K_1) \cup K_{n-4})$.

Lemma 2.5. [3] Let G be a 3-connected graph of order $n \ge 18$. If $e(G) \ge C(n-3,2) + 9$, then G is Hamiltonian or $G = K_3 \lor ((3K_1) \cup K_{n-6})$.

Lemma 2.6. [3] Let G be a k-connected graph of order n. If $e(G) \ge C(n,2) - (k+1)(n-k-1)/2 + 1$, then G is Hamiltonian.

Note that Lemma 2.1 is Corollary 3 on Page 209 in [1], Lemma 2.2 is Theorem 12 on Page 218 in [1], Lemma 2.3 is Corollary 5 on Page 210 in [1], and Lemmas 2.4, 2.5, and 2.6 can be found in [3].

3 Main Results

Proof of Theorem 1.2. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose that G is not Hamiltonian. Then, from Lemma 2.1, there exists an integer $k < \frac{n}{2}$ such that $d_k \leq k$ and $d_{n-k} \leq n-k-1$. Obviously, $k \geq 1$. Therefore,

$$\begin{split} W(G) &= \frac{1}{2} \sum_{v \in V(G)} \widehat{D}_G(v) \geq \frac{1}{2} \sum_{v \in V(G)} \left(d_G(v) + 2(n - 1 - d_G(v)) \right) \\ &= \frac{1}{2} \sum_{v \in V(G)} \left(2(n - 1) - d_G(v) \right) = n(n - 1) - \frac{1}{2} \sum_{v \in V(G)} d_G(v) \\ &\geq n(n - 1) - \frac{1}{2} \left(k^2 + (n - 2k)(n - k - 1) + k(n - 1) \right) \\ &= \frac{n^2 + n - 4}{2} + \frac{(k - 1)(k - 2)}{2} + (k - 1)(n - 2k - 1). \end{split}$$

From $W(G) \leq \frac{n^2+n-4}{2}$, $k \geq 1$ and n > 2k, we have that $W(G) = \frac{n^2+n-4}{2}$, k = 1 or (k = 2 and n = 2k + 1), $d_1 = \cdots = d_k = k$, $d_{k+1} = \cdots = d_{n-k} = n - k - 1$ and $d_{n-k+1} = \cdots = d_n = n - 1$.

If k = 1, then $d_1 = 1$, $d_2 = d_3 = \cdots = d_{n-1} = n-2$ and $d_n = n-1$. Thus $G = K_1 \vee (K_1 \cup K_{n-2})$, which is not Hamiltonian.

If k = 2 and n = 2k + 1, then we have n = 5. Therefore $d_1 = 2$, $d_2 = 2$, $d_3 = 2$, $d_4 = 4$ and $d_5 = 4$. Hence $G = K_2 \vee (K_2^c \cup K_1)$, which is not Hamiltonian. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let G be a graph satisfying the conditions in Theorem 1.3. Suppose that G is not Hamilton-connected. Then, from Lemma 2.2, there exists an integer k with $2 \le k \le \frac{n}{2}$ such that $d_{k-1} \le k$ and $d_{n-k} \le n-k$.

Therefore,

$$W(G) = \frac{1}{2} \sum_{v \in V(G)} \widehat{D}_G(v) \ge \frac{1}{2} \sum_{v \in V(G)} (d_G(v) + 2(n - 1 - d_G(v)))$$

$$= \frac{1}{2} \sum_{v \in V(G)} (2(n - 1) - d_G(v)) = n(n - 1) - \frac{1}{2} \sum_{v \in V(G)} d_G(v)$$

$$\ge n(n - 1) - \frac{1}{2} (k(k - 1) + (n - 2k + 1)(n - k) + k(n - 1))$$

Rao Li

$$= \frac{n^2 + n - 6}{2} + \frac{(k - 2)(k - 3)}{2} + (k - 2)(n - 2k).$$

From $W(G) \leq \frac{n^2+n-6}{2}$, $k \geq 2$, and $n \geq 2k$, we have that $W(G) = \frac{n^2+n-6}{2}$, k = 2 or (k = 3 and n = 2k), $d_1 = \cdots = d_{k-1} = k$, $d_k = \cdots = d_{n-k} = n-k$ and $d_{n-k+1} = \cdots = d_n = n-1$.

If k = 2, then $d_1 = 2$, $d_2 = d_3 = \cdots = d_{n-2} = n-2$ and $d_{n-1} = d_n = n-1$. Thus $G = K_2 \vee (K_1 \cup K_{n-3})$, which is not Hamilton-connected.

If k = 3 and n = 2k, then we have that n = 6. Therefore $d_1 = 3$, $d_2 = 3$, $d_3 = 3$, $d_4 = 5$, $d_5 = 5$ and $d_6 = 5$. Hence $G = K_3 \lor (3K_1)$, which is not Hamilton-connected. This completes the proof of Theorem 1.3.

Proof of Theorem 1.4. Let G be a graph satisfying the conditions in Theorem 1.4. Suppose that G is not Hamiltonian. Then, from Lemma 2.3, there exists an integer k < n such that $d_G(x_k) \le k$ and $d_G(y_{n-k}) \le n-k$. Next we find an upper bound for $\widehat{D}_G(x_1)$. Let $N_G(x_1) := \{z_1, z_2, ..., z_s\}$ be the neighbors of x_1 , where $s = d_G(x_1)$. Then $d_G(x_1, z_i) = 1$ for each $z_i \in N_G(x_1)$, $d_G(x_1, x_i) \ge 2$ for each x_i with $2 \le i \le n$, and $d_G(x_1, y_i) \ge 3$ for each $y_i \in Y - N_G(x_1)$. Thus

$$\widehat{D}_G(x_1) \ge d_G(x_1) + 2(n-1) + 3(n-d_G(x_1)) = 5n - 2 - 2d_G(x_1).$$

Similarly, we have that for each i with $2 \le i \le n$ and each j with $1 \le j \le n$,

$$\widehat{D}_G(x_i) \ge d_G(x_i) + 2(n-1) + 3(n - d_G(x_1)) = 5n - 2 - 2d_G(x_i),$$
$$\widehat{D}_G(y_j) \ge d_G(y_j) + 2(n-1) + 3(n - d_G(y_j)) = 5n - 2 - 2d_G(y_j).$$

Therefore,

$$W(G) = \frac{1}{2} \sum_{v \in V(G)} \widehat{D}_G(v) \ge \frac{1}{2} \left(10n^2 - 4n - 2\sum_{i=1}^n (d_G(x_i) + d_G(y_i)) \right)$$

$$\ge \frac{1}{2} \left(10n^2 - 4n - 2(k^2 + (n-k)n + (n-k)^2 + kn) \right)$$

$$= \frac{1}{2} \left(10n^2 - 4n - 2((k + (n-k))^2 - 2k(n-k) + n^2) \right)$$

$$= \frac{1}{2} \left(10n^2 - 4n - 2(2n^2 - 2k(n-k)) \right) = 3n^2 - 2n + 2k(n-k)$$

$$\ge 3n^2 - 2n + 2 * 1 * 1 = 3n^2 - 2n + 2.$$

From $W(G) \leq 3n^2 - 2n + 2$, $1 \leq k < n$, we have that k = 1, n - k = 1, $d_G(x_1) = 1$, $d_G(x_2) = 2$, $d_G(y_1) = 1$ and $d_G(y_2) = 2$. Thus $G = P_4$, which is not Hamiltonian. This completes the proof of Theorem 1.4.

14

Proof of Theorem 1.5. Let G be a graph satisfying the conditions in Theorem 1.5. Note that if $G = K_2 \vee ((2K_1) \cup K_{n-4})$, then $W(G) = \frac{n^2 + 3n - 14}{2}$. Suppose that G is not Hamiltonian and G is not $K_2 \vee ((2K_1) \cup K_{n-4})$. Then, from Lemma 2.4, we have that $e(G) \leq C(n-2,2) + 3$. Therefore,

$$\begin{split} W(G) &= \frac{1}{2} \sum_{v \in V(G)} \widehat{D}_G(v) \geq \frac{1}{2} \sum_{v \in V(G)} \left(d_G(v) + 2(n - 1 - d_G(v)) \right) \\ &= \frac{1}{2} \sum_{v \in V(G)} \left(2(n - 1) - d_G(v) \right) = n(n - 1) - \frac{1}{2} \sum_{v \in V(G)} d_G(v) \\ &= n(n - 1) - e(G) \geq n(n - 1) - C(n - 2, 2) - 3 = \frac{n^2 + 3n - 12}{2}, \end{split}$$

which is a contradiction.

This completes the proof of Theorem 1.5.

Proof of Theorem 1.6. Let G be a graph satisfying the conditions in Theorem 1.6. Note that if $G = K_3 \vee ((3K_1) \cup K_{n-6})$, then $W(G) = \frac{n^2 + 5n - 30}{2}$. Suppose that G is not Hamiltonian and G is not $K_3 \vee ((3K_1) \cup K_{n-6})$. Then, from Lemma 2.5, we have that $e(G) \leq C(n-3,2) + 8$. Therefore,

$$\begin{split} W(G) &= \frac{1}{2} \sum_{v \in V(G)} \widehat{D}_G(v) \geq \frac{1}{2} \sum_{v \in V(G)} \left(d_G(v) + 2(n - 1 - d_G(v)) \right) \\ &= \frac{1}{2} \sum_{v \in V(G)} \left(2(n - 1) - d_G(v) \right) = n(n - 1) - \frac{1}{2} \sum_{v \in V(G)} d_G(v) \\ &= n(n - 1) - e(G) \geq n(n - 1) - C(n - 3, 2) - 8 = \frac{n^2 + 5n - 28}{2}, \end{split}$$

which is a contradiction.

This completes the proof of Theorem 1.6.

Proof of Theorem 1.7. Let G be a graph satisfying the conditions in Theorem 1.7. Suppose that G is not Hamiltonian. Then, from Lemma 2.6, we have that $e(G) \leq C(n,2) - (k+1)(n-k-1)/2$. Therefore,

$$\begin{split} W(G) &= \frac{1}{2} \sum_{v \in V(G)} \widehat{D}_G(v) \geq \frac{1}{2} \sum_{v \in V(G)} \left(d_G(v) + 2(n - 1 - d_G(v)) \right) \\ &= \frac{1}{2} \sum_{v \in V(G)} \left(2(n - 1) - d_G(v) \right) = n(n - 1) - \frac{1}{2} \sum_{v \in V(G)} d_G(v) \\ &= n(n - 1) - e(G) \geq n(n - 1) - C(n, 2) + (k + 1)(n - k - 1)/2 \\ &= \frac{n(n - 1) + (k + 1)(n - k - 1)}{2}, \quad \text{which is a contradiction.} \end{split}$$

This completes the proof of Theorem 1.7.

Acknowledgment

The author would like to thank the referee for the suggestions and comments which improve the first version of this paper.

References

- [1] C. Berge, *Graphs and Hypergraphs*, Second edition, American Elsevier Publishing Company (1976).
- [2] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Macmillan, London and Elsevier, New York (1976).
- [3] W. Byer and D. Smeltzer, *Edge bounds in nonhamiltonian k-connected graphs*, Discrete Math., 307(2007), 1572 1579.
- [4] H. Hua and M. Wang, *On Harary index and traceable graphs*, MATCH Commun. Math. Comput. Chem., 70(2013), 297 300.
- [5] O. Ivanciuc, T. S. Balaban and A. T. Balaban, *Reciprocal distance matrix, related local vertex invariants and topological indices*, J. Math. Chem., 12(1993), 309 318.
- [6] R. Li, Harary index and some Hamiltonian properties of graphs, manuscript, Nov. 2013.
- [7] D. Plavšić, S. Nikolić, N. Trinajstić and Z. Mihalić, *On the Harary index for the characterization of chemical graphs*, J. Math. Chem., 12(1993), 235 250.
- [8] H. Wiener, *Structural determination of paraffin boiling points*, Journal of the American Chemical Society, 69(1947), 17 - 20.
- [9] L. Yang, *Wiener index and traceable graphs*, Bulletin of the Australian Mathematical Society, 88(2013), 380 383.