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Abstract

The Wiener index of a connected graph is defined as the sum of distances between all pairs of
vertices in the graph. Yang presented a sufficient condition in terms of the Wiener index for a graph
to be traceable. Motivated by Yang’s result, we present sufficient conditions based on the Wiener
index for a graph to be Hamiltonian or Hamilton-connected in this note.
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology

not defined here follow those in [2]. For a graph G = (V, E), we use n and e to denote its order |V |
and size |E|, respectively. For two vertices u and v in a graph G, we use dG(u, v) to denote the distance

between them. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices

of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called

a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable if G has a

Hamiltonian path. A graph G is called Hamilton-connected if for each pair of vertices in G there is a

Hamiltonian path between them. If G and H are two vertex-disjoint graphs, we use G ∨ H to denote

the join of G and H . We use C(n, r) to denote the number of r - combinations of a set with n elements.

For a connected graph G, its Wiener index [8], denoted by W (G), is defined as

W (G) =
∑

{u, v}⊆V (G)

dG(u, v).

If we use D̂G(v) to denote
∑

u∈V (G) dG(u, v), then W (G) = 1
2

∑
v∈V (G)

D̂G(v). It can be easily verified

that D̂G(v) ≥ d(v) + 2(n− 1− d(v)).

For a nontrivial connected graph G, its Harary index [5, 7] is defined as
∑

{u, v}⊆V (G)

1
dG(u,v) .

In [4], Hua and Wang presented a sufficient condition for a graph to be traceable by using Harary

index. Li [6] presented sufficient conditions in terms of the Harary index for a graph to be Hamiltonian

or Hamilton-connected using some proof ideas in [4].
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In [9], Yang presented the following sufficient condition for a graph to be traceable by using Wiener

index.

Theorem 1.1. [9]. Let G be a connected graph of order n ≥ 4. If W (G) ≤ (n+5)(n−2)
2 , then G is

traceable, unless G = K1 ∨ (Kn−3 ∪ 2K1) or K2 ∨ (3K1 ∪K2) or K4 ∨ 6K1.

In this paper, we combine the ideas in [9] and [6] to present the following sufficient conditions in

terms of the Wiener index for a graph to be Hamiltonian or Hamilton-connected.

Theorem 1.2. Let G be a connected graph of order n ≥ 3. If W (G) ≤ n2+n−4
2 , then G is Hamiltonian,

unless G = K1 ∨ (K1 ∪Kn−2) or K2 ∨ (Kc
2 ∪K1).

Theorem 1.3. Let G be a connected graph of order n ≥ 4. If W (G) ≤ n2+n−6
2 , then G is Hamilton-

connected, unless G = K2 ∨ (K1 ∪Kn−3) or K3 ∨ (3K1).

Theorem 1.4. Let G = (X,Y ;E), where X = {x1, x2, ..., xn}, Y = {y1, y2, ..., yn} and n ≥ 2 be a

connected bipartite graph. If W (G) ≤ 3n2 − 2n + 2, then G is Hamiltonian, unless G = P4, a path

having four vertices and three edges.

Theorem 1.5. Let G be a 2-connected graph of order n ≥ 12. If W (G) ≤ n2+3n−13
2 , then G is

Hamiltonian, unless G = K2 ∨ ((2K1) ∪Kn−4).

Theorem 1.6. Let G be a 3-connected graph of order n ≥ 18. If W (G) ≤ n2+5n−29
2 , then G is

Hamiltonian, unless G = K3 ∨ ((3K1) ∪Kn−6).

Theorem 1.7. Let G be a k-connected graph of order n. If W (G) ≤ n(n−1)+(k+1)(n−k−1)−1
2 , then G is

Hamiltonian.

2 Preliminary Results

Lemma 2.1. Let G be a graph of order n ≥ 3 with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. If

dk ≤ k < n
2 =⇒ dn−k ≥ n− k, then G is Hamiltonian.

Lemma 2.2. Let G be a graph of order n ≥ 3 with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. If

2 ≤ k ≤ n
2 , dk−1 ≤ k =⇒ dn−k ≥ n− k + 1, then G is Hamilton-connected.

Lemma 2.3. Let G = (X,Y ;E) be a bipartite graph such that X = {x1, x2, ..., xn}, Y = {y1, y2, ..., yn},
n ≥ 2, and dG(x1) ≤ dG(x2) ≤ · · · ≤ dG(xn), dG(y1) ≤ dG(y2) ≤ · · · ≤ dG(yn). If dG(xk) ≤ k <

n =⇒ dG(yn−k) ≥ n− k + 1, then G is Hamiltonian.

Lemma 2.4. [3] Let G be a 2-connected graph of order n ≥ 12. If e(G) ≥ C(n− 2, 2) + 4, then G is

Hamiltonian or G = K2 ∨ ((2K1) ∪Kn−4).

Lemma 2.5. [3] Let G be a 3-connected graph of order n ≥ 18. If e(G) ≥ C(n− 3, 2) + 9, then G is

Hamiltonian or G = K3 ∨ ((3K1) ∪Kn−6).
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Lemma 2.6. [3] Let G be a k-connected graph of order n. If e(G) ≥ C(n, 2)−(k+1)(n−k−1)/2+1,

then G is Hamiltonian.

Note that Lemma 2.1 is Corollary 3 on Page 209 in [1], Lemma 2.2 is Theorem 12 on Page 218 in

[1], Lemma 2.3 is Corollary 5 on Page 210 in [1], and Lemmas 2.4, 2.5, and 2.6 can be found in [3].

3 Main Results

Proof of Theorem 1.2. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose that G

is not Hamiltonian. Then, from Lemma 2.1, there exists an integer k < n
2 such that dk ≤ k and

dn−k ≤ n− k − 1. Obviously, k ≥ 1.

Therefore,

W (G) =
1

2

∑
v∈V (G)

D̂G(v) ≥
1

2

∑
v∈V (G)

(dG(v) + 2(n− 1− dG(v)))

=
1

2

∑
v∈V (G)

(2(n− 1)− dG(v)) = n(n− 1)− 1

2

∑
v∈V (G)

dG(v)

≥ n(n− 1)− 1

2

(
k2 + (n− 2k)(n− k − 1) + k(n− 1)

)
=

n2 + n− 4

2
+

(k − 1)(k − 2)

2
+ (k − 1)(n− 2k − 1).

From W (G) ≤ n2+n−4
2 , k ≥ 1 and n > 2k, we have that W (G) = n2+n−4

2 , k = 1 or (k = 2 and

n = 2k + 1), d1 = · · · = dk = k, dk+1 = · · · = dn−k = n− k − 1 and dn−k+1 = · · · = dn = n− 1.

If k = 1, then d1 = 1, d2 = d3 = · · · = dn−1 = n−2 and dn = n−1. Thus G = K1∨(K1∪Kn−2),

which is not Hamiltonian.

If k = 2 and n = 2k + 1, then we have n = 5. Therefore d1 = 2, d2 = 2, d3 = 2, d4 = 4 and

d5 = 4. Hence G = K2 ∨ (Kc
2 ∪K1), which is not Hamiltonian.

This completes the proof of Theorem 1.2. �

Proof of Theorem 1.3. Let G be a graph satisfying the conditions in Theorem 1.3. Suppose that G is

not Hamilton-connected. Then, from Lemma 2.2, there exists an integer k with 2 ≤ k ≤ n
2 such that

dk−1 ≤ k and dn−k ≤ n− k.

Therefore,

W (G) =
1

2

∑
v∈V (G)

D̂G(v) ≥
1

2

∑
v∈V (G)

(dG(v) + 2(n− 1− dG(v)))

=
1

2

∑
v∈V (G)

(2(n− 1)− dG(v)) = n(n− 1)− 1

2

∑
v∈V (G)

dG(v)

≥ n(n− 1)− 1

2
(k(k − 1) + (n− 2k + 1)(n− k) + k(n− 1))
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=
n2 + n− 6

2
+

(k − 2)(k − 3)

2
+ (k − 2)(n− 2k).

From W (G) ≤ n2+n−6
2 , k ≥ 2, and n ≥ 2k, we have that W (G) = n2+n−6

2 , k = 2 or (k = 3 and

n = 2k), d1 = · · · = dk−1 = k, dk = · · · = dn−k = n− k and dn−k+1 = · · · = dn = n− 1.

If k = 2, then d1 = 2, d2 = d3 = · · · = dn−2 = n − 2 and dn−1 = dn = n − 1. Thus

G = K2 ∨ (K1 ∪Kn−3), which is not Hamilton-connected.

If k = 3 and n = 2k, then we have that n = 6. Therefore d1 = 3, d2 = 3, d3 = 3, d4 = 5, d5 = 5

and d6 = 5. Hence G = K3 ∨ (3K1), which is not Hamilton-connected.

This completes the proof of Theorem 1.3. �

Proof of Theorem 1.4. Let G be a graph satisfying the conditions in Theorem 1.4. Suppose that G

is not Hamiltonian. Then, from Lemma 2.3, there exists an integer k < n such that dG(xk) ≤ k and

dG(yn−k) ≤ n − k. Next we find an upper bound for D̂G(x1). Let NG(x1) := {z1, z2, ..., zs } be the

neighbors of x1, where s = dG(x1). Then dG(x1, zi) = 1 for each zi ∈ NG(x1), dG(x1, xi) ≥ 2 for

each xi with 2 ≤ i ≤ n, and dG(x1, yi) ≥ 3 for each yi ∈ Y −NG(x1). Thus

D̂G(x1) ≥ dG(x1) + 2(n− 1) + 3(n− dG(x1)) = 5n− 2− 2dG(x1).

Similarly, we have that for each i with 2 ≤ i ≤ n and each j with 1 ≤ j ≤ n,

D̂G(xi) ≥ dG(xi) + 2(n− 1) + 3(n− dG(x1)) = 5n− 2− 2dG(xi),

D̂G(yj) ≥ dG(yj) + 2(n− 1) + 3(n− dG(yj)) = 5n− 2− 2dG(yj).

Therefore,

W (G) =
1

2

∑
v∈V (G)

D̂G(v) ≥
1

2

(
10n2 − 4n− 2

n∑
i=1

(dG(xi) + dG(yi))

)

≥ 1

2

(
10n2 − 4n− 2(k2 + (n− k)n+ (n− k)2 + kn)

)
=

1

2

(
10n2 − 4n− 2((k + (n− k))2 − 2k(n− k) + n2)

)
=

1

2

(
10n2 − 4n− 2(2n2 − 2k(n− k))

)
= 3n2 − 2n+ 2k(n− k)

≥ 3n2 − 2n+ 2 ∗ 1 ∗ 1 = 3n2 − 2n+ 2.

From W (G) ≤ 3n2 − 2n+ 2, 1 ≤ k < n, we have that k = 1, n− k = 1, dG(x1) = 1, dG(x2) = 2,

dG(y1) = 1 and dG(y2) = 2. Thus G = P4, which is not Hamiltonian.

This completes the proof of Theorem 1.4. �
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Proof of Theorem 1.5. Let G be a graph satisfying the conditions in Theorem 1.5. Note that if G =

K2 ∨ ((2K1) ∪ Kn−4), then W (G) = n2+3n−14
2 . Suppose that G is not Hamiltonian and G is not

K2 ∨ ((2K1) ∪Kn−4). Then, from Lemma 2.4, we have that e(G) ≤ C(n− 2, 2) + 3. Therefore,

W (G) =
1

2

∑
v∈V (G)

D̂G(v) ≥
1

2

∑
v∈V (G)

(dG(v) + 2(n− 1− dG(v)))

=
1

2

∑
v∈V (G)

(2(n− 1)− dG(v)) = n(n− 1)− 1

2

∑
v∈V (G)

dG(v)

= n(n− 1)− e(G) ≥ n(n− 1)− C(n− 2, 2)− 3 =
n2 + 3n− 12

2
,

which is a contradiction.

This completes the proof of Theorem 1.5. �

Proof of Theorem 1.6. Let G be a graph satisfying the conditions in Theorem 1.6. Note that if G =

K3 ∨ ((3K1) ∪ Kn−6), then W (G) = n2+5n−30
2 . Suppose that G is not Hamiltonian and G is not

K3 ∨ ((3K1) ∪Kn−6). Then, from Lemma 2.5, we have that e(G) ≤ C(n− 3, 2) + 8. Therefore,

W (G) =
1

2

∑
v∈V (G)

D̂G(v) ≥
1

2

∑
v∈V (G)

(dG(v) + 2(n− 1− dG(v)))

=
1

2

∑
v∈V (G)

(2(n− 1)− dG(v)) = n(n− 1)− 1

2

∑
v∈V (G)

dG(v)

= n(n− 1)− e(G) ≥ n(n− 1)− C(n− 3, 2)− 8 =
n2 + 5n− 28

2
,

which is a contradiction.

This completes the proof of Theorem 1.6. �

Proof of Theorem 1.7. Let G be a graph satisfying the conditions in Theorem 1.7. Suppose that G

is not Hamiltonian. Then, from Lemma 2.6, we have that e(G) ≤ C(n, 2) − (k + 1)(n − k − 1)/2.

Therefore,

W (G) =
1

2

∑
v∈V (G)

D̂G(v) ≥
1

2

∑
v∈V (G)

(dG(v) + 2(n− 1− dG(v)))

=
1

2

∑
v∈V (G)

(2(n− 1)− dG(v)) = n(n− 1)− 1

2

∑
v∈V (G)

dG(v)

= n(n− 1)− e(G) ≥ n(n− 1)− C(n, 2) + (k + 1)(n− k − 1)/2

=
n(n− 1) + (k + 1)(n− k − 1)

2
, which is a contradiction.

This completes the proof of Theorem 1.7. �
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