$\mathbf{Z}_{4 p}$ - Magic labeling for some special graphs

V.L. Stella Arputha Mary
Department of Mathematics, St.Mary's College, Tuticorin - 628001.
E-mail: prisstell@yahoo.com
S. Navaneethakrishnan, A. Nagarajan
Department of Mathematics, V.O.C College, Tuticorin - 628001.
E-mail: snk.voc@gmail.com, nagarajan.voc@ gmail.com

Abstract

For any non-trivial abelian group A under addition a graph G is said to be A - magic if there exists a labeling f of the edges of G with non zero elements of A such that, the vertex labeling f^{+}defined as $f^{+}(v)=\Sigma f(u v)$ taken over all edges $u v$ incident at v is a constant [5]. A graph is said to be A-magic if it admits an A-magic labeling. In this paper we prove that splitting graph of a path, triangular snake and book graphs are Z_{4}-magic graphs. Also we generalize that they are all $Z_{4 p}$-magic graphs for any positive integer p.

Keywords: A - magic labeling, Z_{4} - magic labeling, $Z_{4 p}$-magic labeling, $Z_{4 p}$-magic graphs.
AMS Subject Classification(2010): 05C78.

1 Introduction

In this paper by a graph $G(V, E)$ we mean G is a finite, simple, undirected graph. The concept of magic labelings were introduced by Sedlacek in 1963. Kong, Lee and Sun [4] used the term magic labeling for the labeling of edges with non negative integers such that for each vertex v, the sum of the labels of all edges incident at v is same for all v.

For any non-trivial abelian group A under addition a graph G is said to be A - magic if there exists a labeling f of the edges of G with non zero elements of A such that, the vertex labeling f^{+}defined as $f^{+}(v)=\Sigma f(u v)$ taken over all edges $u v$ incident at v is a constant. In this paper, we choose Z_{4} which is additive modulo 4 as the abelian group and we prove the splitting graph of a path, triangular snake, book graph and $F_{n}^{(t)}$ are Z_{4}-magic graphs. We also prove that they are all $Z_{4 p}$-magic graphs.

2 Definitions

Definition 2.1. [6] For each point v of a graph G take a new vertex v^{\prime} and join v^{\prime} to those points of G adjacent to v. The graph thus obtained is called the splitting graph of G and is denoted as $S^{\prime}(G)$.

Definition 2.2. [2] The block - cutpoint graph of a graph G is a bipartite graph in which one partite set consists of the cut vertices of G and the other has a vertex b_{i} for each block B_{i} of G.

Definition 2.3. [2] A block of a graph is a maximal connected subgraph that has no cut-vertex.
Definition 2.4. [2] A triangular cactus is a connected graph all of whose blocks are triangles.
Definition 2.5. [2] A triangular snake is a triangular cactus whose block-cutpoint graph is a path.

Definition 2.6. [2] A book with n pages is defined as the Cartesian product of the complete bipartite graph $K_{1, n}$ and a path of length 1 and is denoted by B_{n}.

Definition 2.7. [2] The graph $P_{n}+K_{1} n \geq 2$ is called a fan and it is denoted by F_{n}.
Definition 2.8. $F_{n}^{(t)}$ is the one-point union of t fans of length n.

3 Main Results

Theorem 3.1. $S^{\prime}\left(P_{n}\right)$ is Z_{4}-magic for $n \geq 2$.
Proof: Let the vertex set $V\left(S^{\prime}\left(P_{n}\right)\right)=\left\{v_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime} / 1 \leq i \leq n\right\}$ and the edge set $E\left(S^{\prime}\left(P_{n}\right)\right)=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1}^{\prime} / 1 \leq i \leq n-1\right\} \cup\left\{v_{i}^{\prime} v_{i+1} / 1 \leq i \leq n-1\right\}$, where $v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{n}^{\prime}$ are the new vertices joined corresponding to $v_{1}, v_{2}, \ldots v_{n}$ of the path P_{n}.
Define $f: E\left(S^{\prime}\left(P_{n}\right)\right) \rightarrow Z_{4}-\{0\}$ as

$$
\begin{aligned}
f\left(v_{i} v_{i+1}\right) & =\left\{\begin{array}{cc}
1 & \text { for } i=1, n-1 \\
2 & 2 \leq i \leq n-2
\end{array}\right\} \\
f\left(v_{2} v_{1}^{\prime}\right) & =2=f\left(v_{n-1} v_{n}^{\prime}\right) \\
f\left(v_{i} v_{i+1}^{\prime}\right) & =1,1 \leq i \leq n-2 \\
\text { and } f\left(v_{i}^{\prime} v_{i+1}\right) & =1,2 \leq i \leq n-1
\end{aligned}
$$

Then the mapping $f^{+}: V\left(S^{\prime}\left(P_{n}\right)\right) \rightarrow Z_{4}$ is given by

$$
\begin{aligned}
f^{+}\left(v_{i}\right) & =f\left(v_{i-1}^{\prime} v_{i}\right)+f\left(v_{i} v_{i+1}^{\prime}\right)+f\left(v_{i} v_{i-1}\right)+f\left(v_{i} v_{i+1}\right), \quad 2 \leq i \leq n-1 \\
f^{+}\left(v_{1}\right) & =f\left(v_{2}^{\prime} v_{1}\right)+f\left(v_{2} v_{1}\right) \\
f^{+}\left(v_{n}\right) & =f\left(v_{n-1} v_{n}\right)+f\left(v_{n-1}^{\prime} v_{n}\right) \\
f^{+}\left(v_{i}^{\prime}\right) & =f\left(v_{i}^{\prime} v_{i-1}\right)+f\left(v_{i}^{\prime} v_{i+1}\right), 2 \leq i \leq n-1 \\
f^{+}\left(v_{1}^{\prime}\right) & =f\left(v_{2} v_{1}^{\prime}\right) \\
f^{+}\left(v_{n}^{\prime}\right) & =f\left(v_{n-1} v_{n}^{\prime}\right) \\
\text { Clearly, } f^{+}\left(v_{1}\right) & =2 \\
f^{+}\left(v_{i}\right) & =2,2 \leq i \leq n \\
f^{+}\left(v_{i}^{\prime}\right) & =2,1 \leq i \leq n
\end{aligned}
$$

Thus $S^{\prime}\left(P_{n}\right)$ admits Z_{4} - magic labeling. Hence, $S^{\prime}\left(P_{n}\right)$ is a Z_{4}-magic graph.
Example 3.2. Z_{4}-magic labelings of $S^{\prime}\left(P_{7}\right)$ and $S^{\prime}\left(P_{6}\right)$ are given below.

Figure 1: Z_{4} - magic labeling of $S^{\prime}\left(P_{7}\right)$.

Figure 2: Z_{4} - magic labeling of $S^{\prime}\left(P_{6}\right)$.
Theorem 3.3. Triangular snake T_{n} is Z_{4}-magic, for $n \geq 2$.
Proof: Let $V\left(T_{n}\right)=\left\{v_{i} / 1 \leq i \leq n+1\right\} \cup\left\{v_{i}^{\prime} / 1 \leq i \leq n\right\}$ and
$E\left(T_{n}\right)=\left\{v_{i} v_{i+1} / 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime} v_{i+1} / 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime} v_{i} / 1 \leq i \leq n\right\}$.
$\left|V\left(T_{n}\right)\right|=2 n+1$ and $\left|E\left(T_{n}\right)\right|=3 n$.
Case 1: n is odd.
Define $f: E\left(T_{n}\right) \rightarrow Z_{4}-\{0\}$ as

$$
\begin{aligned}
f\left(v_{2 i} v_{2 i+1}\right) & =3, \quad 1 \leq i \leq(n-1) / 2 \\
f\left(v_{2 i-1} v_{2 i}\right) & =1, \quad 1<i<(n+1) / 2 \\
f\left(v_{j} v_{j}^{\prime}\right) & =f\left(v_{j}^{\prime} v_{j+1}\right)=1, \quad 1 \leq j \leq n
\end{aligned}
$$

Then $f^{+}: V\left(T_{n}\right) \rightarrow Z_{4}$ is defined as

$$
\begin{aligned}
f^{+}\left(v_{j}\right) & =f\left(v_{j-1} v_{j}\right)+f\left(v_{j} v_{j+1}\right)+f\left(v_{j} v_{j}^{\prime}\right)+f\left(v_{j} v_{j-1}^{\prime}\right), 2 \leq j \leq n \\
f^{+}\left(v_{1}\right) & =f\left(v_{1} v_{1}^{\prime}\right)+f\left(v_{1} v_{2}\right) \\
f^{+}\left(v_{n+1}\right) & =f\left(v_{n} v_{n+1}\right)+f\left(v_{n+1} v_{n}^{\prime}\right) \\
f^{+}\left(v_{j}^{\prime}\right) & =f\left(v_{j} v_{j}^{\prime}\right)+f\left(v_{j}^{\prime} v_{j+1}\right), \quad 1 \leq j \leq n
\end{aligned}
$$

Then we have,

$$
\begin{aligned}
& f^{+}\left(v_{i}\right)=2, \quad 1 \leq i \leq n+1 \\
& f^{+}\left(v_{j}^{\prime}\right)=2, \quad 1 \leq j \leq n
\end{aligned}
$$

Hence, f^{+}is a constant and it is equal to 2 for all $v \in V\left(T_{n}\right)$.
Case 2: n is even.
Define $f: E\left(T_{n}\right) \rightarrow Z_{4}-0$ by

$$
\begin{aligned}
f\left(v_{2 i-1} v_{2 i}\right) & =3, \quad 1 \leq i \leq n / 2 \\
f\left(v_{2 i} v_{2 i+1}\right) & =1, \quad 1 \leq i \leq n / 2 \\
f\left(v_{j} v_{j}^{\prime}\right) & =1, \quad 1 \leq j \leq n \\
f\left(v_{j}^{\prime} v_{j+1}\right) & =3, \quad 1 \leq j \leq n .
\end{aligned}
$$

Then $f^{+}: V\left(T_{n}\right) \rightarrow Z_{4}$ is given by

$$
\begin{aligned}
f^{+}\left(v_{j}\right) & =f\left(v_{j-1} v_{j}\right)+f\left(v_{j} v_{j+1}\right)+f\left(v_{j} v_{j}^{\prime}\right)+f\left(v_{j} v_{j-1}^{\prime}\right) ; 2 \leq j \leq n \\
f^{+}\left(v_{1}\right) & =f\left(v_{1} v_{2}\right)+f\left(v_{1} v_{1}^{\prime}\right) ; \\
f^{+}\left(v_{n+1}\right) & =f\left(v_{n} v_{n+1}\right)+f\left(v_{n}^{\prime} v_{n+1}\right)
\end{aligned}
$$

$$
f^{+}\left(v_{j}^{\prime}\right)=f\left(v_{j}^{\prime} v_{j+1}\right)+f\left(v_{j} v_{j}^{\prime}\right) 1 \leq j \leq n .
$$

Then we have,

$$
\begin{aligned}
f^{+}\left(v_{i}\right) & =0,1 \leq i \leq n+1 \\
\text { and } f^{+}\left(v_{j}^{\prime}\right) & =0,1 \leq j \leq n .
\end{aligned}
$$

In both the cases T_{n} admits Z_{4} - magic labeling. Hence, T_{n} is Z_{4} - magic graph.

Example 3.4. Z_{4} - magic labelings of T_{n} for $n=4$ and $n=5$ are given below.

Figure 3: Z_{4} - magic labeling of T_{5}.

Figure 4: Z_{4} - magic labeling of T_{6}.
Theorem 3.5. The graph B_{n} is Z_{4} - magic for all $n \in N$.

Proof: Let $V\left(B_{n}\right)=\{u, v\} \cup\left\{u_{i}, v_{i} / 1 \leq i \leq n\right\}$ and
$E\left(B_{n}\right)=\{u v\} \cup\left\{u u_{i} / 1 \leq i \leq n\right\} \cup\left\{v v_{i} / 1 \leq i \leq n\right\} \cup\left\{u_{i} v_{i} / 1 \leq i \leq n\right\}$.
Case 1: n is odd.
Define $f: E\left(B_{n}\right) \rightarrow Z_{4}-\{0\}$ by

$$
\begin{aligned}
f(u v) & =1 \\
f\left(u_{i} v_{i}\right) & =1, \quad 1 \leq i \leq n \\
f\left(u u_{i}\right) & =2, \quad 1 \leq i \leq n \\
f\left(v v_{i}\right) & =2, \quad 1 \leq i \leq n
\end{aligned}
$$

Then $f^{+}: V\left(B_{n}\right) \rightarrow Z_{4}$ is defined by

$$
\begin{aligned}
f^{+}(u) & =f(u v)+\sum_{i=1}^{n} f\left(u u_{i}\right) \\
f^{+}(v) & =f(u v)+\sum_{i=1}^{n} f\left(v v_{i}\right) \\
f^{+}\left(u_{i}\right) & =f\left(u u_{i}\right)+f\left(u_{i} v_{i}\right) 1 \leq i \leq n \\
f^{+}\left(v_{i}\right) & =f\left(v v_{i}\right)+f\left(u_{i} v_{i}\right) 1 \leq i \leq n
\end{aligned}
$$

We have, $f^{+}(u)=3, f^{+}(v)=3, f^{+}\left(u_{i}\right)=3,1 \leq i \leq n a n d f^{+}\left(v_{i}\right)=3.1 \leq i \leq n$.
Case 2: n is even.
Define $f: E\left(B_{n}\right) \rightarrow Z_{4}-\{0\}$ by

$$
\begin{aligned}
f(u v) & =1 \\
f\left(u_{i} v_{i}\right) & =3, \quad 1 \leq i \leq n \\
f\left(u u_{i}\right) & =2, \quad 1 \leq i \leq n \\
f\left(v v_{i}\right) & =2, \quad 1 \leq i \leq n
\end{aligned}
$$

Then Clearly,

$$
\begin{aligned}
f^{+}(u) & =1=f^{+}(v) \\
f^{+}\left(u_{i}\right) & =1=f^{+}\left(v_{i}\right) \quad 1 \leq i \leq n
\end{aligned}
$$

In both the cases B_{n} admits Z_{4} - magic labeling. Hence, B_{n} is Z_{4} - magic for all $n \in N$.

Example 3.6. Z_{4} - magic labelings of B_{2} and B_{3} are given in Figure 5 and Figure 6 respectively.

Figure 5: Z_{4} - magic labeling of B_{2}.

Figure 6: Z_{4} - magic labeling of B_{3}.
Theorem 3.7. The graph $F_{n}^{(t)}$ is Z_{4} - magic where t denotes the number of copies of the fan F_{n}.
Proof: Let the vertex set and the edge set be given by $V\left(F_{n}^{(t)}\right)=\left\{u, v_{i}^{(j)} / 1 \leq i \leq n, 1 \leq j \leq t\right\}$ and $E\left(F_{n}^{(t)}\right)=\left\{u v_{i}^{(j)} / 1 \leq i \leq n, 1 \leq j \leq t\right\} \cup\left\{v_{i}^{(j)} v_{i+1}^{(j)} / 1 \leq i \leq n-1,1 \leq j \leq t\right\}$.
Case 1: Suppose $n=4 k-1$ and $t \in N$.

Define $f: E\left(F_{n}^{(t)}\right) \rightarrow Z_{4}-\{0\}$ by

$$
\begin{aligned}
f\left(u v_{1}^{(i)}\right) & =3, \quad 1 \leq j \leq t \\
f\left(u v_{n}^{(j)}\right) & =3, \quad 1 \leq j \leq t \\
f\left(u v_{i+1}^{(j)}\right) & =2, \quad 1 \leq i \leq n-2, \quad 1 \leq j \leq t \\
f\left(v_{i}^{(j)} v_{i+1}^{(j)}\right) & =1 \text { for } 1 \leq i \leq n-1,1 \leq j \leq t .
\end{aligned}
$$

Then $f^{+}: V\left(F_{n}^{(t)}\right) \rightarrow Z_{4}$ is given by

$$
\begin{aligned}
f^{+}(u) & =\Sigma_{j=1}^{t} \Sigma_{i=1}^{n} f\left(u v_{i}^{(j)}\right) \\
& \equiv(3+2+2+\ldots(4 k-3) \text { times } 2+3) \bmod 4 \times t \\
& =0 \\
f^{+}\left(v_{1}^{(j)}\right) & =f\left(u v_{1}^{(j)}\right)+f\left(v_{1}^{(j)} v_{2}^{(j)}\right) \\
& \equiv(3+1)(\bmod 4)=0, \quad 1 \leq j \leq t \\
f^{+}\left(v_{n}^{(j)}\right) & =0,1 \leq j \leq t \\
f^{+}\left(v_{i}^{(j)}\right) & =f\left(u v_{i}^{(j)}\right)+f\left(v_{i}^{(j)} v_{i+1}^{(j)}\right)+f\left(v_{i-1}^{(j)} v_{i}^{(j)}\right) \\
& \equiv(2+1+1)(\bmod 4)=0, \quad 2 \leq i \leq n-1 \text { and } 1 \leq \mathrm{j} \leq \mathrm{t} .
\end{aligned}
$$

We get f^{+}is constant and equals to 0 for all vertices of $F_{n}^{(t)}$.
Case 2: Suppose $n=4 k+1$ and $t \in N$ where $k \in N$.
Let $f: E\left(F_{n}^{(t)}\right) \rightarrow Z_{4}-\{0\}$ be defined as follows:

$$
\begin{aligned}
f\left(u v_{1}^{(j)}\right) & =21 \leq j \leq t \\
f\left(u v_{n}^{(j)}\right) & =31 \leq j \leq t \\
f\left(u v_{i}^{(j)}\right) & =12 \leq i \leq n-1,1 \leq j \leq t \\
f\left(v_{i-1}^{(j)} v_{i}^{(j)}\right) & =22 \leq i \leq n-1,1 \leq j \leq t \\
f\left(v_{i}^{(j)} v_{i+1}^{(j)}\right) & =12 \leq i \leq n-1,1 \leq j \leq t .
\end{aligned}
$$

Then $f^{+}: V\left(F_{n}^{(t)}\right) \rightarrow Z_{4}$ is given by

$$
\begin{aligned}
f^{+}(u) & =\Sigma_{j=1}^{t} \sum_{i=1}^{n} f\left(u v_{i}^{(j)}\right) \\
& \equiv(2+1+1 \ldots(4 k-1) \text { times } 1+3) t(\bmod 4) \\
& =0 \\
f^{+}\left(v_{1}^{(j)}\right) & =f\left(u v_{1}^{(j)}\right)+f\left(v_{1}^{(j)} v_{2}^{(j)}\right) \\
& \equiv(2+2)(\bmod 4)=0, \quad 1 \leq j \leq t \\
f^{+}\left(v_{n}^{(j)}\right) & \equiv(3+1)(\bmod 4)=0, \quad 1 \leq j \leq t \\
f^{+}\left(v_{i}^{(j)}\right) & =f\left(u v_{i}^{(j)}\right)+f\left(v_{i}^{(j)} v_{i+1}^{(j)}\right)+f\left(v_{i-1}^{(j)} v_{i}^{(j)}\right) \\
& \equiv(1+1+2)(\bmod 4)=0
\end{aligned}
$$

Thus, $f^{+}\left(v_{i}^{(j)}\right)=0$ for $2 \leq i \leq n-1,1 \leq j \leq t$. Hence f^{+}is a constant mapping and is equal to 0
for all vertices in $F_{n}^{(t)}$.
Case 3: Suppose $n=4 k$.
Sub case $(\mathbf{i}): t \equiv 0(\bmod 2)$.
Define $f: E\left(F_{n}^{(t)}\right) \rightarrow Z_{4}-\{0\}$ as

$$
\begin{aligned}
f\left(u v_{1}^{(j)}\right) & =2=f\left(u v_{n}^{(j)}\right) \quad 1 \leq j \leq t \\
f\left(u v_{i}^{(j)}\right) & =1, \quad 2 \leq i \leq n-1, \quad 1 \leq j \leq t \\
f\left(v_{2 i-1}^{(j)} v_{2 i}^{(j)}\right) & =2, \quad 1 \leq i \leq n / 2, \quad 1 \leq j \leq t \\
f\left(v_{2 i}^{(j)} v_{2 i+1}^{(j)}\right) & =1, \quad 1 \leq i \leq(n-2) / 2, \quad 1 \leq j \leq t
\end{aligned}
$$

Then $f^{+}: V\left(F_{n}^{(t)}\right) \rightarrow Z_{4}$ is given by

$$
\begin{aligned}
f^{+}(u) & =\Sigma_{j=1}^{t} \Sigma_{i=1}^{n} f\left(u v_{i}^{(j)}\right) \\
& =(2+1+1 \ldots(4 k-2) \text { times } 1+2) \cdot t \\
& \equiv 0(\bmod 4)=0 \\
f^{+}\left(v_{1}^{(j)}\right) & =f\left(u v_{1}^{(j)}\right)+f\left(v_{1}^{(j)} v_{2}^{(j)}\right) 1 \leq j \leq t \\
& =(2+2) \equiv 0(\bmod 4)=0 \\
f^{+}\left(v_{i}^{(j)}\right) & =f\left(u v_{i}^{(j)}\right)+f\left(v_{i}^{(j)} v_{i+1}^{(j)}\right)+f\left(v_{i-1}^{(j)} v_{i}^{(j)}\right), 2 \leq i \leq n-1,1 \leq j \leq t \\
f^{+}\left(v_{i}^{(j)}\right) & =(1+1+2) \equiv 0(\bmod 4), 2 \leq i \leq n-1,1 \leq j \leq t \\
& =0 \\
f^{+}\left(v_{n}^{(j)}\right) & =(2+2) \equiv 0(\bmod 4), 1 \leq j \leq t
\end{aligned}
$$

Hence f^{+}is a constant mapping and is equal to 0 for all vertices in $F_{n}^{(t)}$.
Sub case $(\mathbf{i i}): t \equiv 1(\bmod 2)$.
Let $f: E\left(F_{n}^{(t)}\right) \rightarrow Z_{4}-\{0\}$ be defined as

$$
\begin{aligned}
f\left(u v_{1}^{(j)}\right) & =3=f\left(u v_{n}^{(j)}\right) 1 \leq j \leq t \\
f\left(u v_{i}^{(j)}\right) & =2, \quad 2 \leq i \leq n-1,1 \leq j \leq t \\
f\left(v_{2 i-1}^{(j)} v_{2 i}^{(j)}\right) & =3, \quad 1 \leq i \leq n / 2,1 \leq j \leq t \\
f\left(v_{2 i}^{(j)} v_{2 i+1}^{(j)}\right) & =1, \quad 1 \leq i \leq(n-2) / 2,1 \leq j \leq t
\end{aligned}
$$

Then $f^{+}: V\left(F_{n}^{(t)}\right) \rightarrow Z_{4}$ is given by

$$
\begin{aligned}
f^{+}(u) & =\Sigma_{j=1}^{t} \Sigma_{i=1}^{n} f\left(u v_{i}^{(j)}\right) \\
& \equiv(3+2+2+\ldots(4 k-2) \text { times }+3) \cdot t \\
& \equiv 2(\bmod 4) \cdot t=2 \\
f^{+}\left(v_{i}^{(j)}\right) & \equiv(3+1+2)(\bmod 4), 2 \leq i \leq n-1,1 \leq j \leq t \\
& =2 \\
f^{+}\left(v_{1}^{(j)}\right) & \equiv(3+3)(\bmod 4)=2=f^{+}\left(v_{n}^{(j)}\right) \equiv(3+3)(\bmod 4), 1 \leq j \leq t
\end{aligned}
$$

Hence, f^{+}is a constant mapping and is equal to 2 for all vertices in $F_{n}^{(t)}$.

Case 4: Suppose $n=4 k+2$ and $t \in N$.
Let $f: E\left(F_{n}^{(t)}\right) \rightarrow Z_{4}-\{0\}$ be defined as follows:

$$
\begin{aligned}
f\left(u v_{1}^{(j)}\right) & =2=f\left(u v_{n}^{(j)}\right) 1 \leq j \leq t \\
f\left(u v_{i}^{(j)}\right) & =1,2 \leq i \leq n-1,1 \leq j \leq t \\
f\left(v_{2 i-1}^{(j)} v_{2 i}^{(j)}\right) & =2,1 \leq i \leq n / 2,1 \leq j \leq t \\
f\left(v_{2 i}^{(j)} v_{2 i+1}^{(j)}\right) & =1,1 \leq i \leq(n-2) / 2,1 \leq j \leq t
\end{aligned}
$$

Then $f^{+}: V\left(F_{n}^{(t)}\right) \rightarrow Z_{4}$ is given by

$$
\begin{aligned}
f^{+}(u) & =\Sigma_{j=1}^{t} \Sigma_{i=1}^{n} f\left(u v_{i}^{(j)}\right) \\
f^{+}(u) & \equiv(2+1+1 \ldots 4 k \text { times }+2) \cdot t(\bmod 4) \\
& \equiv 0(\bmod 4)=0 \\
f^{+}\left(v_{1}^{(j)}\right) & \equiv(2+2)(\bmod 4)=0=f^{+}\left(v_{n}^{(j)}\right) \equiv(2+2)(\bmod 4), 1 \leq j \leq t \\
f^{+}\left(v_{i}^{(j)}\right) & \equiv(2+1+1) \equiv 0(\bmod 4)=0,2 \leq i \leq n-1,1 \leq j \leq t
\end{aligned}
$$

Hence f^{+}is a constant mapping and is equal to 2 for all vertices in $F_{n}^{(t)}$.
In all the cases $F_{n}^{(t)}$ admits Z_{4}-magic labeling. Hence, $F_{n}^{(t)}$ is Z_{4} - magic.
Example 3.8. Z_{4}-magic labelings of some one point union of fans are given in this example.

Figure 7: Z_{4} - magic labeling of $F_{3}^{(3)}$.

Figure 8: Z_{4} - magic labeling of $F_{4}^{(2)}$.

$$
Z_{4 p} \text { - Magic labeling for some special graphs }
$$

Figure 9: Z_{4} - magic labeling of $F_{4}^{(3)}$.

Figure 10: Z_{4} - magic labeling of $F_{6}^{(2)}$.
Observation 3.9. In all the theorems, if we multiply the edge labeling by a positive integer p, the vertex labeling remains to be a constant and is equal to p times the constant value we obtained. Hence all the above graphs admit $Z_{4 p}$-magic labeling. Hence, $S^{\prime}\left(P_{n}\right), T_{n}, B_{n}$ and $F_{n}^{(t)}$ are all $Z_{4 p}$-magic graphs.

References

[1] S. Amutha and K.M. Kathiresan, The existence and construction of certain types of labeling for graphs, Ph.D. Thesis, Madurai Kamaraj University, 2006.
[2] J.A. Galian, A dynamic survey graph labeling, Electronic Journal of Combinatorics, 17 (2010) DS6.
[3] R.B. Gnanajothi, Topics in graph theory, Ph.D. Thesis, Madurai Kamaraj Univaersity, 1991.
[4] M.C. Kong, S.M. Lee and H.S.H. Sun, On magic strength of graph, Ars Combin., 45, (1997) 193-200.
[5] R.M. Low and S.M. Lee, On group-magic Eulerian graphs, J.Combin. Math. Compin. Comput., 50 (2004) 141-148.
[6] C. Sekar, Studies in graph theory, Ph.D. Thesis, Madurai Kamaraj University, 2002.

