International Journal of Mathematics and Soft Computing Vol.3, No.3 (2013), 61 - 70.

Z_{4p}- Magic labeling for some special graphs

V.L. Stella Arputha Mary

Department of Mathematics, St.Mary's College, Tuticorin - 628 001. E-mail: prisstell@yahoo.com

S. Navaneethakrishnan, A. Nagarajan Department of Mathematics, V.O.C College, Tuticorin - 628 001. E-mail: snk.voc@gmail.com, nagarajan.voc@gmail.com

Abstract

For any non-trivial abelian group A under addition a graph G is said to be A- magic if there exists a labeling f of the edges of G with non zero elements of A such that, the vertex labeling f^+ defined as $f^+(v) = \Sigma f(uv)$ taken over all edges uv incident at v is a constant [5]. A graph is said to be A-magic if it admits an A-magic labeling. In this paper we prove that splitting graph of a path, triangular snake and book graphs are Z_4 -magic graphs. Also we generalize that they are all Z_{4p} -magic graphs for any positive integer p.

Keywords: A - magic labeling, Z_4 - magic labeling, Z_{4p} -magic labeling, Z_{4p} -magic graphs. AMS Subject Classification(2010): 05C78.

1 Introduction

In this paper by a graph G(V, E) we mean G is a finite, simple, undirected graph. The concept of magic labelings were introduced by Sedlacek in 1963. Kong, Lee and Sun [4] used the term magic labeling for the labeling of edges with non negative integers such that for each vertex v, the sum of the labels of all edges incident at v is same for all v.

For any non-trivial abelian group A under addition a graph G is said to be A- magic if there exists a labeling f of the edges of G with non zero elements of A such that, the vertex labeling f^+ defined as $f^+(v) = \Sigma f(uv)$ taken over all edges uv incident at v is a constant. In this paper, we choose Z_4 which is additive modulo 4 as the abelian group and we prove the splitting graph of a path, triangular snake, book graph and $F_n^{(t)}$ are Z_4 -magic graphs. We also prove that they are all Z_{4p} -magic graphs.

2 Definitions

Definition 2.1. [6] For each point v of a graph G take a new vertex v' and join v' to those points of G adjacent to v. The graph thus obtained is called the splitting graph of G and is denoted as S'(G).

Definition 2.2. [2] The block - cutpoint graph of a graph G is a bipartite graph in which one partite set consists of the cut vertices of G and the other has a vertex b_i for each block B_i of G.

Definition 2.3. [2] A block of a graph is a maximal connected subgraph that has no cut-vertex.

Definition 2.4. [2] A triangular cactus is a connected graph all of whose blocks are triangles.

Definition 2.5. [2] A triangular snake is a triangular cactus whose block-cutpoint graph is a path.

Definition 2.6. [2] A book with n pages is defined as the Cartesian product of the complete bipartite graph $K_{1,n}$ and a path of length 1 and is denoted by B_n .

Definition 2.7. [2] The graph $P_n + K_1$ $n \ge 2$ is called a fan and it is denoted by F_n .

Definition 2.8. $F_n^{(t)}$ is the one-point union of t fans of length n.

3 Main Results

Theorem 3.1. $S'(P_n)$ is Z_4 -magic for $n \ge 2$.

Proof: Let the vertex set $V(S'(P_n)) = \{v_i/1 \le i \le n\} \cup \{v'_i/1 \le i \le n\}$ and the edge set $E(S'(P_n)) = \{v_iv_{i+1}/1 \le i \le n-1\} \cup \{v_iv'_{i+1}/1 \le i \le n-1\} \cup \{v'_iv_{i+1}/1 \le i \le n-1\}$, where $v'_1, v'_2, ...v'_n$ are the new vertices joined corresponding to $v_1, v_2, ...v_n$ of the path P_n . Define $f : E(S'(P_n)) \rightarrow Z_4 - \{0\}$ as

$$f(v_i v_{i+1}) = \begin{cases} 1 & \text{for } i = 1, n-1 \\ 2 & 2 \le i \le n-2 \end{cases}$$
$$f(v_2 v_1') = 2 = f(v_{n-1} v_n')$$
$$f(v_i v_{i+1}') = 1, \ 1 \le i \le n-2$$
$$\text{and} f(v_i' v_{i+1}) = 1, \ 2 \le i \le n-1 \end{cases}$$

Then the mapping $f^+: V(S'(P_n)) \to Z_4$ is given by

$$\begin{aligned} f^+(v_i) &= f(v_{i-1}'v_i) + f(v_iv_{i+1}') + f(v_iv_{i-1}) + f(v_iv_{i+1}), \ 2 \le i \le n-1 \\ f^+(v_1) &= f(v_2'v_1) + f(v_2v_1) \\ f^+(v_n) &= f(v_{n-1}v_n) + f(v_{n-1}'v_n) \\ f^+(v_i') &= f(v_i'v_{i-1}) + f(v_i'v_{i+1}), \ 2 \le i \le n-1 \\ f^+(v_1') &= f(v_2v_1') \\ f^+(v_1') &= f(v_{n-1}v_n') \end{aligned}$$

Clearly, $f^+(v_1) &= 2 \\ f^+(v_i) &= 2, \ 2 \le i \le n \\ f^+(v_i') &= 2, \ 1 \le i \le n \end{aligned}$

Thus $S'(P_n)$ admits Z_4 - magic labeling. Hence, $S'(P_n)$ is a Z_4 -magic graph.

Example 3.2. Z_4 -magic labelings of $S'(P_7)$ and $S'(P_6)$ are given below.

Figure 1: Z_4 - magic labeling of $S'(P_7)$.

Theorem 3.3. Triangular snake T_n is Z_4 -magic, for $n \ge 2$.

Proof: Let $V(T_n) = \{v_i \mid 1 \le i \le n+1\} \cup \{v'_i \mid 1 \le i \le n\}$ and $E(T_n) = \{v_i v_{i+1} \mid 1 \le i \le n\} \cup \{v'_i v_{i+1} \mid 1 \le i \le n\} \cup \{v'_i v_i \mid 1 \le i \le n\}.$ $|V(T_n)| = 2n + 1$ and $|E(T_n)| = 3n$. **Case 1:** *n* is odd. Define $f : E(T_n) \to Z_4 - \{0\}$ as

$$\begin{aligned} f(v_{2i}v_{2i+1}) &= 3, & 1 \le i \le (n-1)/2 \\ f(v_{2i-1}v_{2i}) &= 1, & 1 < i < (n+1)/2 \\ f(v_jv'_j) &= f(v'_jv_{j+1}) = 1, & 1 \le j \le n \end{aligned}$$

Then $f^+: V(T_n) \to Z_4$ is defined as

$$f^{+}(v_{j}) = f(v_{j-1}v_{j}) + f(v_{j}v_{j+1}) + f(v_{j}v'_{j}) + f(v_{j}v'_{j-1}), \ 2 \le j \le n$$

$$f^{+}(v_{1}) = f(v_{1}v'_{1}) + f(v_{1}v_{2})$$

$$f^{+}(v_{n+1}) = f(v_{n}v_{n+1}) + f(v_{n+1}v'_{n})$$

$$f^{+}(v'_{j}) = f(v_{j}v'_{j}) + f(v'_{j}v_{j+1}), \ 1 \le j \le n$$

Then we have,

$$f^+(v_i) = 2, \quad 1 \le i \le n+1$$

 $f^+(v'_i) = 2, \quad 1 \le j \le n.$

Hence, f^+ is a constant and it is equal to 2 for all $v \in V(T_n)$.

Case 2: *n* is even.

Define $f: E(T_n) \to Z_4 - 0$ by

$$f(v_{2i-1}v_{2i}) = 3, \quad 1 \le i \le n/2$$

$$f(v_{2i}v_{2i+1}) = 1, \quad 1 \le i \le n/2$$

$$f(v_jv'_j) = 1, \quad 1 \le j \le n$$

$$f(v'_jv_{j+1}) = 3, \quad 1 \le j \le n.$$

Then $f^+: V(T_n) \to Z_4$ is given by

$$f^{+}(v_{j}) = f(v_{j-1}v_{j}) + f(v_{j}v_{j+1}) + f(v_{j}v'_{j}) + f(v_{j}v'_{j-1}); 2 \le j \le n$$

$$f^{+}(v_{1}) = f(v_{1}v_{2}) + f(v_{1}v'_{1});$$

$$f^{+}(v_{n+1}) = f(v_{n}v_{n+1}) + f(v'_{n}v_{n+1});$$

$$f^+(v'_j) = f(v'_j v_{j+1}) + f(v_j v'_j) \quad 1 \le j \le n.$$

Then we have,

$$f^+(v_i) = 0, \ 1 \le i \le n+1$$

and $f^+(v'_i) = 0, \ 1 \le j \le n.$

In both the cases T_n admits Z_4 - magic labeling. Hence, T_n is Z_4 - magic graph.

Example 3.4. Z_4 - magic labelings of T_n for n = 4 and n = 5 are given below.

Figure 3: Z_4 - magic labeling of T_5 .

Figure 4: Z_4 - magic labeling of T_6 .

Theorem 3.5. The graph B_n is Z_4 - magic for all $n \in N$.

Proof: Let $V(B_n) = \{u, v\} \cup \{u_i, v_i \mid 1 \le i \le n\}$ and $E(B_n) = \{uv\} \cup \{uu_i \mid 1 \le i \le n\} \cup \{vv_i \mid 1 \le i \le n\} \cup \{u_i v_i \mid 1 \le i \le n\}.$ **Case 1:** *n* is odd. Define $f : E(B_n) \to Z_4 - \{0\}$ by f(uv) = 1 $f(u_i v_i) = 1, \ 1 \le i \le n$ $f(uu_i) = 2, \ 1 \le i \le n$.

Then $f^+: V(B_n) \to Z_4$ is defined by

$$f^{+}(u) = f(uv) + \sum_{i=1}^{n} f(uu_{i})$$

$$f^{+}(v) = f(uv) + \sum_{i=1}^{n} f(vv_{i})$$

$$f^{+}(u_{i}) = f(uu_{i}) + f(u_{i}v_{i}) \quad 1 \le i \le n$$

$$f^{+}(v_{i}) = f(vv_{i}) + f(u_{i}v_{i}) \quad 1 \le i \le n$$

64

We have, $f^+(u) = 3$, $f^+(v) = 3$, $f^+(u_i) = 3$, $1 \le i \le n$ and $f^+(v_i) = 3$. $1 \le i \le n$. Case 2: n is even. Define $f : E(B_n) \to Z_4 - \{0\}$ by

 $\begin{array}{rcl} f(uv) &=& 1 \\ f(u_iv_i) &=& 3, \ 1 \leq i \leq n \\ f(uu_i) &=& 2, \ 1 \leq i \leq n \\ f(vv_i) &=& 2, \ 1 \leq i \leq n \end{array}$

Then Clearly,

$$f^+(u) = 1 = f^+(v)$$

 $f^+(u_i) = 1 = f^+(v_i) \quad 1 \le i \le n$

In both the cases B_n admits Z_4 - magic labeling. Hence, B_n is Z_4 - magic for all $n \in N$.

Example 3.6. Z_4 - magic labelings of B_2 and B_3 are given in Figure 5 and Figure 6 respectively.

Figure 5: Z_4 - magic labeling of B_2 .

Figure 6: Z_4 - magic labeling of B_3 .

Theorem 3.7. The graph $F_n^{(t)}$ is Z_4 - magic where t denotes the number of copies of the fan F_n .

Proof: Let the vertex set and the edge set be given by $V(F_n^{(t)}) = \{u, v_i^{(j)}/1 \le i \le n, 1 \le j \le t\}$ and $E(F_n^{(t)}) = \{uv_i^{(j)} / 1 \le i \le n, 1 \le j \le t\} \cup \{v_i^{(j)}v_{i+1}^{(j)}/1 \le i \le n-1, 1 \le j \le t\}.$ **Case 1:** Suppose n = 4k - 1 and $t \in N$. Define $f: E(F_n^{(t)}) \to Z_4 - \{0\}$ by $f(uv_1^{(i)}) = 3, \ 1 \le j \le t$ $f(uv_n^{(j)}) = 3, \ 1 \le j \le t$ $f\left(uv_{i+1}^{(j)}\right) = 2, \ 1 \le i \le n-2, \ 1 \le j \le t$ $f\left(v_i^{(j)}v_{i+1}^{(j)}\right) = 1$ for $1 \le i \le n-1, \ 1 \le j \le t$.

Then $f^+: V(F_n^{(t)}) \to Z_4$ is given by

$$\begin{aligned} f^+(u) &= \sum_{j=1}^t \sum_{i=1}^n f\left(uv_i^{(j)}\right) \\ &\equiv (3+2+2+\dots(4k-3) \ times \ 2+3) \ mod \ 4 \times t \\ &= 0 \\ f^+(v_1^{(j)}) &= f(uv_1^{(j)}) + f(v_1^{(j)}v_2^{(j)}) \\ &\equiv (3+1) \ (mod \ 4) = 0, \ 1 \le j \le t \\ f^+(v_n^{(j)}) &= 0, \ 1 \le j \le t \\ f^+(v_i^{(j)}) &= f(uv_i^{(j)}) + f(v_i^{(j)}v_{i+1}^{(j)}) + f(v_{i-1}^{(j)}v_i^{(j)}) \\ &\equiv (2+1+1)(mod \ 4) = 0, \ 2 \le i \le n-1 \ \text{and} \ 1 \le j \le t. \end{aligned}$$

We get f^+ is constant and equals to 0 for all vertices of $F_n^{(t)}$. **Case 2:** Suppose n = 4k + 1 and $t \in N$ where $k \in N$. Let $f : E(F_n^{(t)}) \to Z_4 - \{0\}$ be defined as follows:

$$\begin{aligned} f(uv_1^{(j)}) &= 2 & 1 \le j \le t \\ f(uv_n^{(j)}) &= 3 & 1 \le j \le t \\ f(uv_i^{(j)}) &= 1 & 2 \le i \le n-1, \ 1 \le j \le t \\ f(v_{i-1}^{(j)}v_i^{(j)}) &= 2 & 2 \le i \le n-1, \ 1 \le j \le t \\ f(v_i^{(j)}v_{i+1}^{(j)}) &= 1 & 2 \le i \le n-1, \ 1 \le j \le t. \end{aligned}$$

Then $f^+: V(F_n^{(t)}) \to Z_4$ is given by

$$\begin{aligned} f^+(u) &= \Sigma_{j=1}^t \Sigma_{i=1}^n f(uv_i^{(j)}) \\ &\equiv (2+1+1...(4k-1)times1+3)t \ (mod \ 4) \\ &= 0 \\ f^+(v_1^{(j)}) &= f(uv_1^{(j)}) + f(v_1^{(j)}v_2^{(j)}) \\ &\equiv (2+2) \ (mod \ 4) = 0, \quad 1 \le j \le t \\ f^+(v_n^{(j)}) &\equiv (3+1) \ (mod \ 4) = 0, \quad 1 \le j \le t \\ f^+(v_i^{(j)}) &= f(uv_i^{(j)}) + f(v_i^{(j)}v_{i+1}^{(j)}) + f(v_{i-1}^{(j)}v_i^{(j)}) \\ &\equiv (1+1+2) \ (mod \ 4) = 0 \end{aligned}$$

Thus, $f^+(v_i^{(j)}) = 0$ for $2 \le i \le n-1$, $1 \le j \le t$. Hence f^+ is a constant mapping and is equal to 0

66

for all vertices in $F_n^{(t)}$. **Case 3:** Suppose n = 4k. **Sub case (i):** $t \equiv 0 \pmod{2}$. Define $f : E(F_n^{(t)}) \to Z_4 - \{0\}$ as $f(uv_1^{(j)}) = 2 = f(uv_n^{(j)}) \quad 1 \le j \le t$ $f(uv_i^{(j)}) = 1, \quad 2 \le i \le n-1, \quad 1 \le j \le t$ $f(v_{2i-1}^{(j)}v_{2i}^{(j)}) = 2, \quad 1 \le i \le n/2, \quad 1 \le j \le t$ $f(v_{2i+1}^{(j)}v_{2i+1}^{(j)}) = 1, \quad 1 \le i \le (n-2)/2, \quad 1 \le j \le t$.

Then $f^+: V(F_n^{(t)}) \to Z_4$ is given by

$$\begin{split} f^+(u) &= \Sigma_{j=1}^t \Sigma_{i=1}^n f(uv_i^{(j)}) \\ &= (2+1+1...(4k-2)times1+2).t \\ &\equiv 0 \ (mod \ 4) = 0 \\ f^+(v_1^{(j)}) &= f(uv_1^{(j)}) + f(v_1^{(j)}v_2^{(j)}) \ 1 \leq j \leq t \\ &= (2+2) \equiv 0 \ (mod \ 4) = 0 \\ f^+(v_i^{(j)}) &= f(uv_i^{(j)}) + f(v_i^{(j)}v_{i+1}^{(j)}) + f(v_{i-1}^{(j)}v_i^{(j)}), \ 2 \leq i \leq n-1, \ 1 \leq j \leq t \\ f^+(v_i^{(j)}) &= (1+1+2) \equiv 0 \ (mod \ 4), 2 \leq i \leq n-1, \ 1 \leq j \leq t \\ &= 0 \\ f^+(v_n^{(j)}) &= (2+2) \equiv 0 \ (mod \ 4), \ 1 \leq j \leq t \end{split}$$

Hence f^+ is a constant mapping and is equal to 0 for all vertices in $F_n^{(t)}$. **Sub case (ii):** $t \equiv 1 \pmod{2}$. Let $f : E(F_n^{(t)}) \to Z_4 - \{0\}$ be defined as

$$\begin{array}{rcl} f(uv_1^{(j)}) &=& 3 \,=\, f(uv_n^{(j)}) \ 1 \leq j \leq t \\ f(uv_i^{(j)}) &=& 2, \ 2 \leq i \leq n-1, \ 1 \leq j \leq t \\ f(v_{2i-1}^{(j)}v_{2i}^{(j)}) &=& 3, \ 1 \leq i \leq n/2, \ 1 \leq j \leq t \\ f(v_{2i}^{(j)}v_{2i+1}^{(j)}) &=& 1, \ 1 \leq i \leq (n-2)/2, \ 1 \leq j \leq t \end{array}$$

Then $f^+: V(F_n^{(t)}) \to Z_4$ is given by

$$\begin{array}{rcl} f^+(u) &=& \Sigma_{j=1}^t \Sigma_{i=1}^n f(uv_i^{(j)}) \\ &\equiv& (3+2+2+\ldots(4k-2) \text{ times } +3).t \\ &\equiv& 2(mod\; 4).t=2 \\ f^+(v_i^{(j)}) &\equiv& (3+1+2)\;(mod\; 4),\; 2\leq i\leq n-1, 1\leq j\leq t \\ &=& 2 \\ f^+(v_1^{(j)}) &\equiv& (3+3)\;(mod\; 4)=2=f^+(v_n^{(j)})\equiv (3+3)\;(mod\; 4), 1\leq j\leq t \end{array}$$

Hence, f^+ is a constant mapping and is equal to 2 for all vertices in $F_n^{(t)}$.

Case 4: Suppose n = 4k + 2 and $t \in N$. Let $f : E(F_n^{(t)}) \to Z_4 - \{0\}$ be defined as follows:

$$\begin{array}{rcl} f(uv_1^{(j)}) &=& 2 = f(uv_n^{(j)}) & 1 \leq j \leq t \\ f(uv_i^{(j)}) &=& 1, & 2 \leq i \leq n-1, & 1 \leq j \leq t \\ f(v_{2i-1}^{(j)}v_{2i}^{(j)}) &=& 2, & 1 \leq i \leq n/2, & 1 \leq j \leq t \\ f(v_{2i}^{(j)}v_{2i+1}^{(j)}) &=& 1, & 1 \leq i \leq (n-2)/2, & 1 \leq j \leq t \end{array}$$

Then $f^+: V(F_n^{(t)}) \to Z_4$ is given by

$$\begin{array}{rcl} f^+(u) &=& \Sigma_{j=1}^t \Sigma_{i=1}^n f(uv_i^{(j)}) \\ f^+(u) &\equiv& (2+1+1...4k \text{ times } +2).t(mod \ 4) \\ &\equiv& 0 \ (mod \ 4) = 0 \\ f^+(v_1^{(j)}) &\equiv& (2+2) \ (mod \ 4) = 0 = f^+(v_n^{(j)}) \equiv (2+2)(mod \ 4), 1 \leq j \leq t \\ f^+(v_i^{(j)}) &\equiv& (2+1+1) \equiv 0 \ (mod \ 4) = 0, \ 2 \leq i \leq n-1, \ 1 \leq j \leq t. \end{array}$$

Hence f^+ is a constant mapping and is equal to 2 for all vertices in $F_n^{(t)}$. In all the cases $F_n^{(t)}$ admits Z_4 -magic labeling. Hence, $F_n^{(t)}$ is Z_4 - magic. **Example 3.8.** Z_4 -magic labelings of some one point union of fans are given in this example.

Figure 8: Z_4 - magic labeling of $F_4^{(2)}$.

Figure 9: Z_4 - magic labeling of $F_4^{(3)}$.

Figure 10: Z_4 - magic labeling of $F_6^{(2)}$.

Observation 3.9. In all the theorems, if we multiply the edge labeling by a positive integer p, the vertex labeling remains to be a constant and is equal to p times the constant value we obtained. Hence all the above graphs admit Z_{4p} -magic labeling. Hence, $S'(P_n)$, T_n , B_n and $F_n^{(t)}$ are all Z_{4p} -magic graphs.

References

- [1] S. Amutha and K.M. Kathiresan, *The existence and construction of certain types of labeling for graphs*, Ph.D. Thesis, Madurai Kamaraj University, 2006.
- [2] J.A. Galian, A dynamic survey graph labeling, Electronic Journal of Combinatorics, 17 (2010) DS6.
- [3] R.B. Gnanajothi, Topics in graph theory, Ph.D. Thesis, Madurai Kamaraj Univaersity, 1991.

- [4] M.C. Kong, S.M. Lee and H.S.H. Sun, On magic strength of graph, Ars Combin., 45, (1997) 193-200.
- [5] R.M. Low and S.M. Lee, *On group-magic Eulerian graphs*, J.Combin. Math. Compin. Comput., 50 (2004) 141-148.
- [6] C. Sekar, *Studies in graph theory*, Ph.D. Thesis, Madurai Kamaraj University, 2002.