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Abstract

In this paper we introduce the notion of Boolean filters in a pseudo-complemented distributive
lattice and characterize the class of all Boolean filters. Further a set of equivalent conditions are
derived for a proper filter to become a prime Boolean filter. Also a set of equivalent conditions
is derived for a pseudo-complemented distributive lattice to become a Boolean algebra. Finally, a
Boolean filter is characterized in terms of congruences.
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1 Introduction

The theory of pseudo-complements in lattices, and particularly in distributive lattices was developed

by M.H. Stone [10], O. Frink [3] and George Gratzer [4]. Later many authors like R. Balbes [1], O.

Frink [3] extended the study of pseudo-complements to characterize Stone lattices. The concept of

Boolean deductive systems was introduced in Residual lattices by E. Turunen [11]. Later, M. Haveshki,

A. B. Saeid and E. Eslami [5] studied the properties of Boolean deductive systems in BL-algebras.

The aim of this paper is to introduce the notion of Boolean filters in pseudo-complemented distribu-

tive lattices as a generalization of Boolean deductive systems in BL-algebras and prove some of the

properties of these Boolean filters. It is observed that every maximal filter is a Boolean filter and the

converse is not true. However, a set of equivalent conditions is established for every proper filter to

become a maximal filter which leads to an equivalency between maximal filters and prime Boolean fil-

ters. The class of all Boolean filters are characterized. Some properties of the homomorphic images and

direct products of Boolean filters are observed. A set of equivalent conditions are also derived for every

pseudo-complemented distributive lattice to become a Boolean algebra. Finally, the Boolean filters are

characterized in terms of known filter congruence.

The reader is referred to [4] for the notions and notations. However, we present some of the prelimi-

nary definitions and results for the ready reference.
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Definition 1.1. [4] An algebra (L,∧,∨) of type (2, 2) is called a lattice if for all x, y, z ∈ L, it satisfies

the following properties.

(1) x ∧ x = x, x ∨ x = x

(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z)
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x

Definition 1.2. [4] A lattice L is called distributive if for all x, y, z ∈ L it satisfies the following

properties.

(1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Definition 1.3. [4] Let (L,∧,∨) be a lattice. A partial ordering relation ≤ is defined on L by x ≤ y if

and only if x ∧ y = x and x ∨ y = y.

The pseudo-complement b∗ of an element b is the greatest element disjoint from b, if such an element

exists. The defining property of b∗ is:

a ∧ b = 0 ⇔ a ∧ b∗ = a ⇔ a ≤ b∗

where ≤ is a partial ordering relation on the lattice L.

A distributive latticeL in which every element has a pseudo-complement is called a pseudo-complemented

distributive lattice. For any two elements a, b of a pseudo-complemented lattice, we have the following.

(1). a ≤ b implies b∗ ≤ a∗

(2). a ≤ a∗∗

(3). a∗∗∗ = a∗

(4). (a ∨ b)∗ = a∗ ∧ b∗

(5). (a ∧ b)∗∗ = a∗∗ ∧ b∗∗

An element a of L is called a dense element if a∗ = 0 and the set D of all dense elements of L forms

a filter in L.

A proper filter P of a lattice L is called a prime filter if x ∨ y ∈ P implies x ∈ P or y ∈ P for all

x, y ∈ L. A proper filterM of L is called maximal if there exists no proper filterQ such thatM ⊂ Q. In

a distributive lattice, every maximal filter is a prime filter but not the converse. However, in a relatively

complemented lattice, every prime filter is maximal. It is noted that prime filters have also been used to

classify the 0-distributivity of semilattices [6]. For distributive lattices, we have the following theorem

related to prime filters.

Theorem 1.4. [4] Let L be a distributive lattice and x, y ∈ L such that x 6= y. Then there exists a prime

filter P such that x ∈ P and y /∈ P .

Throughout this note, unless otherwise mentioned, all lattices are bounded and pseudo-complemented

distributive lattices.
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2 Boolean filters and their properties

In this section, the concept of Boolean filters is introduced in a pseudo-complemented distributive

lattice. Further the direct products and the homomorphic images of Boolean filters are studied. Finally,

a set of equivalent conditions are derived for every filter of L to become a Boolean filter.

Definition 2.1. Let L be a pseudo-complemented distributive lattice. A filter F of L is called a Boolean

filter if x ∨ x∗ ∈ F for each x ∈ L.

Since x ∨ x∗ ∈ D for all x ∈ L, it is evident that D is a Boolean filter of L. In fact it is the smallest

Boolean filter of L.

Example 2.2. Let L = {0, a, b, c, d, 1} be a distributive lattice whose Hasse diagram is given in the

following figure.
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Figure 1: Hasse diagram of the distributive lattice L = {0, a, b, c, d, 1}.

Consider the filters F1 = {a, c, d, 1};F2 = {b, c, d, 1};F3 = {c, d, 1};F4 = {d, 1} and F5 = {1}.
Then clearly F1, F2 and F3 are Boolean filters where as F4 and F5 are not Boolean, because of a∨a∗ =

a ∨ b = c /∈ F4 ∪ F5.

Proposition 2.3. Every maximal filter of L is a Boolean filter.

Proof. Let M be a maximal filter of L. Suppose x∨x∗ /∈M for some x ∈ L. Then M ∨ [x∨x∗) = L.

Hence 0 = a ∧ b for some a ∈M and b ∈ [x ∨ x∗). Then we have the following consequence.

a ∧ b = 0 ⇒ a ∧ (x ∨ x∗) = 0

⇒ a ∧ x = 0 and a ∧ x∗ = 0

⇒ a ≤ x∗ and a ≤ x∗∗

⇒ a ≤ x∗ ∧ x∗∗ = 0

which is a contradiction to the fact that 0 ∈ M . Hence x ∨ x∗ ∈ M for all x ∈ L. Therefore, M is a

Boolean filter of L.

Corollary 2.4. A proper filter of a pseudo-complemented lattice L which contains either x or x∗ for all

x ∈ L is a Boolean filter.
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Proof. Let F be a proper filter ofL satisfying the given condition. We show that F is maximal. Suppose

G is a proper filter of L such that F ⊂ G. Choose a ∈ G − F . Since a /∈ F , by the condition, we get

a∗ ∈ F ⊂ G. Since a ∈ G and a∗ ∈ G, we get 0 = a ∧ a∗ ∈ G, which is a contradiction. Therefore, F

is a maximal filter. Thus by Proposition 2.3, F is a Boolean filter.

Corollary 2.5. In a relatively complemented lattice, every prime filter is a Boolean filter.

The converse of Proposition 2.3 is not true in general. For, in Example 2.2, the filter F3 is a Boolean

filter but not a maximal filter.

A set of equivalent conditions are derived for a Boolean filter to become a maximal filter.

Theorem 2.6. Let F be a proper filter of a pseudo-complemented lattice L. Then the following condi-

tions are equivalent.

(1) F is maximal.

(2) x /∈ F implies x∗ ∈ F for all x ∈ L.

(3) F is prime Boolean.

Proof. (1) ⇒ (2) : Assume that F is a maximal filter of L. Suppose x ∈ L − F , then F ∨ [x) = L

which yields that a ∧ x = 0 for some a ∈ F . Hence a ≤ x∗, which implies that x∗ ∈ F .

(2) ⇒ (3) : Let x ∈ L. Suppose x ∨ x∗ /∈ F . Then it is clear that x /∈ F and x∗ /∈ F , which is a

contradiction to the condition (2). Hence F is a Boolean filter ofL. Suppose x∨y ∈ F and x /∈ F . Then

by condition (2), we get x∗ ∈ F . Hence x∗∧y = 0∨(x∗∧y) = (x∗∧x)∨(x∗∧y) = x∗∧(x∨y) ∈ F .

Since x∗ ∧ y ≤ y, we get that y ∈ F . Therefore, F is a prime Boolean filter of L.

(3) ⇒ (1) : Assume that F is a prime Boolean filter of L. Suppose F is not maximal. There exists a

proper filter F ′ of L such that F ⊂ F ′. Choose x ∈ F ′ − F . Since F is Boolean, we get x ∨ x∗ ∈ F .

Since F is prime and x /∈ F , we get x∗ ∈ F ⊂ F ′. Hence it concludes that 0 = x ∧ x∗ ∈ F ′, which is

a contradiction. Therefore, F is a maximal filter.

The following proposition is obvious from Definition 2.1.

Proposition 2.7. Let F,G be two filters of a pseudo-complemented lattice such that F ⊆ G. If F is a

Boolean filter then so is G.

We now characterize the Boolean filters in the following:

Theorem 2.8. Let F be a proper filter of a pseudo-complemented lattice L. Then the following condi-

tions are equivalent.

(1) F is a Boolean filter.

(2) x∗∗ ∈ F implies x ∈ F .

(3) For x, y ∈ L, x∗ = y∗ and x ∈ F imply y ∈ F .

Proof. (1) ⇒ (2) : Assume that F is a Boolean filter of L. Suppose x∗∗ ∈ F . Since F is a Boolean
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filter, we get x∨x∗ ∈ F . Hence x = x∨ 0 = (x∧x∗∗)∨ (x∗ ∧x∗∗) = (x∨x∗)∧x∗∗ ∈ F . Therefore,

condition (2) holds.

(2) ⇒ (3) : Let x, y ∈ L and x∗ = y∗. Suppose x ∈ F , then y∗∗ = x∗∗ ∈ F . Hence by the condition

(2), it follows that y ∈ F .

(3) ⇒ (1) : Let x ∈ D. Then x∗ = 0 ≤ a∗ for any a ∈ F . Hence a∗∗ ≤ x∗∗ and a∗∗ ∈ F . Hence

x∗∗ ∈ F . Since x∗ = x∗∗∗ and x∗∗ ∈ F , by the condition (3), we get x ∈ F . Hence D ⊆ F . Since D

is a Boolean filter, by Proposition2.7, we get that F is a Boolean filter of L.

Now we discuss about the homomorphic images of Boolean filters of pseudo-complemented dis-

tributive lattices. By a homomorphism on a pseudo-complemented lattice, we mean a bounded homo-

morphism which also preserves the pseudo-complementation, that is, f(x∗) = f(x)∗ for all x ∈ L.

Theorem 2.9. Let (L,∨,∧,∗ , 0, 1) and (L′,∨,∧,∗ , 0′, 1′) be two pseudo-complemented lattices and ψ

a homomorphism from L onto L′. Then we have the following conditions.

(1) ψ(F ) is a Boolean filter of L′ whenever F is a Boolean filter of L.

(2) ψ−1(G) is a Boolean filter of L whenever G is a Boolean filter of L′.

Proof. (1). Suppose F is a Boolean filter of L. It is known that ψ(F ) is a filter of L′. Let y ∈ L′. Since

ψ is onto, there exists x ∈ L such that ψ(x) = y. Since F is a Boolean filter of L, we get x ∨ x∗ ∈ F .

Now y ∨ y∗ = ψ(x) ∨ ψ(x)∗ = ψ(x) ∨ ψ(x∗) = ψ(x ∨ x∗) ∈ ψ(F ). Therefore, ψ(F ) is a Boolean

filter of L′.

(2). Let G be a Boolean filter of L′. Clearly ψ−1(G) is a filter of L. Let x ∈ L. Then ψ(x ∨ x∗) =

ψ(x) ∨ ψ(x∗) = ψ(x) ∨ ψ(x)∗ ∈ G, since ψ(x) ∈ L′. Hence we get x ∨ x∗ ∈ ψ−1(G). Therefore,

ψ−1(G) is a Boolean filter of L.

LetL1 andL2 be two pseudo-complemented distributive lattices with ∗ as their pseudo-complementation.

Then L1 × L2 is also a pseudo-complemented distributive lattice with respect to the point-wise opera-

tions in which the pseudo-complementation is given as follows:

(a, b)∗ = (a∗, b∗)

Now we discuss about the direct products of Boolean filters of a pseudo-complemented distributive

lattice.

Theorem 2.10. If F1 and F2 are Boolean filters of L1 and L2 respectively, then F1 × F2 is a normal

filter of the product lattice L1 ×L2. Conversely, every Boolean filter F of L1 ×L2 can be expressed as

F = F1 × F2 where F1 and F2 are Boolean filters of L1 and L2 respectively.

Proof. Let F1 and F2 be Boolean filters of L1 and L2 respectively. Since 1 ∈ F1 and 1 ∈ F2, we

get (1, 1) ∈ F1 × F2. Clearly F1 × F2 is a filter of L1 × L2. Let x ∈ L1 and y ∈ L2. Since F1

and F2 are Boolean filters of L1 and L2 respectively, we get x ∨ x∗ ∈ F1 and y ∨ y∗ ∈ F2. Hence

(x, y) ∨ (x, y)∗ = (x ∨ x∗, y ∨ y∗) ∈ F1 × F2. Therefore, F1 × F2 is a Boolean filter of L1 × L2.
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Conversely, let F be any Boolean filter of L1 × L2. Consider the projections Πi : L1 × L2 −→ Li

for i = 1, 2. Let F1 and F2 be the projections of F on L1 and L2 respectively. That is Πi(F ) = Fi for

i = 1, 2. We prove that F1 and F2 are Boolean filters ofL1 andL2 respectively. Since (1, 1) ∈ F , we get

1 = Π1(1, 1) ∈ F1. Clearly F1 is a filter of L1. Let x ∈ L1 and x∗∗ ∈ F1. Then (x, 1)∗∗ = (x∗∗, 1∗∗) =

(x∗∗, 1) ∈ F . Since F is a Boolean filter, we get (x, 1) ∈ F . Thus x = Π1(x, 1) ∈ Π1(F ) = F1.

Therefore, F1 is a Boolean filter of L1. Similarly, we get F2 is a Boolean filter of L2.

Next we prove that F = F1 × F2. Clearly F ⊆ F1 × F2. Let (x, y) ∈ F1 × F2. Then x∗∗ ∈ F1 =

Π1(F ) and y∗∗ ∈ F2 = Π2(F ). Hence (x∗∗, 1) ∈ F and (1, y∗∗) ∈ F . Since F is a filter, we have

(x, y)∗∗ = (x∗∗, y∗∗) = (x∗∗ ∧ 1, 1 ∧ y∗∗) = (x∗∗, 1) ∧ (1, y∗∗) ∈ F . Since F is a Boolean filter, we

get that (x, y) ∈ F . Thus we have F1 × F2 ⊆ F and hence F = F1 × F2.

We recall the well known Glivinko type congruence ψ defined on L such that (x, y) ∈ ψ if and only

if x∗ = y∗ for all x, y ∈ L. We derive a set of equivalent conditions for every filter of L to become a

Boolean filter.

Theorem 2.11. Let L be a pseudo-complemented distributive lattice. Then the following conditions are

equivalent.

(1) L is a Boolean algebra.

(2) Every filter is a Boolean filter.

(3) Every principal filter is a Boolean filter.

(4) Every prime filter is a Boolean filter.

(5) ψ is the smallest congruence.

Proof. (1) ⇒ (2) : It is a fact that L is a Boolean algebra if and only if it has a unique dense element.

Assume that L has a unique dense element, precisely 1. Let F be a filter of L. Then x ∨ x∗ = 1 ∈ F
for all x ∈ L. Therefore, F is a Boolean filter of L.

(2)⇒ (3) : It is obvious.

(3) ⇒ (4) : Assume that every principal filter of L is a Boolean filter. Then clearly [1) is a Boolean

filter of L. Since [1) ⊆ P , by Proposition 2.7, we get that P is also a Boolean filter of L.

(4) ⇒ (5) : Assume that every prime filter is a Boolean filter. Let x, y ∈ L be such that (x, y) ∈ ψ.

Suppose x 6= y. Then there exists a prime filter P such that x ∈ P and y /∈ P . Hence y∗∗ = x∗∗ ∈ P .

Since P is Boolean, we get y ∈ P , which is a contradiction. Hence x = y. Therefore, ψ is the smallest

congruence.

(5) ⇒ (1) : Assume the condition (5). Suppose L has two dense elements, say x, y. Then we get

x∗ = 0 = y∗. Hence (x, y) ∈ ψ.

Therefore, by condition (5), we get x = y. Thus L has a unique dense element and hence is a

Boolean algebra.

For any filter F of a distributive lattice, a congruence relation ΨF is defined by (x, y) ∈ ΨF if

there exist f ∈ F such that x ∧ f = y ∧ f . The associated quotient lattice is denoted by L/Ψ(F ) and

Ψ denotes the canonical epimorphism of L onto the quotient lattice. For x ∈ L,Ψ(x) = x̂ = the
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congruence class of x modulo ΨF . It is well-known that the elements of F are all congruent under ΨF

and the equivalence class of F is the largest element in L/ΨF
. It is also clear that L/ΨF

is a distributive

lattice. This congruence was studied in detail by T.P. Speed [6]. Now, Boolean filters are characterized

in terms of congruence ΨF .

Theorem 2.12. Let F be a filter of a pseudo-complemented distributive lattice L. Then the following

conditions are equivalent.

(1) F is a Boolean filter.

(2) L/ΨF
is a Boolean algebra.

Proof. (1)⇒ (2) : Assume that F is a Boolean filter of L. Let x̂ ∈ L/ΨF
. We have always x ∧ x∗ = 0

and hence x̂ ∧ x̂∗ = x̂ ∧ x∗ = 0̂. Since F is a Boolean filter, we get that x ∨ x∗ ∈ F . Hence we have

x̂ ∨ x̂∗ = x̂ ∨ x∗ = F . Therefore, L/ΨF
is a Boolean algebra.

(2) ⇒ (1) : Assume that L/ΨF
is a Boolean algebra. Let x ∈ L. Then x̂ ∈ L/ΨF . Since L/ΨF is a

Boolean algebra, there exists y ∈ L such that x̂ ∧ y = x̂ ∧ ŷ = 0̂ and x̂ ∨ y = x̂ ∨ ŷ = F . Hence it

follows that (x ∧ y, 0) ∈ ΨF and x ∨ y ∈ F . Since (x ∧ y, 0) ∈ ΨF , there exists f ∈ F such that

x ∧ y ∧ f = 0 and thus we get y ∧ f ≤ x∗. Therefore, we get the following consequence.

x ∨ y ∈ F and f ∈ F ⇒ (x ∨ y) ∧ f ∈ F

⇒ (x ∧ f) ∨ (y ∧ f) ∈ F

⇒ (x ∧ f) ∨ x∗ ∈ F since y ∧ f ≤ x∗

⇒ (x ∨ x∗) ∧ (f ∨ x∗) ∈ F

⇒ x ∨ x∗ ∈ F

Therefore, F is a Boolean filter of L.
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