On The Fekete-Szegö Problem for Generalized Class $M_{\alpha, \gamma}(\beta)$ Defined By Differential Operator

Fethiye Müge SAKAR ${ }^{* 1}$, Sultan AYTAŞ̧ ${ }^{2}$, Hatun Özlem GÜNEY ${ }^{2}$
${ }^{* 1}$ Batman University, Faculty of Management and Economics, Department of Business Administration, 72060, Batman
${ }^{2}$ Dicle University, Science Faculty, Mathematics Department, 21280, Diyarbakır
(Alınış / Received: 10.04.2016, Kabul / Accepted: 31.10.2016, Online Yayınlanma / Published Online: 11.11.2016)

Keywords

Univalent functions,
Analytic,
Starlike,
Convex,
Fekete-Szegö problem

Abstract

In this study the classical Fekete-Szegö problem was investigated. Given $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$. to be an analytic standartly normalized function in the open unit disk $U=\{z \in C:|z|<1\}$. For $\left|a_{3}-\mu a_{2}^{2}\right|$, a sharp maximum value is provided through the classes of $\bar{S}_{\alpha, \gamma}^{*}(\beta)$ order β and type α under the condition of $\mu \geq 1$.

Diferansiyel Operatör ile Tanımlanmış Genelleştirilmiş $M_{\alpha, \gamma}(\beta)$ Sınıfı için Fekete-Szegö Problemi

Anahtar Kelimeler

Yalınkat fonksiyonlar, Analitik,
Yıldızıl,
Konveks,
Fekete Szegö problemi

Özet: Bu çalışmada, Fekete-Szegö problemi çalışılmıştır. $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$. $U=\{z \in \mathrm{C}:|z|<1\}$, açık birim diskinde normalize edilmiş analitik fonksiyonların bir sınıfı olsun. $\mu \geq 1$ koşulu altında α tipli β mertebeli $\bar{S}_{\alpha, \gamma}^{*}(\beta)$ sınıfı ile ilgili, $\left|a_{3}-\mu a_{2}^{2}\right|$ için kesin maksimum değeri elde edilmiştir.

1. Introduction, Preliminaries and Definition

Let A indicate the family of analytic functions in the unit $\operatorname{disk} U=\{z \in \mathrm{C}:|z|<1\}$ as given below,

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

In addition, it is well known that the class of functions which are univalent in $U=\{z \in \mathrm{C}:|z|<1\}$ is shown by S. Strongly starlike functions of order β and type α is defined over the class A of all analytic functions $f(z)$ in the form (1). Such functions are denoted by $\bar{S}_{\alpha, \gamma}^{*}(\beta)$, if they fulfill,

$$
\begin{equation*}
\left|\arg \left(\frac{\gamma I^{n-2} f(z)+(1-\gamma) I^{n-1} f(z)}{\gamma I^{n-1} f(z)+(1-\gamma) I^{n} f(z)}-\alpha\right)\right|<\frac{\pi}{2} \beta \tag{2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1), \beta(0 \leq \beta<1)$ and $z \in U$. Over the class of S which is being analytic univalent functions, upper value of $\left|a_{3}-\mu a_{2}^{2}\right|$ is calculated by Fekete-Szegö [1] when μ is real. For the functions of various subclasses of S, the maximum value of $\left|a_{3}-\mu a_{2}^{2}\right|$ is examinated by many several authors. Some of these references are given here ([see, e.g., $2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17])$.

Nalinakshi and Parvatham in [18] defined differential operator for all integer values of n as follows:

$$
\begin{equation*}
I^{n} f(z)=z+\sum_{k=2}^{\infty} k^{-n} a_{k} z^{k} . \tag{3}
\end{equation*}
$$

They observed that

$$
\begin{equation*}
I^{-n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}=D^{n} f(z) \tag{4}
\end{equation*}
$$

where D is an operator defined in [19]. Also, we know that

$$
I^{-1} f(z)=z f^{\prime}(z)=D f(z) \text { and } I^{m}\left(I^{n} f(z)\right)=I^{m+n} f(z)(5)
$$

Definition 1.1. Given $0 \leq \alpha<1,0 \leq \gamma \leq 1$ and $\beta>0$, and also let $f \in S$. Then $f \in M_{\alpha, \gamma}(\beta)$ if and only if there exists $g \in \bar{S}_{\alpha, \gamma}^{*}(\beta)$ such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\gamma I^{n-2} f(z)+(1-\gamma) I^{n-1} f(z)}{\gamma I^{n-1} g(z)+(1-\gamma) I^{n} g(z)}\right)>0,(z \in U) \tag{6}
\end{equation*}
$$

for the function $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\ldots .$.
Note that $M_{0,0}(\beta)=R_{0}(\beta)$ is the classes close-toconvex functions given by [9] and $M_{0,0}(1)=R_{0}(1)$ is defined by Kaplan [20] for the class of normalized functions.

The main goal of this study is to calculate sharp upper value of $\left|a_{3}-\mu a_{2}^{2}\right|$ for the class defined by using differential operator I^{n}, which is given Eqs. (6).

2. Key Lemma and Derivation of Main Theorem

First of all, we have to consider the following lemma to find our main results [21].

Lemma 2.1. Let h be in P, that is, h be analytic in the unit disc and represented by
$h(z)=z+c_{2} z^{2}+c_{3} z^{3}+\ldots$ and $\operatorname{Re}\{h(z)\}>0$ for $z \in U$, then

$$
\begin{equation*}
\left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leq 2-\frac{\left|c_{1}^{2}\right|}{2} . \tag{7}
\end{equation*}
$$

Theorem 2.2. Given $0 \leq \alpha<1,0 \leq \gamma \leq 1, \beta \geq 1$ and $\mu \geq 1$, also let the function f which is given by the series of (1) be an element of the class $M_{\alpha, \gamma}(\beta)$. Then a sharp inequality given below is obtained for modulus of $a_{3}-\mu a_{2}^{2}$:

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3^{1-n}(1+2 \gamma)} \\
& \times\left(\frac{\beta^{2} \mu 3^{1-n}(2-\alpha)(1+2 \gamma)-\beta^{2} 2^{1-2 n}(1+\gamma)^{2}(1-\alpha)(3-\alpha)}{2^{-2 n}(1-\alpha)^{2}(2-\alpha)(1+\gamma)^{2}}\right) \\
& +\frac{1}{3^{1-n}(1+2 \gamma)} \times\left(\frac{\left(3^{1-n} \mu(2 \gamma+1)-2^{1-2 n}(1+\gamma)^{2}\right)(1-\alpha)}{2^{-2 n}(1-\alpha)(1+\gamma)^{2}}\right. \\
& \left.\quad+\frac{2 \beta\left(3^{1-n} \mu(2 \gamma+1)-2^{1-2 n}(1+\gamma)^{2}\right)}{2^{-2 n}(1-\alpha)(1+\gamma)^{2}}\right)
\end{aligned}
$$

Proof. Let $f(z) \in M_{\alpha, \gamma}(\beta)$, it is seen from Eqs. (6) that

$$
\begin{align*}
& \gamma I^{n-2} f(z)+(1-\gamma) I^{n-1} f(z) \\
&=\left(\gamma I^{n-1} g(z)+(1-\gamma) I^{n} g(z)\right) q(z) \tag{9}
\end{align*}
$$

For $z \in U, q \in P$ denoted by,
$q(z)=1+q_{1} z+q_{2} z^{2}+q_{3} z^{3}+\ldots$. Equating coefficients we obtain

$$
\begin{align*}
2^{1-n}(1+\gamma) a_{2} & =q_{1}+2^{-n}(1+\gamma) b_{2} \tag{10}\\
3^{1-n}(1+2 \gamma) a_{3} & =q_{2}+2^{-n}(1+\gamma) b_{2} q_{1}+3^{-n}(2 \gamma+1) b_{3} .
\end{align*}
$$

It is also seen from (2)that

$$
\begin{align*}
& \gamma I^{n-2} g(z)+(1-\gamma) I^{n-1} g(z)-\alpha\left(\gamma I^{n-1} g(z)+(1-\gamma) I^{n} g(z)\right) \tag{11}\\
& =g(z)(p(z))^{\beta}
\end{align*}
$$

where $z \in A, p \in P$ and

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots \tag{12}
\end{equation*}
$$

So, Eqs. (13) is attained by equating coefficients,

$$
\begin{align*}
& 2^{-n}(1+\gamma)(1-\alpha) b_{2}=\beta p_{1} \\
& 3^{-n}[(2-\alpha)(2 \gamma+1)] b_{3}=\beta\left(p_{2}+\frac{\beta(3-\alpha)+\alpha-1}{2(1-\alpha)} p_{1}^{2}\right) . \tag{13}
\end{align*}
$$

From (10) and (13) we have

$$
\begin{align*}
& a_{3}-\mu a_{2}^{2} \\
& =\frac{1}{3^{1-n}(1+2 \gamma)}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{\left[2^{1-2 n}(1+\gamma)^{2}-\mu 3^{1-n}(2 \gamma+1)\right]}{3^{1-n} 2^{2-2 n}(2 \gamma+1)(1+\gamma)^{2}} q_{1}^{2} \\
& +\frac{\beta}{3^{1-n}(2-\alpha)(2 \gamma+1)}\left(p_{2}-\frac{p_{1}^{2}}{2}\right) \tag{14}\\
& +\frac{\beta^{2}\left[2^{1-2 n}(1+\gamma)^{2}(1-\alpha)(3-\alpha)-\mu 3^{1-n}(2-\alpha)(2 \gamma+1)\right]}{3^{1-n} 2^{2-2 n}(1+\gamma)^{2}(2-\alpha)(2 \gamma+1)(1-\alpha)^{2}} p_{1}^{2} \\
& +\frac{\beta\left[2^{1-2 n}(1+\gamma)^{2}-\mu 3^{1-n}(2 \gamma+1)\right]}{2^{1-2 n} 3^{1-n}(1+\gamma)^{2}(1-\alpha)(2 \gamma+1)} p_{1} q_{1} .
\end{align*}
$$

$\operatorname{Re}\left\{a_{3}-\mu a_{2}^{2}\right\}$ can be estimated, under the assumption of positiveness of $a_{3}-a_{2}^{2}$. The following equations related to (15) is calculated by using Lemma 2.1, Eqs. (14) and under the condition of $0 \leq \phi<2 \pi, p_{1}=2 r e^{i \theta}$, $q_{1}=2 r e^{i \phi}, 0 \leq r \leq 1,0 \leq R \leq 1$ and $0 \leq \theta<2 \pi$. Simply calculations of Eqs. (15) is given below:

$$
\begin{aligned}
& 3^{1-n}(1+2 \gamma) \operatorname{Re}\left(a_{3}-\mu a_{2}^{2}\right) \\
& =\operatorname{Re}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{\left[2^{1-2 n}(1+\gamma)^{2}-\mu 3^{1-n}(2 \gamma+1)\right]}{2^{2-2 n}(1+\gamma)^{2}} \operatorname{Re} q_{1}^{2} \\
& +\frac{\beta}{(2-\alpha)} \operatorname{Re}\left(p_{2}-\frac{p_{1}^{2}}{2}\right) \\
& +\frac{\beta^{2}\left[2^{1-2 n}(1+\gamma)^{2}(1-\alpha)(3-\alpha)-\mu 3^{1-n}(2-\alpha)(2 \gamma+1)\right]}{2^{2-2 n}(1-\alpha)^{2}(2-\alpha)(1+\gamma)^{2}} \operatorname{Re} p_{1}^{2} \\
& +\frac{\beta\left[2^{1-2 n}(1+\gamma)^{2}-\mu 3^{1-n}(2 \gamma+1)\right]}{2^{1-2 n}(1-\alpha)(1+\gamma)^{2}} \operatorname{Re} p_{1} q_{1} \\
& +\frac{\beta\left[2^{1-2 n}(1+\gamma)^{2}-\mu 3^{1-n}(2 \gamma+1)\right]}{2^{1-2 n}(1-\alpha)(1+\gamma)^{2}} \operatorname{Re} p_{1} q_{1} \\
& \leq 2\left(1-R^{2}\right) \\
& +\frac{\left[2^{1-2 n}(1+\gamma)^{2}-\mu 3^{1-n}(2 \gamma+1)\right]}{2^{-2 n}(1+\gamma)^{2}} \mathrm{R}^{2} \cos 2 \theta \\
& +\frac{2 \beta}{(2-\alpha)}\left(1-r^{2}\right) \\
& +\frac{\beta^{2}\left[2^{1-2 n}(1+\gamma)^{2}(1-\alpha)(3-\alpha)-\mu 3^{1-n}(2-\alpha)(2 \gamma+1)\right]}{2^{-2 n}(1-\alpha)^{2}(2-\alpha)(\gamma+1)^{2}} r^{2} \cos 2 \phi \\
& +\frac{2 \beta\left[2^{1-2 n}(1+\gamma)^{2}-\mu 3^{1-n}(2 \gamma+1)\right]}{2^{-2 n}(1-\alpha)(1+\gamma)^{2}} r R \cos (\theta+\phi) \\
& \leq\left(\frac{3^{1-n} \mu(2 \gamma+1)}{2^{-2 n}(1+\gamma)^{2}}-4\right) R^{2} \\
& +\frac{2 \beta\left[3^{1-n} \mu(2 \gamma+1)-2^{1-2 n}(1+\gamma)^{2}\right]}{2^{-2 n}(1-\alpha)(1+\gamma)^{2}} r R \\
& +\frac{\beta^{2} \mu 3^{1-n}(2-\alpha)(1+2 \gamma)-\beta^{2} 2^{1-2 n}(1+\gamma)^{2}(1-\alpha)(3-\alpha)}{2^{-2 n}(1-\alpha)^{2}(2-\alpha)(1+\gamma)^{2}} r^{2} \\
& -\frac{2^{1-2 n} \beta(1-\alpha)^{2}(1+\gamma)^{2}}{2^{-2 n}(1-\alpha)^{2}(2-\alpha)(1+\gamma)^{2}} r^{2}+\frac{2(\beta-\alpha)+4}{(2-\alpha)} \\
& =\psi(r, R)
\end{aligned}
$$

Let α, β and μ be fixed and $\psi(r, R)$ be partially differentiable under the condition of $0 \leq \alpha<1, \beta \geq 1$ and $\mu \geq 1$. Then equation (16) given below is attained

$$
\begin{aligned}
& \psi_{r} \psi_{R R}-\left(\psi_{r R}\right)^{2} \\
& =2^{2-4 n} \beta(1+\gamma)^{4}[4 \beta+2+\alpha(2 \alpha \beta+2 \alpha-4-7 \beta)] \\
& -3^{1-n} \mu \beta(1+\gamma)^{2}(1+2 \gamma) 2^{-2 n}[6 \beta+2+\alpha(2 \alpha \beta+2 \alpha-4-8 \beta)] \\
& <0 .
\end{aligned}
$$

As a result, $\psi(r, R)$ takes the maximum value on the boundaries. Thus the final inequality can be as follows:

$$
\begin{align*}
& \psi(r, R) \leq \psi(1,1) \\
& =\frac{\beta^{2} \mu 3^{1-n}(2-\alpha)(1+2 \gamma)-\beta^{2} 2^{1-2 n}(1+\gamma)^{2}(1-\alpha)(3-\alpha)}{2^{-2 n}(1-\alpha)^{2}(2-\alpha)(1+\gamma)^{2}} \\
& +\frac{\left(3^{1-n} \mu(2 \gamma+1)-2^{1-2 n}(1+\gamma)^{2}\right)(1-\alpha)}{2^{-2 n}(1-\alpha)(1+\gamma)^{2}} \tag{17}\\
& +\frac{2 \beta\left(3^{1-n} \mu(2 \gamma+1)-2^{1-2 n}(1+\gamma)^{2}\right)}{2^{-2 n}(1-\alpha)(1+\gamma)^{2}} .
\end{align*}
$$

The inequality given by Eqs. (8) is gotten when we take $p_{1}=q_{1}=2 i$ and $q_{1}=q_{2}=-2$.

3. Conclusions

The following remarks and corollary can be calculated for some particular values of related parameters.

Setting $\alpha=0$ in Theorem 2.2., we obtain the result of Jahangiri [22] as Corollory 3.1.

Corollary 3.1. Let f be given by the series of (1) and in the class of $K(\beta)$. Then the following inequality provides sharpness of the result for $\beta \geq 1$, and $\mu \geq 1$:

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \beta^{2}(\mu-1)+\frac{(3 \mu-2)(1+2 \beta)}{3} . \tag{18}
\end{equation*}
$$

Remark 3.2. When we choose $n=0$ and $\gamma=\lambda$ in Theorem 2.2., our results are reduced to that by Orhan and Kamali [23] .

Remark 3.3. When we choose $\gamma=0$ and $n=0$ in Theorem 2.2., our results are reduced to that by Frasin and Darus [24].

Remark 3.4. When we choose $\gamma=0, \alpha=0$ and $n=0$ in Theorem 2.2., our results are reduced to that by Jahangiri [22].

References

[1] Fekete-Szegö, M. 1933. Eine Bemerkung uber ungrade schlicht funktionen. J. London Math. Soc., 8, 85-89 (in German).
[2] Choonweerayoot, A., Thomas, D.K. Upakarnitikaset, W. 1991. On the coefficients of close-to convex functions. Math. Japon, 36 (5),819-826.
[3] Keogh, F.R., Merkes, E.P. 1969. A coefficient inequality for certain classes of analytic functions.Proc. Am. Math. Soc.,20,8-12 .
[4] Srivastava, H.M., Mıshra, A.K., Das, M.K. 2000. The Fekete-Szegö problem for a subclass of
close-to convex function.Complex Variables,44,145-163.
[5] Abdel-Gawad, H.R., Thomas, D.K. 1991. A subclass of close-to convex functions. Publ. Inst. Math. (Beograd) (NS), 49 (63), 61-66.
[6] Abdel-Gawad, H.R., Thomas, D.K. 1992. The Fekete-Szegö problem for strongly close-to convex functions.Proc.Am. Math. Soc.,114 (2),345-349.
[7] Nasr, M.A., El-Gawad, H.R. 1991. On the FeketeSzegö problem for close-to convex functions of order ρ. In: New Trends in Geometric Function Theory and Applications (Madras 1990), World Science Publishing, River Edge, NJ, 66-74.
[8] Darus, M., Thomas, D.K. 1996. On the FeketeSzegö theorem for close-to convex functions. Math. Japon, 44 (3),507-511.
[9] Darus, M., Thomas, D.K. 1998. On the FeketeSzegö theorem for close-to convex functions. Math. Japon, 47 (1), 125-132.
[10] Goel, R.M.,Mehrok, B.S. 1991. A coefficient inequality for certain classes of analytic functions. Tamkang J. Math., 22 (2), 153-163.
[11] London, R.R.1993. Fekete-Szegö inequalities for close-to-convex functions. Proc. Am. Math. Soc.,117 (4),947-950.
[12] Trimble, S.Y. 1975. A coefficient inequality for convex univalent functions. Proc. Am. Math. Soc.,48, 266-267.
[13] Koepf, W. 1987. On the Fekete-Szegö problem for close-to convex functions. II. Arch. Math. (Basel),49 (5), 420-433.
[14] Koepf, W. 1987. On the Fekete-Szegö problem for close-to convex functions. Proc. Am. Math. Soc., 101 (1), 89-95.
[15] Altınkaya, Ş., Yalçın, S. 2014. Fekete-Szegö Inequalities for Certain Classes of Bi-univalent Functions.International Scholarly Research Notices,Volume, Article ID 327962, 6 pages.
[16] Altınkaya, Ş., Yalçın, S. 2014. Fekete-Szegö Inequalities for Classes of Bi-univalent Functions defined by subordination. Advances in Mathematics: Scientific Journal, 3 (2),63-71.
[17] Sokół, J.,Raina, R.K., Yilmaz Özgür, N.2015. Applications of k -Fibonacci numbers for the starlike analytic functions.Hacet. J. Math. Stat., 44(1), 121-127.
[18] Nalinakshi, L., Parvatham, R. 1995. On SalageanPascu Type of Generalised Sakaguchi Class of Functions. Kyungpook Math.J., 35, 1-15.
[19] Salagean, G.S. 1981. Subclasses of univalent funtions. Lecture notes in Mathematics Springer Verlag, 1013, 363-372.
[20] Kaplan, W. 1952. Close-to convex schlicht functions. Michigan Math. J.,1,169-185.
[21] Pommerenke, Ch. 1975. Univalent Functions.With a chapter on quadratic differentials by Gerd Jensen.StudiaMathematica/MathematischeLehr bucher,BandXXV,Vandenheck\&Ruprecht. Göttingen, MR 58\#22526.Zbl 298.30014.
[22] Jahangiri, M.1995. A coefficient inequality for a class of close-to convex functions. Math. Japon, 41 (3), 557-559.
[23] Orhan, H., Kamali, M. 2003. On the Fekete-Szegö problem. Applied Mathematics and Computation, 144, 181-186.
[24] Frasin, B.A., Darus, M. 2000. On the Fekete-Szegö problem. Internet J. Math. Sci., 24 (9), 577-581.

