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Abstract:	In	this	study	the	classical	Fekete‐Szegö	problem	was	investigated.	Given	
2 3

2 3( ) ....   f z z a z a z 	 to	 be	 an	 analytic	 standartly	 normalized	 function	 in	 the	

open	 unit	 disk	  : 1U z z  C .	 For	 2
3 2a a ,	 a	 sharp	 maximum	 value	 is	

provided	through	the	classes	of	 *
, ( )  S 	order	  and	type	 under	the	condition	

of 1  .		
	 	
	 	
Diferansiyel	Operatör	ile	Tanımlanmış	Genelleştirilmiş	 , ( )M   	Sınıfı	için	Fekete‐Szegö	

Problemi	
	
	

Anahtar	Kelimeler	
Yalınkat	fonksiyonlar,	
Analitik,	
Yıldızıl,	
Konveks,	
Fekete	Szegö	problemi	

Özet:	Bu	çalışmada,	Fekete‐Szegö	problemi	çalışılmıştır.	 2 3
2 3( ) ....   f z z a z a z

 : 1U z z  C ,	 açık	 birim	diskinde	 normalize	 edilmiş	 analitik	 fonksiyonların	

bir	 sınıfı	 olsun. 1  koşulu	 altında	  	 tipli	  	 mertebeli
*

, ( )  S sınıfı	 ile	 ilgili,	
2

3 2a a için	kesin	maksimum	değeri	elde	edilmiştir.	

	 	
	
1.	Introduction,	Preliminaries	and	Definition	
	
Let	  	 indicate	the	family	of	analytic	functions	in	the	
unit	disk  : 1U z z  C 	as	given	below,	

	

2

( )




  n
n

n

f z z a z
	
	  1 	

	
In	addition,	it	is	well	known	that	the	class	of	functions	
which	 are	 univalent	 in	  : 1U z z  C 	 is	 shown	

by	 S .	Strongly	starlike	functions	of	order	  and	type	
 is	defined	over	the	class	  	of	all	analytic	functions	

( )f z in	 the	 form	  1 .	 Such	 functions	are	denoted	by
*

, ( )  S ,if	they	fulfill,	

	
2 1
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( ) (1 ) ( )
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n n

n n

I f z I f z

I f z I f z
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for	 some	 (0 1)   ,	 (0 1)   	 and	 z U .	 Over	
the	 class	 of	 S 	 which	 is	 being	 analytic	 univalent	

functions,	 upper	 value	 of	 2
3 2a a

	
is	 calculated	 by	

Fekete‐Szegö	[1]	when	  	is	real.	For	the	functions	of	
various	 subclasses	 of	 S ,	 the	 maximum	 value	 of	

2
3 2a a 	 is	 examinated	 by	 many	 several	 authors.	

Some	 of	 these	 references	 are	 given	 here	 ([see,	 e.g.,	
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]).	
	
Nalinakshi	and	Parvatham	in	[18]	defined	differential	
operator	for	all	integer	values	of	 n 	as	follows:		
	

2

( ) .






 n n k
k

k

I f z z k a z
	

 3 	

	
They	observed	that		
	

2

( ) ( )






  n n k n
k

k

I f z z k a z D f z 	  4 	
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where	 D 	 is	 an	 operator	 defined	 in	 [19].	 Also,	 we	
know	that	
	

1 '( ) ( ) ( )  I f z zf z Df z and ( ( )) ( )m n m nI I f z I f z  5 	

	
Definition	1.1.	Given	 0 1  ,	 0 1  	and	 0  ,	

and	 also	 let	 f S .	 Then	 , ( )  f M 	 if	 and	 only	 if	

there	exists *
, ( )  g S 	such	that	

	
2 1

1

( ) (1 ) ( )
Re 0 ,

( ) (1 ) ( )

n n

n n

I f z I f z

I g z I g z

 
 

 



  
   

 z U
	  6 	

	
for	the	function 2 3

2 3( ) ....   g z z b z b z .	
	
Note	 that	 0,0 0( ) ( ) M R 	 is	 the	 classes	 close‐to‐

convex	 functions	 given	 by	 [9]	 and 0,0 0(1) (1)M R is	

defined	 by	 Kaplan	 [20]	 for	 the	 class	 of	 normalized	
functions.	
	
The	main	goal	of	this	study	is	to	calculate	sharp	upper	
value	 of	 2

3 2a a
	
for	 the	 class	 defined	 by	 using	

differential	operator	 nI ,	which	is	given	Eqs.	  6 .	

	
2.	Key	Lemma	and	Derivation	of	Main	Theorem		
	
First	of	all,	we	have	to	consider	the	following	lemma	
to	find	our	main	results	[21].	
	
Lemma	2.1.	Let h be	 in	 P ,	 that	 is,	 h 	 be	 analytic	 in		
the	unit	disc	and	represented	by		
	

2 3
2 3( ) ....   h z z c z c z 	and	  Re ( ) 0h z 	for	 z U ,	

then	
	

22
11

2 2 .
2 2

cc
c    	  7 	

	
Theorem	 2.2.	 Given	 0 1  ,	 0 1  ,	 1  	 and	

1  ,	 also	 let	 the	 function f 	 which	 is	 given	 by	 the	

series	of	  1 be	an	element	of	the	class	 , ( )  M .	Then	

a	 sharp	 inequality	 given	 below	 is	 obtained	 for	
modulus	of	 2

3 2a a :	
	

2
3 2 1

2 1 2 1 2 2

2 2 2
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 8 	

Proof.	Let	 ,( ) ( )  f z M ,	it	is	seen	from	Eqs.  6 that	

	

 
2 1

1

( ) (1 ) ( )

( ) (1 ) ( ) ( ).

n n

n n

I f z I f z
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 9 	

	
For	 z U ,	 q P 	denoted	by,

2 3
1 2 3( ) 1 ...    q z q z q z q z .		Equating	coefficients	

we	obtain	
	

1
2 1 22 (1 ) 2 (1 )     n na q b 	

1
3 2 2 1 33 (1 2 ) 2 (1 ) 3 (2 1) .         n n na q b q b 	

 10 	

	
It	is	also	seen	from	  2 that	

	

 
 

2 1 1( ) (1 ) ( ) ( ) (1 ) ( )

( ) ( )

n n n nI g z I g z I g z I g z

g z p z


          


 11 	

	
where	 z A , p P and		
	

2 3
1 2 3( ) 1 ...    p z p z p z p z .	  12 	

	
So,	Eqs.	  13 is	attained	by	equating	coefficients,	

	

2 12 (1 )(1 )     n b p 	

  2
3 2 1

(3 ) 1
3 (2 )(2 1) .

2(1 )
n b p p

    


    
     

	
 13 	

	
From	  10 	and	  13 we	have	
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 14 	

	

 2
3 2Re a a can	be	estimated,	under	the	assumption	

of	 positiveness	 of	 2
3 2a a .	 The	 following	 equations	

related	to	  15 is	calculated	by	using	Lemma	2.1,	Eqs.	

 14 and	under	the	condition	of	 0 2   , 1 2  ip re ,

1 2  iq re ,	 0 1 r ,	 0 1 R 	and	 0 2   .	Simply	

calculations	of	Eqs.	  15 	is	given	below:	
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1 2
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Let	  ,  	 and	  	 be	 fixed	 and	 ( , ) r R 	 be	 partially	
differentiable	 under	 the	 condition	 of	 0 1  , 1  	

and	 1  .	 Then	 equation	  16 	 given	 below	 is	

attained	
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2 4 4

( )

2 (1 ) 4 2 2 2 4 7

  

      



        

rr RR rR

n
	

 1 2 23 (1 ) (1 2 )2 6 2 2 2 4 8n n                 
0. 	

 16 	

	
As	a	result	,	 ( , )r R takes	the	maximum	value	on	the	
boundaries.	 Thus	 the	 final	 inequality	 can	 be	 as	
follows:	 	
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	The	 inequality	 given	 by	 Eqs.	  8 is	 gotten	when	we	

take	 1 1 2 p q i 	and	 1 2 2.  q q 	
	
3.	Conclusions	
	
The	 following	 remarks	 and	 corollary	 can	 be	
calculated	 for	 some	 particular	 values	 of	 related	
parameters.	
	
Setting	 0  	in	Theorem	2.2.,	we	obtain	the	result	of	
Jahangiri	[22]	as	Corollory	3.1.	
	
Corollary	3.1.	Let	 f 	be	given	by	the	series	of	  1 and	

in	 the	 class	 of	 ( )K .	 Then	 the	 following	 inequality	
provides	sharpness	of		the	result	for	 1  ,	and	 1  :	
	

2 2
3 2

(3 2)(1 2 )
( 1) .

3
a a

     
   

	
 18

		
Remark	 3.2.	When	 we	 choose	 0n 	 and	   	 in	
Theorem	 2.2.,	 our	 results	 are	 reduced	 to	 that	 by	
Orhan	and	Kamali	[23]	.	
	
Remark	 3.3.	When	 we	 choose 0  	 and	 0n 	 in	
Theorem	 2.2.,	 our	 results	 are	 reduced	 to	 that	 by	
Frasin	and	Darus	[24].	
	
Remark	3.4.	When	we	choose 0  ,	 0  	and	 0n  	
in	 Theorem	 2.2.,	 our	 results	 are	 reduced	 to	 that	 by	
Jahangiri	[22].	
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