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Abstract: The notion of geodesic, which may be regarded as an extension of the line
segment in Euclidean geometry to the space we study in, has an important place in many
branches of geometry, such as Riemannian geometry, Metric geometry, to name but a
few. In this article, the concept of geodesic in a metric space will be introduced, then
geodesics in the space (Rn,d1) will be characterized. Furthermore, some examples will
be presented to demonstrate the effectiveness of the main result.
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Özet: Öklid geometrisindeki bir doğru parçasının içinde çalıştığımız uzaya genelleştir-
ilmesi olarak görülebilecek olan jeodezik kavramı, geometrinin bir çok dalında (Riemann
Geometrisi, Metrik geometri vb.) önemli bir yere sahiptir. Bu çalışmada bir metrik
uzay içinde jeodezik kavramının nasıl tanımlandığı açıklandıktan sonra (Rn,d1) içindeki
jeodezikler karakterize edilecektir. Ayrıca asıl sonucun etkisini göstermek için bir takım
örnekler sunulacaktır.

1. Introduction

Let (X ,d) be a metric space, α : [a,b]→ X be a path and
a = t0 < t1 < · · · < tn = b is an arbitrary partition of the
interval [a,b]. Then, the length of α is defined as

sup
P

{

n

∑
i=1

d(α(ti−1),α(ti))

}

over all partitions P = {t0 = a, t1, . . . , tn = b} of [a,b] and
it is denoted by L(α). If α satisfies L(α) = d(x,y), where
α(a) = x, α(b) = y, then α is called a geodesic [1],[2].
For a given metric space and any two points in it, there
may not exist any geodesics between these two points. For
example, S1 = {(x,y) ∈R

2 |x2+y2 = 1} with the induced
standard metric and for p = (1,0) and q = (−1,0), there
is no path connecting these points, whose length is less
than π , but the distance between p and q is equal to 2
according to the standard metric. If there is at least one
geodesic between any two points in a metric space, this
metric space is called “geodesic space” according to Pa-
padopoulos [1] or “strictly intrinsic space” according to
Burago [3]. Hence, S1 is not a geodesic space with the
induced standard metric, but it becomes a geodesic space
with the “arc length metric”. Since the line between any
two points in R

n is obviously a geodesic according to the
metric d1 where

d1((x1, . . . ,xn),(y1, . . . ,yn)) = |x1 − y1|+ · · ·+ |xn − yn|,

(Rn,d1) is also a geodesic space. But in that space, there
are too many geodesics different from lines [4]. So far,
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there is no survey about these geodesics. It would there-
fore be desirable to determine them. In this work, we give
a necessary and sufficient condition which identifies the
geodesics between any two points of this space.

2. Geodesics in the Space (Rn,d1)

Definition 1 For p = (p1, . . . , pn) ∈ R
n and εi = ±, i =

1,2, . . . ,n, we define

Qε1...εn
p = {(q1, . . . ,qn)∈R

n |εi(qi− pi)≥ 0, i= 1,2, . . . ,n}

which we call ε1 . . .εn−quadrant of the point p.

Note that the equality

Qε1···εn
p = {q=(q1, . . . ,qn)∈R

n |d1(p,q)=
n

∑
i=1

εi(qi− pi)}

obviously holds. There are exactly 2n quadrants in R
n.

All quadrants of a point p in R
2 are shown in Figure 1 and

the quadrant Q+++
O of the origin in R

3 is shown in Figure
2.

Theorem 1 Let p = (p1, p2, . . . , pn), q =
(q1,q2, . . . ,qn) ∈ R

n be two points, q ∈ Q
ε1ε2···εn
p

and α : [a,b] → R
n be a path such that α(a) = p and

α(b) = q. Then α is a geodesic in (Rn,d1) if and only if

α(t ′) ∈ Q
ε1ε2···εn

α(t)
for all t, t ′ ∈ [a,b] such that t < t ′.
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Figure 1. All quadrants of a point p.
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Figure 2. The quadrant Q+++
O of the origin.

Proof. (⇒) Assume that α = (α1,α2, . . . ,αn) be a
geodesic but α(t ′) /∈ Q

ε1ε2···εn

α(t)
for some t < t ′. Then we

have

d1(α(t),α(t ′))>
n

∑
i=1

εi(αi(t
′)−αi(t))

Since q ∈ Q
ε1ε2···εn
p , it holds that

d1(p,q) =
n

∑
i=1

εi(qi − pi).

On the other hand, for the partition a < t < t ′ < b of [a,b],
we get

d1(α(a),α(t))+d1(α(t),α(t ′))+d1(α(t ′),α(b))

>
n

∑
i=1

εi(αi(t)−αi(a))+
n

∑
i=1

εi(αi(t
′)−αi(t))+

n

∑
i=1

εi(αi(b)−αi(t
′))

=
n

∑
i=1

εi(αi(b)−αi(a))

=
n

∑
i=1

εi(qi − pi)

= d1(p,q).

This inequality implies Ld1(α) > d1(p,q) which is a con-
tradiction yielding the required result. (⇐) Let a = t0 <
t1 < · · · < tm = b be an arbitrary partition of [a,b]. Since
α(t j) ∈ Q

ε1ε2···εn

α(t j−1)
for all j = 1,2, · · · ,m, the equality

d1(α(t j),α(t j−1)) =
n

∑
i=1

εi(αi(t j)−αi(t j−1)).

is satisfied. Thus, we have

m

∑
j=1

d1(α(t j),α(t j−1)) =
m

∑
j=1

n

∑
i=1

εi(αi(t j)−αi(t j−1))

=
n

∑
i=1

m

∑
j=1

εi(αi(t j)−αi(t j−1))

=
n

∑
i=1

εi(αi(b)−αi(a))

=
n

∑
i=1

εi(qi − pi)

= d1(p,q).

This implies Ld1(α) = d1(p,q). Hence α is a geodesic.

Example 1 Let the path α be defined as α : [−1,1] →
(R2,d1), α(t) = (−2t,et), p = α(−1) = (2, 1

e
) and q =

α(1) = (−2,e). It is clear that q ∈ Q−+
p . Furthermore,

for −1 ≤ t < t ′ ≤ 1, the following inequalities hold:

−(−2t ′− (−2t))≥ 0

and

et ′ − et ≥ 0.

This implies that α(t ′) ∈ Q−+
α(t)

for all −1 ≤ t < t ′ ≤ 1, it

follows that α is a geodesic (see Figure 3).
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Figure 3. The path α (a geodesic) of Example 1.

Example 2 Let the path α be defined as α : [0, 3π
2 ] →

(R2,d1), α(t) = (t,sin t), p = α(0) = (0,0) and q =
α( 3π

2 ) = ( 3π
2 ,−1). It is obvious that q ∈ Q+−

p . How-

ever, α(t ′) /∈ Q+−
α(t)

for t = 0 and t ′ = π
2 because −(sin π

2 −

sin0) < 0. Therefore, the path α is not a geodesic (see

Figure 4).
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Figure 4. The path α (not a geodesic) of Example 2.

Theorem 1 can be restated as follows: Let q ∈ Q
ε1ε2···εn
p .

Then the path α between p and q is a geodesic if and only
if when the quadrants Q

ε1ε2···εn

(.)
travel on the image of α ,
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the rest of the path is contained from the quadrant at every
point (see Figure 5).
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Figure 5. Two paths between p and q in (R2,d1) which one of them
(the left) is a geodesic but the other is not a geodesic.

By means of Theorem 1, when the graph of a path is given
in (R2,d1) or (R3,d1), we can figure out whether this path
is a geodesic or not. Nevertheless, if the equation of a path
is given in (Rn,d1), to make a decision whether this path
is a geodesic still presents some difficulty. Let us inves-
tigate Theorem 1 more closely: Let p = (p1, p2, . . . , pn)
and q = (q1,q2, . . . ,qn) be two points in R

n, q ∈ Q
ε1ε2···εn
p

and α = (α1,α2, . . . ,αn) : [a,b] → R
n be a path connect-

ing these points (α(a) = p, α(b) = q). Then, according
to Theorem 1, α is a geodesic in (Rn,d1) if and only if

t < t ′ ⇒ α(t ′) ∈ Q
ε1ε2···εn

α(t)

for all t, t ′ ∈ [a,b]. Note that α(t ′) ∈ Q
ε1ε2···εn

α(t)
if and only

if

εi(αi(t
′)−αi(t))≥ 0

for all i= 1,2, . . . ,n by the definition of a quadrant. There-
fore, α is a geodesic in (Rn,d1) if and only if

t < t ′ ⇒ εi(αi(t
′)−αi(t))≥ 0 (1)

for all i= 1,2, . . . ,n and t, t ′ ∈ [a,b]. Note that, in equation
(1), if εi is ”+”, then the component function αi is non-
decreasing and, likewise, if εi is ”−”, then the component
function αi is non-increasing. Thus, we get the following
corollary:

Corollary 1 Let α = (α1,α2, . . . ,αn) : [a,b] → R
n is a

path. Then α is a geodesic in (Rn,d1) if and only if all

component functions αi of α are non-decreasing or non-

increasing on the interval [a,b].

Note that the path in Example 1 is a geodesic since its first
component function is non-increasing and its second com-
ponent function is non-decreasing. However, the path in
Example 2 is not a geodesic because its second component
function is neither non-increasing nor non-decreasing on
its domain. Finally, we now give an example in R

4:

Example 3 α : [−1,1] → R
4, α(t) = (1 − 2t,1 +

t2,et , t3 − 1) is not a geodesic since the second compo-

nent function of α is neither non-decreasing nor non-

increasing on the interval [−1,1].
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