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The approximated method of solving two-dimensional non-linear problem of the
creep theory for viscoelastic bodies with moving boundaries is suggested. The
problem of a stress-deformed state of viscoelastic hollow cylinder, which is being
built up by virtue of inner pressure, is considered. It is assumed that the process
of continuous build-up takes place outwards from the outer side. The case of non-
liner creep law is viewed with calculation results presented as graphs, reflecting the
dynamics of stress and deformation that occurs herewith.
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1. Introduction

We face the problems with a moving limit (processes of build-up) while learning
various technological and natural processes like coiling, sputtering, freezing-on,
accretion, also in step-by-step constructing or loading of buildings and building
constructions, crystal growing, phase changes of solid bodies and so on.

The theoretical ground for new production technologies concerning cases,
pipes and other rotation workpieces through build-up requires development of
calculation methods that fuller reflect the properties of the material used for
a detail. It is known that polymeric materials and composite materials used
for production of different details and construction elements have vivid creep
properties. This leads to a redistribution of stress in the detail in the process
of build-up, deformation in shape and size after production and during loading.
Mechanics of similar processes can be investigated from different points of view.
One of those is a model representation of build-up processes in real constructions
based on the creep theory for heterogeneously ageing bodies [1,2]. Such bodied are
characterized by consisting of different elements which, being created at different
————————————————–
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moments in time, are of different age that depends on spacial coordinates. Thus,
along with traditional inconsistency there arises an inconsistency of a specific
nature caused by the fact that the process of ageing in this elements runs differently
for each element.

Solutions of boundary value problems for moving limits and methods of solving
integral equations known from literature sources [3-17] model different processes
of detail production. Some works [1,2] look into problems where the process of
build-up takes place outwards from the outer side of the detail at given law of
radius change and surface tension for the case of linear creep law.

This work suggests an approach to address the question of modeling the
process of the hollow circular cylinder production of polymeric material through
the method of build-up for the non-linear creep law. The process of build-up takes
place from the outer side of the detail by virtue of the inner pressure.

2. The physical aspect of the problem

To produce the mathematical model of the viscoelastic hollow cylinder build-
up, which is built up by virtue of inner tension, let us use the approach stated in
[18].

Fig. 1: The scheme of the outward build-up

Let the given viscoelastic hollow circular cylinder have the inner a0 and outer
b0 radius at the moment of time t = 0 (Fig.1). The build-up process for this
cylinder involves its outward thickening with homogeneous viscoelastic material
by virtue of inner pressure P (t). We will investigate this process in the time
interval [0, T ] adhering to the following assumptions:

1. at the moment of time t = 0 there is a given initial value of P (0) = P0;
2. the law is known that b = b(t), according to which the outer cylinder radius

changes with time;
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3. the function b = b(t) is a monotone decreasing one, where b(0) = b0;
4. the functions b(t) and P (t) are continuously differentiable in the interval

0 < t < T ;
5. the build-up process stops at t = T , meaning b(t) = b1 = const when t > T .
The problem is to identify the stress-deformed state of the cylinder for each

value of t ∈ [0, T ].

3. The mathematical aspect and problem solution

Let us introduce polar coordinates r, θ, z and consider the flat deformation
of the cylinder (i.e. uz = 0). We will further use the generally accepted symbols
for movement, stress and deformation tensor components. Below listed are key
relations that characterize the build-up process for the given problem:
• the condition of deformation commonality:

εr + εθ = 0; (3.1)

• the equation of balance:

∂σr
∂r

= −σr − σθ
r

; (3.2)

• Cauchy relation for the rate of deformation and movement:

ε̇r =
∂u̇r
∂r

, ε̇θ =
u̇

r
. (3.3)

For (3.3) a period symbolizes the partial derivative of time.
Since all components of deformation tensor except for εr and εθ equal zero,

with due account of (3.1), we have the following relation:

εu = (2εijεij)
1/2 = 2|εr| = 2|εθ|.

Then, taking into account the essential equations of the non-linear creep theory
for heterogeneously ageing bodies (see f.e. [2]) and the condition εθ > 0 the
equation of state can be presented as follows:

σr(t, r)− σθ(t, r) = 2Gi(t− τ∗)(εr(t, r)− εθ(t, r))εm−1
θ (t, r)−

−
ˆ t

τ∗
Ri(t− τ∗, τ − τ∗)(εr(τ, r)− εθ(τ, r))εm−1

θ (τ, r)dτ, i = 1, 2. (3.4)

Here Gi = G·2m−1; Ri = R·2m−1;m = 1, 2, 3, ... – is given, a parameter which
characterizes the level (degree) of the non-liner creep law; G – is a momentary
elastic module of the material; R = R(t, τ) – is the relaxation kernel of the
viscoelastic material; τ∗(r) – is the moment of elementary cylinder level formation;
τ – is the age of material at the moment when stress is applied to it. The function
τ∗ = τ∗(r) equals zero if a0 6 r 6 b0 and coincides with the function inverse
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to the function b(t) if b0 6 r 6 b1, thus τ∗(b(t)) ≡ t, b(τ∗(r)) ≡ r, τ∗(b0) = 0,
b(0) = b0.

The boundary conditions look as follows:

σr|r=b0,t=0 = 0, σr|r=a0 = −P (t) (3.5)

σr,θ|r=b(t),0<t6T = 0, σr|r=b1,t>T = 0 (3.6)

Upon differentiation of the equation (3.1) with respect to the variable of time
and applying it to the received representation (3.3), we come up with the following
equation:

∂u̇r
∂r

+
u̇r
r

= 0

Hence
u̇r =

c(t)

r
, ε̇r = −ε̇θ = −c(t)

r2
, (3.7)

where c(t) is a function subject to definition.
With due account of the initial condition εr(τ∗(r), r) = εθ(τ

∗(r), r) = 0 , (3.7)
can be transformed to

ur(t, r) =
A(t)−A(τ∗(r))

r
, (3.8)

−εr(t, r) = εθ(t, r) =
A(t)−A(τ∗(r))

r2
when b0 < r 6 b(t), (3.9)

ur(t, r) =
A(t)

r
, (3.10)

−εr(t, r) = εθ(t, r) =
A(t)

r2
when a0 6 r 6 b0, (3.11)

A(t) = −
ˆ t

0
c(τ)dτ. (3.12)

Let us evaluate stress σr through the function A(t). For that two areas will
be considered

1. Area a0 6 r 6 b0, the initial cylinder. By applying the formula for the
deformation component (3.11) to (3.4), we receive the following:

σr(t, r)− σθ(t, r) = − 2

r2m

[
2G1(t)Am(t)−

ˆ t

0
R1(t, τ)Am(τ) dτ

]
. (3.13)

By integrating (3.2) in the limits from a0 to r with the account of the boundary
conditions (3.5-3.6) and the formula (3.13), the following is received:

σr(t, r) = −P (t) +

[
4G1(t)Am(t)− 2

ˆ t

0
R1(t, τ)Am(τ)dτ

]ˆ r

a0

dr

r2m+1
. (3.14)

2. Area b0 < r 6 b(t) – the zone of build-up
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Let us apply the deformation components of (3.9) to the equation of state
(3.4), the result is:

σr(t, r)− σθ(t, r) = − 2

r2m
[2G1(t− τ∗(r))(A(t)−A(τ∗(r)))m −

−
ˆ t

τ∗(r)
R1(t− τ∗(r), τ − τ∗(r)) (A(τ)−A(τ∗(r)))m dτ

]
. (3.15)

By integrating (3.2) in the limits of r to b(t) with the account of the boundary
conditions (3.5-3.6) and the formula (3.15), the following presents itself:

σr(t, r) = −2

ˆ b(t)

r

1

r2m+1
[2G1(t− τ∗(r))(A(t)−A(τ∗(r)))m −

−
ˆ t

τ∗(r)
R1(t− τ∗(r), τ − τ∗(r))(A(τ)−A(τ∗(r)))mdτ

]
dr. (3.16)

The equation for the function definition A(t) comes out of the condition of
stress continuity σr(t, r) on the border of the two areas considered above, that is
for r = b0. By applying the value r = b0 to (3.14) and (3.16) and equating their
right parts in the course of certain transformation the following is received:

H1

(
2G1(t)Am(t)−

ˆ t

0
R1(t, τ)Am(τ)dτ

)
+

ˆ t

0
H2(t, τ)(A(t)−A(τ))mdτ−

−
ˆ t

0

ˆ τ

0
H3(t, τ, s)(A(τ)−A(s))mdsdτ = P (t), (3.17)

where

H1 =

ˆ b0

a0

2dr

r2m+1
, H2(t, τ) =

4ḃ(τ)

b2m+1(τ)
2G1(t− τ),

H3(t, τ, s) =
2ḃ(s)

b2m+1(s)
R1(t− s, τ − s).

First of all, let us present some theoretical aspects of the possibility to solve
the integral equation (3.17)

Definition 3.1. The integral operator I(x), performing in the Banach space X,
is called the compressing operator if there is a value 0 6 λ < 1, that

‖I(x1)− I(x2)‖ 6 λ‖x1 − x2‖

for any element x1 and x2 of the X space, belonging to the range of definition for
the operator I.

Theorem 3.1. If the integral operator I(x) transforms a closed set F of the
Banach space into itself, it has a single stationary point. Successive approximations
xn = I(xn−1), (n = 1, 2, ...) converge to this point at any given point x0.
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Proof. By equation xn = I(xn−1), (n = 1, 2, ...) and with the account of definition
of the compressing operator, the following is received

‖xn+1 − xn‖ 6 λ‖xn − xn−1‖. (3.18)

If n = 1 than
‖x2 − x1‖ 6 λ‖x1 − x0‖,

if n = 2
‖x3 − x2‖ 6 λ‖x2 − x1‖ 6 λ2‖x1 − x0‖.

Moving forward,
‖xn+1 − xn‖ 6 λn‖x1 − x0‖. (3.19)

Let m and n be natural numbers, with m > n. Then the inequation (3.19) leads
to

‖xm − xn‖ 6 ‖xm − xm−1‖+ ‖xm−1 − xm−2‖+ ...+ ‖xn+1 − xn‖ 6

6 (λm−1 + λm−2 + ...+ λn)‖x1 − x0‖ =

=
λn − λm

1− λ
‖x1 − x0‖ 6

λn

1− λ
‖x1 − x0‖. (3.20)

Since λ < 1, for the given ε > 0 the number N can be selected so big that the
inequation n > N will be true

λn

1− λ
‖x1 − x0‖ < ε.

With such selected N and (3.20) the following is actualized: with m > n > N

‖xm − xn‖ < ε.

Thus, the sequence {xn} is fundamental and due to the completeness of the
X space, it is also convergent. Let x = limn→∞ xn. Since the set F is closed and
xn ∈ F (n = 1, 2, ...), x ∈ F .

Let us demonstrate that x is a stationary point of the operator I(x). Hence,

‖x− I(x)‖ 6 ‖x− xn+1‖+ ‖xn+1 − I(x)‖.

Since xn = I(xn−1), (n = 1, 2, ...), the previous inequation can be transformed
in the following way

‖x− I(x)‖ 6 ‖x− xn+1‖+ ‖I(xn)− I(x)‖ 6

6 ‖x− xn+1‖+ λ‖xn − x‖. (3.21)

Since xn → x, for any ε > 0 there is such n, that

‖x− xn+1‖+ λ‖xn − x‖ < ε.
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From (3.21) the following derives

‖x− I(x)‖ 6 ε.

As ε was selected randomly, x = I(x).
Let us showcase the unity of solution. Let’s assume that there are two stationary

points x and x, then

‖x− x‖ = ‖I(x)− I(x)‖ 6 ‖x− x‖.

Since λ < 1, this inequation is possible only on condition that x = x.

To solve the integral Volterra equation of the second kind (3.17) the Simpson’s
rule was applied. Let us consider

y(x)−
ˆ x

a
K(x, t, y(t))dt = f(x) (3.22)

on the interval a 6 x 6 b. We shall assume that K(x, t, y(t)) and f(x) are
continuous functions.

Based on the equation (3.22), let us find y(a) = f(a). Let us take the constant
step of integration h and view the discrete set of points xi = a+ h(i− 1), where
i = 1, 2, 3, ..., n. For the points x = xi, the equation (3.22) looks as follows:

y(xi)−
ˆ xi

a
K(xi, t, y(t))dt = f(xi). (3.23)

By picking xi as quadrature nodes for the formula, we shall neglect the
approximation error and by replacing the integral in the equation (3.23) with the
formula, the following system of non-linear algebraic (or transcendent) equations
is received:

y1 = f1, yi −
i∑

j=1

AijKij(yi) = fi, i = 2, 3, ..., n, (3.24)

where Aij is the coefficient of the quadrature formula for the interval [a, xi], yi
are the approximated values of the solution y(x) in the nodes xi, fi = f(xi)
Kij(yj) = K(xi, tj , yj).

The correlation (3.24) can be noted as a sequence of recurrent non-linear
equations.

y1 = f1, yi −AiiKii(yi) +

i−1∑
j=1

AijKij(y), i = 2, 3, ..., n, (3.25)

A1 = A2m+1 =
h

3
, A2 = ... = A2m =

4h

3
, A3 = ... = A2m−1 =

2h

3
, (3.26)
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h =
b− a
n− 1

, xi = a+ h(i− 1) (n = 2m+ 1, i = 1, 2, ..., n), (3.27)

where m ∈ N for the definition of the approximated value of the sought for
solution in the node points.

By defining the function A(t) from the non-linear Volterra equation (3.17),
the movement ur and deformation components εr and εθ can be defined by the
following formulae:

ur(t, r) =
A(t)−A(τ∗(r))

r
, −εr(t, r) = εθ(t, r) =

A(t)−A(τ∗(r))

r2
, b0 < r 6 b(t);

ur(t, r) =
A(t)

r
, −εr(t, r) = εθ(t, r) =

A(t)

r2
, a0 6 r 6 b0;

A(t) = −
ˆ t

0
c(τ)dτ

and stress σr and σθ by the formulae:

σr(t, r)− σθ(t, r) = − 2

r2m

[
2G1(t)Am(t)−

ˆ t

0
R1(t, τ)Am(τ) dτ

]
, a0 6 r 6 b0;

σr(t, r) = −P (t)+

[
4G1(t)Am(t)− 2

ˆ t

0
R1(t, τ)Am(τ)dτ

]ˆ r

a0

dr

r2m+1
, b0 6 r 6 b(t);

σr(t, r)− σθ(t, r) = − 2

r2m
[2G1(t− τ∗(r))(A(t)−A(τ∗(r)))m −

−
ˆ t

τ∗(r)
R1(t− τ∗(r), τ − τ∗(r)) (A(τ)−A(τ∗(r)))m dτ

]
, a0 < r 6 b0;

σr(t, r) = −2

ˆ b(t)

r

1

r2m+1
[2G1(t− τ∗(r))(A(t)−A(τ∗(r)))m −

−
ˆ t

τ∗(r)
R1(t− τ∗(r), τ − τ∗(r))(A(τ)−A(τ∗(r)))mdτ

]
dr, b0 < r 6 b(t)
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Fig. 2: The distribution of stress for the initial cylinder at T=50 hours

Fig. 3: The distribution of stress for the initial cylinder at T=100 hours
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Fig. 4: The distribution of stress for the built-up cylinder at T=50 hours

Fig. 5: The distribution of stress for the built-up cylinder at T=100 hours
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Fig. 6: The distribution of stress for the initial cylinder at T=100 hours

4. The result analysis

Let us consider the case when the function µ(t, τ) looks as follows:

R(t, τ) =
∂µ(t, τ)

∂τ
,

µ(t, τ) = 2G(τ)− ϕ(τ)(1− e−γ(t−τ))

on condition that

G = const, ϕ(τ) = 2G(C0 +A0e
−βτ ).

Let us assume that the outer radius of cylinder b(t) changes according to the
law:

1

b2(t)
=

1

b20
+

(
1

b21
− 1

b20

)
t

T
, 0 6 t 6 T,

and the inner pressure decreases proportionally on the interval [0, T ] down to
the value that is two times smaller than the initial one, and at the moment the
build-up is over t = T , the pressure drops to zero.

In the figures 2, 3 dependencies of the dynamics of the maximum tangent
stress for the following points of cylinder is given 1 − r = b0; 2 − r = a0 −
0 = 0, 9b0 − 0; 3 − r = 0, 79b0. In the course of calculations, the parameters
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C0, A0, β, γ and dimensions a0, b0 were selected this way: C0 = 0, 05, A0 =
0, 07, β = 0, 02−1, γ = 0, 1−1. Since stress does not depend on the value of the
momentary elastic moduleG, and movement along with deformations are inversely
related to it, the calculations assumed that G = 1.

The figures 2 and 3 show the dependence of the maximum tangent stress both
on time and the coordinate of the different cylinder zones (a0 6 r 6 b0 for the
initial cylinder and b0 < r 6 b(t) for the build-up zone) for different build-up
duration. The results are given for polyvinyl chloride for the following values of
the geometrical parameters: b0 = 1, 1a0, b1 = 1, 5a0, b(t) = b0b1

√
T√

b21T+t(b20−b21)
.

Thus, the presented calculation method enables to evaluate the influence
of build-up duration on the distribution of stress and movements in a round
viscoelastic hollow cylinder made of homogenous viscoelastic material.

The probability of the results is based on the correct mathematic problem
statement, efficacy of the analysis methods and verified by satisfactory matches
of numeric data and experimental data known from literature [1, 2]. Therefore the
suggested model can be utilized by research and project organizations to model
technological processes connected to rotary workpiece production and construction
elements production by means of build-up.
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