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We discuss the Holder continuity property for the inverse mapping that identifies
the diffusivity matrix A(z) in the main part of anisotropic p-Laplace equation as a
function of resolvent operator. In particular, we prove that, within a chosen class of
non-smooth admissible matrices the resolvent determines the anisotropic diffusivity
in a unique manner and the correspondent inverse mapping is Hoélder continuous

in suitable topologies.
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1. Introduction

Throughout the paper € is a bounded open subset of RY, N > 2, for which
Poincaré’s inequality holds, p > 2, 1/p+1/q = 1. Let SV .= Rw be the set
of all symmetric matrices A = [aij]%zl, (aij = aji € R). We suppose that SV
is endowed with the Euclidian scalar product A - B = tr(A B) = a;jb;; and with
the corresponding Euclidian norm ||Allsy = (A - A)!/2. We also make use of the
so-called spectral norm || Al := sup {|A¢| : £ € RN with [¢| =1} of matrices
A € SN, which is different from the Euclidean norm || A|gy . However, the relation

|All2 < |Allsy < VN||All2 holds true for all A € SV.
Admissible matrices Let o and § be given distributions from L*°(2) such that

a>0 ae.inQ a’<p aeinQ and o ?e LYQ). (1.1)
Let us define the following class of matrices

M(Q) = {A(z) € L=(%SY) : o*(2)] < A(z) < B(2)] ae. in O}, (1.2)
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where inequalities in (1.2) should be considered in the sense of the corresponding
quadratic forms. The norm of A(z) we further define as a spectral one ||A(x)]|2.
We say that A = [aij]%-:l is a matrix of anisotropic diffusivity if A € M().

In this paper we derive some sensitivity estimates for the solutions to the
following boundary value problem for the degenerate quasi-linear elliptic equation
(in what follows we shall call (1.3) the anisotropic p-Laplace equation)

—~div(|(AVy, Vy)ax|"Z AVY) = f in ©, (1.3)
y =0 on 99, (1.4)

where A € M(Q), f = —divg, g € L>®(Q) is a given distribution.

Our main goal is to analyze the inverse problem of identifying the matrix of
anisotropic diffusivity A(z) in the principle part of quasi-linear elliptic equation
(1.3) as a function of resolvent operator. In particular, we prove that, within
the class of admissible matrices M(€2), the resolvent determines the anisotropic
diffusivity in a unique manner. Furthermore we prove that the inverse mapping
from resolvent to the matrix A is Holder continuous in suitable topologies.

Our main results can be stated as follows.

Theorem 1.1. Let A and B be given elements from M(QQ) such that

*[B~2]AB™2 € L®(Q;SN) and ||*[B2]AB 2|’ <1
Lo (Q;SN)
Let f = —divg for some g € L= (;RN). Then
15
1—||*[B"2]AB™2
Lo (Q;SN)
IRB(f) = Ra(Hlluz ) forp=2,

<4 [14IRB0 + RADIE o RAD N0 | IRB() = RaA Dl Sorp € (204

p— 2 p—2
{1 + 55 (IRaDlgon +1) } IR5(F) = Ra(F)lls - forp>4

where the weighted Sobolev space HY () is defined in (3.1), by Ra we denote the

inverse or resolvent operator for problem (1.3)—(1.4), which is uniquely determined

by the matriz A € M() and maps continuously (HZ(Q))* into HY (Q), while the
p

*[Bfé]ABfé ’ one can interpret as a measure of closedness
Lo (Q;SN)

between matrices A and B (see Remark 4.2).

value 1 —

Theorem 1.2. Let A, B € (M)(2) be given matrices such that

“[B~2]AB™ 2, *[A"2](A — B)B~2 € L®(Q;SV).
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Then for p > 2 and f = —divg, g € L>®(;RY), we have

CPHRB(f) - RA(f)”?{E’:(Q)
% A-B B_% % 2.4
< C(A,B,g,a_l) 1]( - ) HLOQ(Q;SN)’ peE [ ) ]a

2

_ _1
["[B72](A — B)B™ 2|y (qsv), P > 4,

for some constant C = C(A,B,g,a™ ') (see Lemma 8.1 for the details of its
identification,).

The results under discussion are close to the questions of stability and sensiti-
vity analysis for boundary value problems and optimization problems associated
with them. Stability refers to the continuous behavior of solutions under small
perturbations of the problem data, while sensitivity indicates a differentiable
dependence (see, [8]). It is worth to notice that, by analogy with a linear case [9],
this result plays a key role when applying greedy algorithms to the approximation
of parameter-dependent quasi-linear elliptic problems with anisotropic p-laplacian
in an uniform and robust manner, independent of the given source terms (see, for
instance, [2-4]).

2. Physical Motivation

To begin with we note that equation (1.3) can be viewed as the Euler equation
for the variational integral

() = ]13 / (AVu, Vi) | der — / (g, Vi) da: — inf (2.1)
Q Q

and its interest arises from various applied context related to composite materials
(such as nonlinear dielectric composites), whose nonlinear behavior is modeled by
the so-called power law.

Another application of the energy functional (2.1) and, therefore, equation
(1.3), can be found in the shape optimization theory. Indeed, let D be a given
nonempty domain in RY, and let

P(D)={Q: QC D, Qis open}

be the set of all open subsets of D. Let V : [0,7] x RY — R¥ be a given velocity
field. Consider the transformations {7} : RN — RN, ¢ € [0, 7]} defined as

x — Ti(x) = y(t, ),

where y(t,z) is a solution (flow) of the differential equation

dy(t,z)

=V(ty(t t >0,
o = Vit y(to)),

y(0,2) = x.
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Then, for a given domain Q C D, we can associate with ¢ > 0 the new set (certain
perturbation of )
Qt = Tt(Q) = {Tt(l‘), Ve Q},

i.e. some transport of the set € by the velocity field V. This type of perturbations
of the initial domain ) plays a crucial role in the study of shape optimization
problems.

So, if we assume that the p-Laplace equation

—div (|[Vy|P~2Vy) = f in W, ?(Q) (2.2)

is defined on a given bounded Lipschitz domain 2 and the associated energy is
given by

1
J(O,(p):p/Q\ch\pdx—/Qfgodx, VngWOI’p(Q),

then the energy on a perturbed domain € can be expressed as follows (see Delfour,
Zolessio for the details)

Tto) = [ welrde- [ fods
P Jo=T1 () T (2)
1 _ .
—/)\t\*[DTt]_1Vg0]pdx—/f)\tcpdx, (2.3)
P Ja Q

where DT; is the Jacobian matrix of Ty, *[DT;]~! is the transpose of [DT}] ™!,
M\ = |detDTy|, and & = @oTy. Hence, the minimization of J(¢, -) over Wol’p(Tt(Q))
is equivalent to the minimization of J(t,¢) = J(t, @ o T;"!) over Wol’p(Q).

As a result, the corresponding Euler equation for (2.3) takes the form

—div (|GE)Vy' P2 *[GB)]G(y)VY') = N fo Ty in 9,
y' =0 on 09,

where G(t) := X *[DT;]~!. Thus, having put A = *[G]G, we arrive at the
anisotropic p-Laplace equation (1.3)—(1.4).

3. Preliminaries and Auxiliary Results

Weighted Sobolev spaces. In order to furnish the boundary value problem (1.3)—
(1.4) by some functional space description, we associate with each matrix A €
M(Q) the weighted Sobolev space

HY(Q) = Wy P (; Adu),

which we define as the closure of C§°(€2) with respect to the norm

1
V4
Iylla = ( /Q P d & /Q |<Aw,w>mr’5dx) . (3.1)
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Note that, due to inequalities (1.2) and estimates

[ as < ( / w) Y7 < Clly]a.
1/p 1/q
/|Vy|dx< (/ |Vypapdm> </ aqu>
Q 9] Q
1/p
<l 2, ( / |A%Vypdw)
Q

1/p
e ( / \(Aww)w/zdx) < Clyla,

the space HY(Q) is complete with respect to the norm || - |4 (see [1]). Moreover,

following [6], we have the following result: if there exists a real v € (%, —i—oo) N

[p 1,—}—00) such that a7 € L1(€), then the expression

1/p
122y = ( [ 149,97 da:)

can be considered as a norm on H% () and it is equivalent to the norm (3.1).
Besides, in this case the embedding H% (Q) < LP(12) is compact.

Hereinafter we denote by (-,-)_1.1 the duality paring between (H Z(Q))* and
HY(Q).

Anisotropic p-Laplacian. Before proceeding further, we indicate some well-
known properties of the operator

—2
Aa(y) = —div ((AVy, Vy)an| T AVY)
1. For every A € M(Q) the operator A4 acts from H(Q) to (H4(Q))" and

(Aa(y),v)-11 = /Q (AVy, Vy)en| " (AVy, V 0)g da

:/ |AVy|P (A3 Yy, ATV o)y do
Q

p=1 1
(o) (fpsr)
Q

=yl o 10l ) (3.2)

2. The function R 5 t — (A(y + tv),w)_1,1 is continuous for all y,v,w €
HY (), i.e. semi-continuity property holds for A4.
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3. Operator Ay is strictly monotone. Indeed, this property follows from the
well-known estimates

Cp|§ - 77|p’ p > 27

B (3.3)
Cp (€] + P21 —n?, 1<p<2,

(1€[P=2€ = In[P~2n) (€ —n) > {
for all £, n € RN, where the constant Cp = 227P for p > 2 and Cp =1 for
1<p<2

4. The operator A4 is coercive in the following sense

(Aa(y),y)-121

= +o0. (3.4)
ol =00 1Yl (o)

Indeed, following the definition of A4, we have
—2
<AA(y)7 y>71;1 = /Q |(Avya vy)RN|pT (Avya \% y)RN dx

1
— 3 — NlylIP
= [ 143Vl da = 9l
therefore (3.4) becomes obvious.

Let f € (H Z(Q)) " be a given distribution. We consider the following variational
problem

Find y € H(Q) such that

p=2 - (3.5)
/Q\(AVy, Vy)an| T (AVY, V @)py do = (f, )11, V¢ € C(Q).

According to the well-known theorem on nonlinear operator equations with mo-
notone operators, (3.5) has a unique solution y € H%(Q2) for every A € M(Q).
Moreover, the energy equality

| 1459y do = (.51
Q

implies
1
oV ds < [ 137 do < £l gy Il
Hence,
1/(p-1)
lollyoy < IAIE (3.6)

Thus, the matrix A € M () determines uniquely the inverse or resolvent operator

R4, which maps continuously (H%())" into H% (). We address the inverse

problem consisting on identifying the matrix A in terms of the resolvent R 4.
We begin with the following result.
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Lemma 3.1. Let A, B € (M)(R2) be given matrices such that
“(B2]AB3, *[A"2)(A— B)B™% € L™(;SV).
Then for p > 2 and f = —divg, g € L>®(;RY) we have
-1
Cpllya — yBHZ]?'-[Z(Q)

1 1 Pp=2

2 — -5 2
g C(A7B7g7a71) ?](A B)B 2 HLOO(Q;SN)’ p G [274],
2

_ _1
["[B72](A — B)B™ 2 ||y (qsv), P > 4,

where for the each case the constant C = C(A, B, g,a™ ') will be identified later
on.

Proof. From (3.5) we have

2
/Q (AVya, Vya)an| 7 (AVya, V o)pw dz
_2
— [ 1By, Tym)enl 5 (BVua, ¥ p)e dz, Vo € CF(@), (37
whete g4 = Ra(f) and g = Rp(/).
Since H4(Q) C W, (), HY(Q) C W, ' (€2), and C°(€2) is dense in Wy (),
it follows that integral identity (3.7) can be extended (by continuity) to the

particular choice of ¢ = y4 — yp. As a result, we deduce from (3.7) the following
relation

N

/ <|A%VyA|p_2AVyA — |AZVyp|P 2 AV yp, Vya — vl/B)R dzx
Q
+ / A2V ys[P2(AV yp — BVyp, Vya - Vyp)e~ da
Q

b [ (1482 < BAVal ) (BY o Vs~ Ve do

[NIES
=
£
@

Then, the strict monotonicity property (3.4) and the fact that A = *[A
have

B = [ (148 VuaP 2 A8 Vs — [AEVyal? A3V g,V Abya — A3V ) do
Q
> op/ 439 g4 — 4BV ypPde = Cyllya — vl o (3.9)
Q

In order to estimate the term Iy we make use of the Holder inequality

1/p1 1/p2 1/ps3
/Q fifo fode < ( /Q \fllpldx) < /Q !fg\’”dw> ( /Q |f3!p3d:v> (3.10)
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1 1 1
with —4+ — 4+ —=1,p; > 1,7 =1,2,3. Having set
pr P2 P3

P1=—7 b2 =p3s =p,

we get

1 _
|12|</ |AZVyp|P?
Q

(A4 - B)BTEBEVyp, AFVya — ABVyp)  do

wr g1 _1
< F[A72](A = B)B™ 2 || (qsw)

C(A,B)

) / | A2 Vyp[P 2| B2 Vyp|| A2 Vya — A2 Vyplde
Q

by (3.10)
< C(ADB)llyslbe Q)llyBHHP o llya —ysllaz @
by (3.6)
< CO(4, B)llfll(Hp(Q)) vl ) llva = vBllaz () (3.11)
Since

wro_ 1 1
<f780>(Hg(Q))*;H§;(Q) :/gl(gaVW)RNdv’U:/(z( (B 2]gaBzv<P)RN dx

L 1/q N 1/p
<([1mtarar) " ([ 1BVe Vopantar)
Q Q
. v 1/q 1/q
— ([ 1B g0 ltde) el < ([ o laltdn) lag

< lgllzoe@mmylla™ Loy el ap ), ¥ € 5O (),
it follows that

AN ) < 191l o eyl ag), VB € M(Q). (3.12)

Besides, we note that
D
95150y = | 1(AV 3. V) £
/‘ AB 2B2VyB,B2VyB)RN\2dx

\

*[B~3]AB" 3| " : | BEVypPds

Q

N | _1,E
SIFIB2IAB ™2 | o om 1y )

by 36) a1 P
< ” [B Q]AB 2 HL‘X’(Q,SN)”JC”(HP (Q))*

by (2.12) s1g-hap-t 19 3.13
< IBTHAB T e g 9 gm0 Iy (3:13)
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Combining estimates (3.12)—(3.13) with (3.11), we obtain

wr a1 1 L -
|| < [[A72])(A = B)B™2 [ o ism) l9 ] [ 0 1 P
il =
X ” [B Q]AB 2HLoo QSN ||g||Loo QRN)
p—2

<l ey X llya — vl o)
wr A1 _1 wro_ 1 _1, =2
= H [A 2]<A_B)B 2HLOO(Q,SN)H [B Q]AB QHLchJ(Q,gN)
< ||gll o (rmylla™ Loy lya — yBllaz () (3.14)

where

— A2B™z — *[B31A" 2], (3.15)
ATH(A - B)BTE = (A (BB ](A - B)B
= *[BzA2]*[B2|(A— B)B"2 (3.16)

In order to evaluate the last term I3, we make use of the following two inequalities:

p=2 p=2 22 (Ig| + )T “le—nl, p>4, V¢ neRY,
672 | <

‘f_n’Ta 2<p<47 v§7n€RN7
(3.17)
Taking these into account, we get for 2 < p < 4
—2 -2 1
1I3] < /Q 1(AVys, Vy)en| =" — [(BVyz, Vyp)av|'= | [[A73]BVys
X \A%VyA — A%VyB] dx
—2 1 1
< [ 1A= B)Vus, Vuman T 144154,
x |B2Vyg||A2Vys — A2Vyp|da
p—2
<|BEA-B)B | ]
Loo(Q;SN)
1 1 1 1 1
BiA~3 BiVyglP-1A3Vy, — ATVyg|d
<|[Bat] o, [ 1B 1AV - 4T e
by (3.10) L p=2
< *[B-§]<A ~B)B |BEa-s
Loo (Q:SN) Loe(QSN)
Nyl o) lva = 8l @) (3.18)

N

provided B2A~2 € L=®(;SV) and *[B~2)(A — B)B~z € L=(Q;SV).
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If p > 4, then

_ 2 p—4
51 <757 [ (1(AVy5, Vam)as |+ [(BVys. Vun)an )
% | (A~ B)Vyp, Vyp)gn | - | "[A72] B2 Vyg|
x |[A2Vy, — A2Vyp| da
p—4
<= 2( “(B~3]AB"% > CBiac
2 Lo (Q;SM) Lo (Q;SN)
8 / |B2Vyg[P~4| (A - B)Vys,Vyp)pn |
Q
x |B2Vyp| - |A2Vya — A2Vyp|do

L b2 2 'z 1 1
\ i
2 ( LOO(Q;SN))

1 1
“[B~3](A— B)B "2
[B™2]( B3| L s

*[B~2]AB"2

Loo(Q;SNY)

X

X / |B2Vyp|' | A2Vy, — A2 Vyp|da
0

“[B~3)(A— B)B 3

-1
Loo(QSN) HyB”I[){g(Q)HyA - yBHHZ(Q)

Gathering (3.8), (3.9) and estimates derived before, we obtain for p € [2,4]

p 2

*[B~2]ABz| °

-1
Cpllya — yBHII){Z(Q) <

o

Loo(QSN) Loo(QSN)

% |19l ez llo ™ ooy || *[B72](A - B)B

Loo(Q;SNY)

- ms| 2

2

Loo(Q;SNY)

p—1
||yB”Hg(Q)

Loo(Q;SNY)

191l oo @zl Lage)

Loo(Q;SNY)
p—2

2

“[B72)(A- B)B:

Loo(Q;SN)

p=2 4—p
2

*[B~2]AB"2
Loo(C;SN)

|

and for p > 4

-1
Cpllya — yB”II){Z(Q)

< |"[A3)A - B)B 2

Loo(Q;SNY)
[B7)(A-B)B:

|9l o (@)l | Lago)

49

(3.19)
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p—4
p—1 p_2 * -5 -1 2 H 1 1
X HyB”Hg(Q) 2 (1+ [B 2j|4(4_B 2 Loo(Q;SN)> B2A"2 LOO(Q;SN)
by (3.6), (3.12), (3.16) . w1 1
< gl eyl zogey M B a-BB |
p—2
x || *[BE A3 “[B-3]AB~ 3| ° +||pracs
Lo (M) Lo (@isN) Lo (M)
p—4
—9 2
x L <1+ “[B~3]|AB™3 ) :
2 Lo (Q;SN)
x |[*[B~2)(A - B)B~2 }
Loo(€;SN)
P ~1 S A3
< Glallimamllo oo [BEATH]
p—2
_1 _1 z _1 _1
y (1+ “[B}]AB ) ‘[B4](A- BB (3.21)
Lo (Q;8M) Lo (Q;SN)
O

To proceed further, we need the following result.

Lemma 3.2. For any ¢ € HY(Q) such that HSOHHZ(Q) = 1 and arbitrary fized
element y € HY(), we have

[(Aa(ys) — Aa(ya), »)-1.]

.
BB 7 Wl s — alluse

) e yAqué?uyB Al o lwall Vp e [2.4]
BTHABTE| T Wl s = vallze
+p%2 (||yBHHg(Q) + ||yAHHg(Q))p72 lys —yalluz @), V>4,

(3.22)

where ya = Ra(f), yp = R(f), f = AsW), llys —yallur ) < +oo and

wro_ 1 _1
lyslmy @ < | 1B314B73

Lo (@8 lysll a2 o)-

Proof. Let us fix two matrices A, B € M(Q) such that [Bfé]AB*% € L SN).
Then (see (3.13)) y € HY () and, therefore, the following expression makes sense

(Aaly) — AB(?/)’ULl;l

_ (y ATVy|P2AVy — |BIVy P 2BVy, vU)RN dz, Vv € C(Q). (3.23)
Q
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On the other hand, provided Ag(y) € (H4(Q))", we see that

Aaly) — Ap(y) = Aa(Rp(Ap(y)) ) — Aa(Ra(Ap(y))) (3.24)
YB ya

To estimate the norm of the difference A4(yp) — Aa(ya) we make the following
transformations

(Aa(ys) — Aa(ya), ¢)-11

-2 p—2
= [ (A5, Vum)an |5 A5 = AV, Via)as |7 AV, V) do

- / (AVy5, Vys)en| T (A(Vys — Vya), Ve)gn de
Q
—2 —2
n / ((AVyB,VyB)RN|pT —(AVyA,VyA)RNfT) (AVya, Vo)pnda
Q

Then, by Hélder inequality, noting that [|¢||zz ) = 1, we deduce

| </
Q

p—2

“[BTHABE| T B2 Vys|" AN (Vys — Vya)||A2Velde

p—2
el 1|5 9
< || f[B72]AB™z L;(Q‘SN) ||yBH§1g(Q)HyB_yAHHZ(Q)HSOHHZ(Q)
by (3.24) || 4y 1 15 p—2
= [B~z]AB ™2 Loo(@S™) 19152 ) 198 = yallm @

and

-2 -2 1 1
L] < | |[(AVyB, Vyp)en|T — [(AVya, Vya)ry| 2 | |A2Vya||A2Vp|dz.
Q

Hence, for p € [2,4], we have (see (3.17)2)

-2
| < /Q (A(Vys — Vya), Vs + Vya)rn| 7 |A2Vy4||A2Ve|dz

p—2 p—2
< [ J43Vum = V)| T [43(Vum -+ V)| T 14Vl [4 Vel
Q

4
. 2
< { with py =p2=p7_p2, D3 = P4 = P, E Pz‘zl}
=1

—92 —

p—z p—z
<y = yallgh o lve +yal g o) lvall oy @10l ),
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where ”QDHHZ(Q) =1 and

p—2
p—2 P 2p
lu — yall .o oy = |(AVyp + AVya, Vyp + Vya)rn|? dx
m@ =\,
p=2
P
< (/ v~ <|A%V’y3|p + |A%V?/A‘p) dfﬂ)
Q
p—2

2p

*[B~2]AB"2

p
SQN |B%Vy3|p + |A;Vy,4p> dm)

—2
*[B~2]AB"2

<(L=(

Q

1 i

< <2p_1-max{ || ,1})
Loo(Q;SN)

p—2

% (lyslg @ + lallany) * < +oc. (3.26)

For the case p > 4, we have (see (3.17);)
p—2 p—4
2] < =5~ Q(l(AVy37VyB)RN| + [(AVya, Vya)gn|) 2

x |A2(Vyp — Vya)| |A2(Vyp + Vya)||A2Vya| | A2 Ve|da

2
x |43 (Vyp = Vya)| 143 Vyal |43 V0] da

—9 -3
<B= [ (143 9ysl + 143 ya])”
Q

-9 -2
<P [ (145Vus] 4 143Va])" [ 43(Tys — Tya)| |43V pldr

I _
< {pl = , D2, D3 —p}
p—2

p=2
1 1 p P
< (/Q <\A2 Vyp| + A2 Vy,q!) dx) lys — yallgz @ lllm @)

p— 2 p—2
ST (HyBHH;(Q) + HyAHHf;(Q)) lys = yallur @ llllmz @)-

It remains to take into account that

1
1Bl @) = </Q !(AVyB,VyB)RNy’Sdm)

1
2

Loo(§;SN)

_9 1 p—2
AR — <maX{1, i })
Lo (Q;SN)

2
p—2
< (sl + lyallme) lvs = yalmg ).

< ||*[B~2]AB"z

lysllz . (3.27)

Hence,

*[B~2]AB"2
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In view of the Lemma preconditions, we have f = Ap(y) € (Hg(Q))* Since

7 by (1.4) v
P P . p
g < ([ 1890.5050)" "< ([ (0190)Fas)

1
< ‘|B||Zoo(gz)“y||wg’l’(g)a
it follows that W, (Q) € H%(Q) with continuous embedding. Hence, (H%())"
is continuously embedded into W~14(Q) and in view of the estimate

N\’E

<f7 >W La(Q);W, 1P(Q <f7 >( )) HB () < ||f||(H]1;(Q))*
< HBHEOO(Q)HfH(H%(Q))*”yHWOI’p(Q) Vy € W()LP(Q)a
we can conclude )
||f||W—1vQ(Q) < ||ﬁ||[2,00(Q)Hf||(Hg(Q))*'

Thus, (see (3 24)), for a given element y € H% () we have y € HY(Q) provided
[B“]AB € L>(;S"N) and, therefore,

f=Agply) € (HL(Q)" N (HYH(Q))". (3.28)
Then
lysll a2 ) = HRB(@@)H% ||f||2’ B ) ST
f
and
1yallgz @) = IRA(ABW)) 12 (@) ||f||( ) < oo

As follows from (3.25) and estimates derived above, we finally can give the desired
conclusion. O

4. Main Result.

Our next intention is to evaluate the expression (3.23) provided v = y, where
y € HY%(Q) is an arbitrary element. Since *[B_%}AB_% € L>(Q;SY) it follows
from (3.13) that y € H(Q). Hence (3.23) leads to the following transformations

Aalo) = Ap) -1 = [ (B Vst = (B9, Taaa£) do
= [ (1B#VsP = (1B H1AB 4 B0y, BEVy)an () da

e

p
*[B~2]AB" 2|’
SN

> |B2Vy|Pdz = I. (4.1)

y(z)
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Let us define the transformation ® : RV — R¥ such that
B3 = (det DP)7 *[DP] L,
where D® is the Jacobian matrix of ®, and make the following change of variables
y—god L

Then, from (4.1) we deduce
1= [ @)L
>-1(Q)

Remark 4.1. Since |B%Vy\2 = (BVy, Vy)ry = o?(x)|Vy|?, where a7 € LY(Q),
it follows that det D® can reach zero value on a set with zero Lebesgue measure.
Hence, we can admit the existence of a set A C Q with |A| = 0 such that the
mapping ® : RY \A — RY is a gomeomorphizm. In other words, for almost all
29 € Q there exists a point 7° € ®~1(Q) such that 20 = &(3°).

P

*[B~2]AB™: ov € L(R). Then for almost all
zo € Q there exists a sequence {ye gy te>0 C HR(Q) such that

Lemma 4.1. Let v = 1 —

19e.w0ll Hz,0) = 1, Ve >0
and
. 1
lim V($)|B2Vy57x0|pdx = 7(%0).

e—0 QO

Proof. We construct this sequence as follows

Ye,xg = ga,zo © (I)il(x)a

where
et (@) = — g (| — o))
T) = ————— T — Tgl),
Ye,xg |Bg (5:,0) ’ Pe 0
0, <O,
To=0 (xg), w(r) =< r, 7€[0,¢],
e, T >E¢,
B:(To) = {z e RN : |z — Fo| < ¢}.
Then

/ (@) | BE Ve g P = / (@) Vg P dr =
Q d-1(Q)
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~ 1 xTr — f@ ~ 1
vy, :X5~ = ~,VZU, p:7~7
€,Z0 Be(Zo)(x) Q/\Bg($0)]|$_$0| | 5ID| |BE($0)|
~ — P _ - _ d
Hy&wOHWé'T’((I)*l(Q)) = ‘|y5@OHH§(Q) q>71f(9) ]Bg(fo)\XBE(xO)(x) €z
1
= — d.ﬁU = 1, VE > 0
| B(0)| JB. (3) )
1
= [ A0))da.
|BE($0)| Be(Zo)
Hence, by Lebesgue Differentiation Theorem, we obtain
. 1 . 1
lim [ v(x)|B2Vyegz,|Pde = lim ——— ¥(P(x))dz

e=0 Jq 5—>0‘Bg(f())| B. (7o)

= 7(®(Z0)) = v(o)-
O

Combining the result of this lemma with (4.1), we arrive at the following
obvioius conclusion:

Theorem 4.1. Let A and B be given elements from M(S) such that

*[B~2)AB2 € L®(Q;SY)  and (4.2)

Assume also that for some C >0 (Aa(y) — Ap(y),y)—11 < C for ally € HL(Q)
such that ”?/HHg(Q) = 1. Then

ya
*[B~2]AB"z || <C. (4.3)

Loo(Q;SN)

Proof. As follows from Lemma 4.1, for almost all xg € €2 there exists a sequence
{Yemo te>0 C HE(Q) such that ||y€,x0|]%gm) =1,Ve >0 and

C > lim inf(Aa(y) — Ap(y),y)-12

> lim (1 —
e—0 [}

*[B73 (wo)] A(aro) B~2 )| *

N[
0N
N

[SIES

*[B—

—1—

Therefore, in view of (4.2), the estimate

2

0<1— | *[B~%(@0)]A(w0) B3 |* < C for a.a @ € Q

implies (4.3). O
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As a result, Theorem 4.1 lead us to the conclusion stated in Theorem 1.1, i.e.

1. forp=2
P
IS P T .
[B~:]AB™2 Lo (™) <ARB(F) = RalH)ll a2 o3
2. for p € (2;4]
TRt by (3.22),(4.2)
1-\|"[B72]AB 2 Loo(8M) < IRB(f) = RalH)lzz 0
+ |RB(f) + Ralf )||Hp(Q IRAUN) Nz ) IRB(f) = Ra(f)l 12 (0
= (14 1R () + RaD o | RAD g
X [RB(f) = Ra(H)lluz o
3. forp >4
p
1= ||*B-414B
Loo(Q:8N)

(1 + T (HyAHHP(Q) + ) > IRB(f) = Ra(H)llaz o
p—2
[1 +—— (HRA( Nz o) + 1) } IRB(f) = Ra(H)llzz )
Remark 4.2. At the end of the paper, we indicate the following estimate

p
*[B~2]AB 2|’

P
_lp 4
Lo (;8N) Z ||B 2” o0 (£;SN) HAHzoo(QsN)

_1 1. £
= B3 ) [IBHI2 ey — 1412 oy |

where
1B=3172 ) < 1Bl woom:

Indeed, the last inequality is a direct consequence of the following chain of esti-
mates

(B*%B%g, B*%Bég)m

(BB 3Bk, Bi¢)
1B~
1B~

RN
(2) 25| B2E2 = ||B~2(2) |2x (BE &)p
(@) 13w [1B() s €1

M\H M\H

NN
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