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It has been proven that the solution to the Dirichlet problem in a circle, where
the boundary is specified as F2(x1, x2) = 0, F2(x1, x2) being a polynomial of degree 2,
and the boundary function is specified as Qm(x1, x2), Qm(x1, x2) being a polynomial of
degree m, admits representation u(x1, x2) = F2(x1, x2)Pm−2(x1, x2) +Qm(x1, x2), where
Pm−2(x1, x2) is uniquely determined polynomial of degree m− 2.
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1. Introduction

Consider the well known Dirichlet problem for the Laplace equation in bounded
simply connected domain D in a plane parametrized by cartesian coordinates{

∆u(x) = 0 , x = (x1, x2) ∈ D ⊂ R2 ,

u(x) = g(x) , x = (x1, x2) ∈ S := ∂D .
(1.1)

If boundary S is piecewise smooth, boundary function g(x) ∈ C (S), then
the solution to the problem (1.1) exists, is unique, and u(x) ∈ C 2(D)

⋂
C (D)

(moreover, u(x) ∈ C∞(D), and even u(x) ∈ C a(D)) [3, 4].
We apply sequentially two restrictions of the formulation of the Dirichlet

problem (1.1). The first restriction is in choosing circle Ba(x0) of radius a centered
at point x0 as domain D. The problem{

∆u(x) = 0 , x ∈ Ba(x0) :=
{
x : |x− x0|2 < a2

}
,

u(x) = g(x) , x ∈ Sa(x0) :=
{
x : |x− x0|2 = a2

}
,

(1.2)

is known to be an amazing example of the dependence existing between trigono-
metric series, harmonic functions u(x1, x2) of real variables (x1, x2) and analytic
functions f(z) = u(z) + iv(z) of complex variable z = x1 + ix2 [2, 6].
————————————————–
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The solution to the problem (1.2) can be obtained using quite different approa-
ches, for example, separation of polar coordinates (r, ϕ){

x1 − x1,0 = r cosϕ ,

x2 − x2,0 = r sinϕ ,
(r, ϕ) ∈ Ba(x0) , (1.3)

applied to the Laplace equation ∆u = 0 and searching for the solution u as trigono-
metric series [5] (the circle over the function name indicates changing polar coordi-
nates as independent variables to cartesian ones)

ů(r, ϕ) =
a0

2
+
∞∑
µ=0

(r
a

)µ (
aµ cos (µϕ) + bµ cos (µϕ)

)
, (1.4)

where a0, aµ, bµ are the Fourier coefficients (µ ∈ N) [6]
a0 =

1

π

ˆ 2π

0
g̃(ψ) dψ , aµ =

1

π

ˆ 2π

0
g̃(ψ) cos (µψ) dψ ,

bµ =
1

π

ˆ 2π

0
g̃(ψ) sin (µψ) dψ ,

(1.5)

for the boundary function g̃(ϕ) := g(x)|x∈Sa(x0) = g(x1,0 +a cosϕ, x2,0 +a sinϕ) .
Summing the series (1.4) over µ gets the Poisson integral (formula) [3]

ů(r, ϕ) =
a2 − r2

2π

ˆ 2π

0

g̃(ψ) dψ

a2 − 2ar cos (ψ − ϕ) + r2
, (1.6)

that can be treated in terms of convolution of the boundary function g̃(ϕ) and
the Poisson kernel. The Poisson integral (1.6) can be obtained as well for the real
and imaginary parts of function f(z) = u+iv analytic in Ba(x0) using the Cauchy
integral (formula) [2]

f(z) =
1

2πi

˛

|ζ−z0|=0

f(ζ) dζ

ζ − z
, (1.7)

where z0 = x1,0 + ix2,0, and equation |ζ − z0| = 0 specifies Sa(x0) .
The second restriction of the formulation of the Dirichlet problem is in choosing

a polynomial of degree m as the boundary function

Qm(x) =
m∑
|α|=0

aα x
α =

m∑
p+q=0

ap,q x
p
1 x

q
2 , (1.8)

where α = (p, q) is multi-index, p, q > 0, p, q ∈ Z; |α| = p+ q; aα = ap,q ∈ R .



ON REPRESENTATION OF THE DIRICHLET PROBLEM IN A CIRCLE 5

For the boundary function g(x) = Qm(x) the Fourier coefficients (1.5) with
numbers µ > m equal zero. This means that the solution to the Dirichlet problem{

∆u(x) = 0 , x ∈ Ba(x0) ,

u(x) = Qm(x) , x ∈ Sa(x0) ,
(1.9)

written in polar coordinates (r, ϕ) is a finite series (1.4), whereas written in carte-
sian coordinates (x1, x2) it is a polynomial of degree m.

Proposition 1.1. Solution to the Dirichlet problem (1.9), where the boundary
function is a polynomial Qm(x) (1.8), admits the following representation

u(x) = F2(x)Pm−2(x) +Qm(x) , (1.10)

where the polynomial of second degree F2(x) specifies the boundary Sa(x0)

F2(x) = |x− x0|2 − a2 = 0 ,

and Pm−2(x) is uniquely determined polynomial of degree m− 2 .

The article is arranged as follows. Proposition 1.1 is proved in Section 2; some
examples of representation (1.10) for the solution to the Dirichlet problem (1.9),
including nontrivial ones, are present in Section 3. No application or extension
of representation (1.10), for example, in the case of the Dirichlet problem in a ball⊂
R3, is discussed.

2. Proving the representation

In this Section we change the independent variables x→ y, setting x = y+x0,
and replace the Dirichlet problem (1.9) with the following one{

∆w(y) = 0 , y ∈ Ba(0) ,

w(y) = Rm(y) , y ∈ Sa(0) ,
(2.1)

where w(y) := u(y + x0),

Rm(y) := Qm(y+x0) =

m∑
|α|=0

aα (y+x0)α =

m∑
|α|=0

bα y
α =

m∑
p+q=0

bp,q y
p
1 y

q
2 , (2.2)

and as a consequence representation (1.10) is replaced with the following one

w(y) = G2(y)Sm−2(y) +Rm(y) , (2.3)
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where G2(y) := F2(y + x0) = |y|2 − a2, Sm−2(y) := Pm−2(y + x0) .
Then we formulate and prove some auxiliary propositions concerning repre-

sentation (2.3) for the Dirichlet problem (2.1), and finally prove main Proposi-
tion 1.1. To prove the auxiliary propositions we use well known formulas [1]
for powers of trigonometric functions cosϕ and sinϕ in terms of these functions
of multiples of the argument

cosmϕ =
1

2m−1

m−1
2∑

µ=0

Cµm cos [(m− 2µ)ϕ] ,

sinmϕ =
1

2m−1

m−1
2∑

µ=0

Cµm sin [(m− 2µ)ϕ] (−1)
m−1

2
−µ ,

(2.4)

when m is an odd integer, and



cosmϕ =
1

2m
C
m
2
m +

1

2m−1

m
2
−1∑

µ=0

Cµm cos [(m− 2µ)ϕ] ,

sinmϕ =
1

2m
C
m
2
m +

1

2m−1

m
2
−1∑

µ=0

Cµm cos [(m− 2µ)ϕ] (−1)
m
2
−µ ,

(2.5)

when m is an even integer, and formulas [1] for trigonometric functions cosϕ
and sinϕ of multiples of the argument in terms of powers of these functions{

cosmϕ = C0
mcosmϕ− C2

mcosm−2ϕ sin 2ϕ+ . . . ,

sinmϕ = C1
mcosm−1ϕ sinϕ− C3

mcosm−3ϕ sin 3ϕ+ . . .
(2.6)

Expanding powers of trigonometric functions cosϕ and sinϕ into Fourier series
after formulas (1.5) leads to formulas (2.4) and (2.5), therefore we use the both
latter as the corresponding Fourier series.

Note also that when replacing trigonometric functions cosϕ and sinϕ on
the right hand sides of formulas (2.6) with x1 and x2 respectively, one gets
harmonic polynomials u(x1, x2)=Re zm and v(x1, x2)=Im zm .

Proposition 2.1. The solution to the Dirichlet problem (2.1), where the boundary
function is Rm(y) = ym1 , m > 2, m ∈ N, admits representation (2.3).

Proof. We consider two possible cases of power m being odd or even integers
separately.

a) Let m be an odd integer. Represent the boundary function on Sa(0) and
in the closure of Ba(0) using formulas (2.4):
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Rm(y)
∣∣
y∈Sa(0)

= am cosmϕ =

=
am

2m−1

m−1
2∑

µ=0

Cµm cos [(m− 2µ)ϕ] =: R̃m(ϕ) , (2.7)

Rm(y)
∣∣
y∈Ba(0)

= rm cosmϕ =

=
rm

2m−1

m−1
2∑

µ=0

Cµm cos [(m− 2µ)ϕ] =: R̊m(r, ϕ) ; (2.8)

here and below the tilde and the circle over function name indicate that the polar
angle ϕ and the polar radius r and angle ϕ are used as independent variables on
the boundary and in the domain respectively (as in Section 1).

We use expansion of the boundary function into Fourier series (2.7) to write
the solution to the Dirichlet problem (2.1) in polar coordinates ((r, ϕ) ∈ Ba(0))
as follows

ẘ(r, ϕ) =
am

2m−1

m−1
2∑

µ=0

Cµm

(r
a

)m−2µ
cos [(m− 2µ)ϕ] . (2.9)

Then we transform expression (2.9) identically, explicitly separating the boun-
dary function R̊m(r, ϕ) (2.8) to obtain

ẘ(r, ϕ) = ẘ(r, ϕ)∓ R̊m(r, ϕ) =

=
1

2m−1

m−1
2∑

µ=1

Cµm r
m−2µ

(
a2µ − r2µ

)
cos [(m− 2µ)ϕ] + R̊m(r, ϕ) . (2.10)

Represent the binomials in the parentheses of expression (2.10) as follows:
a2µ − r2µ =

(
a2 − r2

)
Aµ(r) , where Aµ(r) are polynomials of degree 2µ− 2 in r

A2µ−2(r) =

{
1 , µ = 1 ,

r2µ−2 + a2r2µ−4 + . . .+ a2µ−4r2 + a2µ−2 , µ > 1 ,
(2.11)

then expression (2.10) reads

ẘ(r, ϕ) =
a2 − r2

2m−1

m−1
2∑

µ=1

CµmA2µ−2(r) rm−2µ cos [(m− 2µ)ϕ] + R̊m(r, ϕ) . (2.12)
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Now we apply formula (2.6) for trigonometric function cosϕ of multiples of
the argument in expression (2.12)

cos [(m− 2µ)ϕ] = cosm−2µϕ− C2
m−2µcosm−2µ−2ϕ sin 2ϕ + . . .

Homogenious trigonometric monomials cos pϕ sin qϕ of degree p+q = m−2µ,
p, q > 0, p, q ∈ Z, being present on the right hand side of the expression above
after multiplication by rm−2µ produce homogenius monomials yp1 y

q
2 .

The least degree of monomials yp1 y
q
2 equals (m− 2µ)|2µ=m−1 = 1, when Aµ(r)

defined by expression (2.11) is a polynomial of zero (m = 3) or even (m > 3)
degree (2µ− 2)|2µ=m−1 = m − 3 in r. Therefore, in this case the corresponding
term in expression (2.12) is a polynomial of degree m− 2 in variables y1, y2.

The highest degree of monomials yp1 y
q
2 equals (m− 2µ)|µ=1 = m − 2, when

Aµ(r) defined by expression (2.11) is a polynomial of degree (2µ− 2)|µ=1 = 0 in r.
Therefore, in this case the corresponding term in expression (2.12) is a polynomial
of degree m− 2 in variables y1, y2 as well.

This means, that all the terms in the sum of expression (2.12) are polynomials
of degree m − 2 in variables y1, y2, therefore, the sum itself is a polynomial of
the same degree.

To complete transformation of expression (2.12) to representation (2.3) there
remain to replace r2 preceding the sum with y2 = y2

1 +y2
2 and change the indepen-

dent variables in boundary function R̊m(r, ϕ) back according to (2.8).
b) Let m be an even integer. Represent the boundary function on Sa(0) and

in the closure of Ba(0) using formulas (2.5):

R̃m(ϕ) :=
am

2m
C
m
2
m +

am

2m−1

m
2
−1∑

µ=0

Cµm cos [(m− 2µ)ϕ] , (2.13)

R̊m(r, ϕ) :=
rm

2m
C
m
2
m +

rm

2m−1

m
2
−1∑

µ=0

Cµm cos [(m− 2µ)ϕ] . (2.14)

We use expansion of the boundary function into Fourier series (2.13) to write
the solution to the Dirichlet problem (2.1) in polar coordinates ((r, ϕ) ∈ Ba(0))
as follows

ẘ(r, ϕ) =
am

2m
C
m
2
m +

am

2m−1

m
2
−1∑

µ=0

Cµm

(r
a

)m−2µ
cos [(m− 2µ)ϕ] . (2.15)

Then we transform expression (2.15) identically
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ẘ(r, ϕ) =
1

2m
C
m
2
m (am − rm) +

+
1

2m−1

m
2
−1∑

µ=1

Cµm r
m−2µ

(
a2µ − r2µ

)
cos [(m− 2µ)ϕ] + R̊m(r, ϕ)

and rearrange the terms to obtain

ẘ(r, ϕ) =
a2 − r2

2m
C
m
2
m Bm−2(r)+

+
a2 − r2

2m−1

m
2
−1∑

µ=1

CµmA2µ−2(r) rm−2µ cos [(m− 2µ)ϕ] + R̊m(r, ϕ) ,

whereA2µ−2(r) are the polynomials defined above by expression (2.11);Bm−2(r) is
the polynomial of degree m− 2 in r defined as

Bm−2(r) =

{
1 , m = 2 ,

rm−2 + a2rm−4 + . . .+ am−4r2 + am−2 , m > 2 .

The remaining part of the proof is similar to that in the case ofm being an odd
integer.

Proposition 2.2. The solution to the Dirichlet problem (2.1), where the boundary
function is Rm(y) = ym2 , m > 2, m ∈ N, admits representation (2.3).

Proof. It is enough to repeat the proof of Proposition 2.1 if one replaces formu-
las (2.4), (2.5), and (2.6) for cosϕ with the same formulas for sinϕ.

Proposition 2.3. The solution to the Dirichlet problem (2.1), where the boundary
function is Rm(y) = yp1 y

q
2, p+ q = m > 2, p, q ∈ Z+, admits representation (2.3).

Proof. We consider two possible cases of power m being odd or even integers
separately.

a) Let m be an odd integer; it can be represented as the sum of an odd and
an even integers. Therefore, this case admits two subcases: 1) p is an odd integer,
q is an even integer; 2) p is an even integer, q is an odd integer.

b) Let m be an even integer; it can be represented as the sum of both
odd integers or both even integers. Therefore, this case admits two subcases:
3) p is an odd integer, q is an odd integer; 4) p is an even integer, q is an even
integer.
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Consider subcase 1) (keeping in mind that p > 1, q > 2, m = p+ q > 3) and
represent the boundary function on Sa(0) using formulas (2.4), (2.5)

Rm(y)
∣∣
y∈Sa(0)

= ap cos pϕ aq sin qϕ =

= am

 1

2p−1

p−1
2∑

µ=0

Cµp cos [(p− 2µ)ϕ]

×
×

 1

2q
C
q
2
q +

1

2q−1

q
2
−1∑
γ=0

(−1)
q
2
−γ Cγq cos [(q − 2γ)ϕ]

 =

=
am

2m−1
C
q
2
q

p−1
2∑

µ=0

Cµp cos [(p− 2µ)ϕ] +

+
am

2m−2

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q cos [(p− 2µ)ϕ] cos [(q − 2γ)ϕ] .

We apply trigonometric formula

2 cosϕ1 cosϕ2 = cos (ϕ1 − ϕ2) + cos (ϕ1 + ϕ2)

to the second term of the latter, therefore representation of the boundary function
on Sa(0) above reads



R̃m(ϕ) =
am

2m−1
C
q
2
q

p−1
2∑

µ=0

Cµp cos [(p− 2µ)ϕ] +

+
am

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q cos [(p+ q − 2µ− 2γ)ϕ] +

+
am

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q cos [(p− q − 2µ+ 2γ)ϕ] .

(2.16)

Then we use representation (2.16) of the boundary function on Sa(0) to repre-
sent the boundary function in the closure of Ba(0)
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R̊m(r, ϕ) =
rm

2m−1
C
q
2
q

p−1
2∑

µ=0

Cµp cos [(p− 2µ)ϕ] +

+
rm

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q cos [(p+ q − 2µ− 2γ)ϕ] +

+
rm

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q cos [(p− q − 2µ+ 2γ)ϕ] ,

(2.17)

to write down the solution to the Dirichlet problem (2.1) in polar coordinates
((r, ϕ) ∈ Ba(0)) as follows

ẘ(r, ϕ) =
am

2m−1
C
q
2
q

p−1
2∑

µ=0

Cµp

(r
a

)p−2µ
cos [(p− 2µ)ϕ] +

+
am

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q

(r
a

)p+q−2µ−2γ
cos [(p+ q − 2µ− 2γ)ϕ] +

+
am

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q

(r
a

)p−q−2µ+2γ
cos [(p− q − 2µ+ 2γ)ϕ] ,

and to transform the latter identically



ẘ(r, ϕ)
(2.17)

= ẘ(r, ϕ)∓ R̊m(r, ϕ) =

=
1

2m−1
C
q
2
q

p−1
2∑

µ=0

Cµp Wµ(r) cos [(p− 2µ)ϕ] +

+
1

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q Vµ,γ(r) cos [(p+ q − 2µ− 2γ)ϕ] +

+
1

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q Uµ,γ(r) cos [(p− q − 2µ+ 2γ)ϕ] +

+ R̊m(r, ϕ) ,
(2.18)



12 V.L. BORSCH, I. E. PLATONOVA

where for the sake of shortness there introduced the following functions
Wµ(r) = rp−2µ am−p+2µ − rm ,

Vµ,γ(r) = rp+q−2µ−2γ am−p−q+2µ+2γ − rm ,

Uµ,γ(r) = rp−q−2µ+2γ am−p+q+2µ−2γ − rm .

(2.19)

Represent functions Wµ(r) (2.19) of the first term of solution (2.18) as follows

Wµ(r) = rp−2µ
(
am−p+2µ − rm−p+2µ

)
= rp−2µ

(
a2 − r2

)
Em−(p−2µ)−2(r) , (2.20)

where Em−(p−2µ)−2(r) are polynomials of degree k := m − (p − 2µ) − 2 (that
equals zero or an even integer) in r

Em−(p−2µ)−2(r) =

{
1 , k = 0 ,

rk + a2rk−2 + . . .+ ak−2r2 + ak , k > 2 .
(2.21)

The least degree of the polynomials equals m − p − 2 at µ = 0 (the lower limit
of summation), whereas the highest degree equals m− 3 at 2µ = p− 1 (the upper
limit of summation).

Therefore, the first term in solution (2.18) now reads as follows

a2 − r2

2m−1
C
q
2
q

p−1
2∑

µ=0

Cµp Em−(p−2µ)−2(r) rp−2µ cos [(p− 2µ)ϕ] . (2.22)

Trigonometric functions cos [(p− 2µ)ϕ] in the sum of expression (2.22), according
to formula (2.6), are homogenious trigonometric polynomials of degree p−2µ, and
after multiplication by rp−2µ they produce homogenious polynomials of degree p−
2µ in variables y1, y2. Multiplicating the latter polynomials by polynomials
Em−(p−2µ)−2(r) (2.21) of degreem−(p−2µ)−2 produces polynomials of degreem−
2 in variables y1, y2 .

Represent functions Vµ,γ(r) (2.19) of the second term of solution (2.18) as fol-
lows

Vµ,γ(r) = rm−2(µ+γ) a2(µ+γ) − rm =

= rm−2(µ+γ)
(
a2(µ+γ) − r2(µ+γ)

)
=

= rm−2(µ+γ)
(
a2 − r2

)
F2(µ+γ)−2(r) , (2.23)
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where F2(µ+γ)−2(r) are polynomials of degree k := 2(µ+ γ)− 2 (that equals zero
or an even integer) in r

F2(µ+γ)−2(r) =

{
1 , µ+ γ = 1 ,

rk + a2rk−2 + . . .+ ak−2r2 + ak , µ+ γ > 1 .
(2.24)

Representation (2.23), (2.24) for functions Vµ,γ(r) (2.19) is not applicable
at two lower limits of summation (µ = γ = 0), for in this case the corresponding
term in double sum disappears (Vµ,γ(r) ≡ 0) .

Therefore, the second term in solution (2.18) reads as follows

a2 − r2

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q F2(µ+γ)−2(r) rm−2(µ+2γ)−2 cos [(m− 2(µ+ γ))ϕ] .

(2.25)

Trigonometric functions cos [(m− 2(µ+ γ))ϕ] in the sum of expression (2.25),
according to formula (2.6), are homogenious trigonometric polynomials of degree
m − 2(µ + γ), and after multiplication by rm−2(µ+γ) they produce homogenious
polynomials of degree m − 2(µ + γ) in variables y1, y2. Multiplicating the latter
polynomials by polynomials F2(µ+γ)−2(r) (2.24) of degree 2(µ + γ) − 2 produces
polynomials of degree m− 2 in variables y1, y2 .

And finally consider functions Uµ,γ(r) (2.19) of the third term of solution (2.18)
and write down powers of r and a to obtain

m− p+ q + 2µ− 2γ = (p+ q)− p+ q + 2µ− 2γ = 2(q + µ− γ) ,

p− q − 2µ+ 2γ = (m− q)− q − 2µ+ 2γ = m− 2(q + µ− γ) .

Now represent functions Uµ,γ(r) (2.19) as follows

Uµ,γ(r) = rm−2(q+µ−γ) a2(q+µ−γ) − rm =

= rm−2(q+µ−γ)
(
a2(q+µ−γ) − r2(q+µ−γ)

)
=

= rm−2(q+µ−γ)
(
a2 − r2

)
H2(q+µ−γ)−2(r) , (2.26)

where H2(q+µ−γ)−2(r) are polynomials of degree k := 2(q+µ−γ)−2 (that equals
zero or an even integer) in r
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H2(q+µ−γ)−2(r) =

{
1 , q + µ− γ = 1 ,

rk + a2rk−2 + . . .+ ak−2r2 + ak , q + µ− γ > 1 .
(2.27)

Representation (2.26), (2.27) for functions Uµ,γ(r) (2.19) is not applicable
when q + µ − γ = 0, for in this case the corresponding term in double sum
disappears (Uµ,γ(r) ≡ 0) .

Therefore, the third term in solution (2.18) now reads as follows

a2 − r2

2m−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2
−γ Cµp C

γ
q H2(q+µ−γ)−2(r)×

× rm−2(q+µ−γ) cos [(m− 2(q + µ− γ))ϕ] . (2.28)

Trigonometric functions cos [(m− 2(q + µ− γ))ϕ] in the sum of expression (2.28),
according to formula (2.6), are homogenious trigonometric polynomials of degree
m−2(q+µ−γ), and after multiplication by rm−2(q+µ−γ) they produce homogenious
polynomials of degree m−2(q+µ−γ) in variables y1, y2. Multiplicating the latter
polynomials by polynomials H2(q+µ−γ)−2(r) (2.27) of degree 2(q + µ − γ) − 2
produces polynomials of degree m− 2 in variables y1, y2 .

Therefore, the first three terms (2.22), (2.25), (2.28) of solution (2.18) to
the Dirichlet problem (2.1), after replacing r2 preceding the sums with y2 =y2

1+y2
2,

are identical to the first term of representation (2.3). There remains to change
the independents variables in boundary function R̊m(r, ϕ) back according to (2.8).
This completes the proof in the subcase 1).

The subcases 2), 3), and 4) are considered similarly to subcase 1) and are
missed here.

Proposition 2.4. The solution to the Dirichlet problem (2.1), where the boundary
function is Rm(y) (2.2), admits representation (2.3) .

Proof. Proposition 2.4 holds due to: 1) linearity of polynomial Rm(y) (2.2) in mo-
nomials yp1 y

q
2, p + q = m, p, q > 0, p, q ∈ Z; 2) linearity of the Dirichlet

problem (2.1); 3) Propositions 2.1, 2.2, 2.3.

Auxiliary Proposition 2.4 let us prove main Proposition 1.1. Indeed, change
the independent variables back y → x, setting y = x − x0 in the Dirichlet
problem (2.1) and representation (2.3). Then the Dirichlet problem (2.1) and rep-
resentation (2.3) are replaced with the Dirichlet problem (1.9) and representation
(1.10).
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3. Examples of the representation

In this Section we consider two examples illustrating the representation.
First we consider Example 3.1 of representation (2.3) for the solution to the

Dirichlet problem (2.1) in a circle Ba(0), where the boundary function is given
as Qm(x) = xm1 , m = 2, 3, 4 (for the sake of convenience we write x, u, Qm, as
in problem (1.9), rather than y, w, Rm, as in problem (2.1)). Representation (2.3)
is obtained either as evident, or following the proof of Proposition 2.1 (indeed, it is
the proof of representation 2.1 that follows Example 3.1 in case of Q4(x) = x4

1).
Examples similar to Example 3.1 happened to be inductive for representation (2.3)
yet before Propositions 2.1, 2.2, 2.3, 2.4 were proved.

Then we consider Example 3.2 of representation (1.10) for the solution to the
Dirichlet problem (1.9) in a circle Ba(x0), where the boundary function is given
as Qm(x) = xp1 x

q
2, p, q > 0, m = p + q = 2, 3, 4, 5. Representation (1.10)

is obtained using division of polynomials in variables (x1, x2) (detailed discussion
is presented only in case of Q5(x) = x3

1 x
2
2). Division of ‘large’ polynomials was

performed using the MAPLE environment. Examples similar to Example 3.2 were
considered as tests for representation (1.10) before and after proving Proposition 1.1.

Example 3.1. Consider the Dirichlet problem (2.1), where the boundary of the circle
is specified by equation F2(x) = |x|2 − a2 = x2

1 + x2
2 − a2 = 0.

a) Let the boundary function be given asQ2(x) = x2
1. On Sa(0, 0) the boundary

function reads

Q̃2(ϕ) = a2 cos 2ϕ
(2.5)
=

a2

2
+
a2

2
cos 2ϕ ,

and from this it immediately follows the solution to the Dirichlet problem (2.1)
in polar coordinates

ů(r, ϕ) =
a2

2
+
a2

2

(r
a

)2
cos 2ϕ

(2.6)
=

a2

2
+
r2

2

(
cos 2ϕ− sin 2ϕ

)
,

and then in cartesian ones

u(x) =
a2

2
+

1

2

(
x2

1 − x2
2

)
= −1

2

(
x2

1 + x2
2 − a2

)
+ x2

1 . (3.1)

b) Let the boundary function be given asQ2(x) = x3
1. On Sa(0, 0) the boundary

function reads

Q̃3(ϕ) = a3 cos 3ϕ
(2.4)
=

a3

4
(3 cosϕ+ cos 3ϕ) ,

and the solution to the Dirichlet problem (2.1) in polar coordinates is evident
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ů(r, ϕ) =
3

4
a3
(r
a

)1
cosϕ+

1

4
a3
(r
a

)3
cos 3ϕ

(2.6)
=

=
3

4
a2r cosϕ+

1

4
r3
(
cos 3ϕ− 3 cosϕ sin 2ϕ

)
.

It readily follows from the latter that the solution in cartesian coordinates is

u(x) =
3

4
a2x1 +

1

4

(
x3

1 − 3x1x
2
2

)
= −3

4
x1

(
x2

1 + x2
2 − a2

)
+ x3

1 . (3.2)

c) Let the boundary function be given asQ2(x) = x4
1. On Sa(0, 0) the boundary

function reads

Q̃4(ϕ) = a4 cos 4ϕ
(2.5)
=

a4

8
(3 + 4 cos 2ϕ+ cos 4ϕ) ,

and the solution to the Dirichlet problem (2.1) in polar coordinates is easily
written as follows

ů(r, ϕ) =
3

8
a4 +

4

8
a4
(r
a

)2
cos 2ϕ+

1

8
a4
(r
a

)4
cos 4ϕ =

=
3

8

(
a4 − r4

)
+

4

8

(
a2r2 − r4

)
cos 2ϕ+

1

8

(
r4 − r4

)
cos 4ϕ+ Q̊4(r, ϕ)

(2.6)
=

=
3

8

(
a2 − r2

) (
a2 + r2

)
+

4

8
r2
(
a2r2 − r2

) (
cos 2ϕ− sin 2ϕ

)
+ Q̊4(r, ϕ) .

The latter can be rewritten in cartesian coordinates as follows

u(x) =
(
x2

1 + x2
2 − a2

)(
−3

8
a2 − 7

8
x2

1 +
1

8
x2

2

)
+ x4

1 . (3.3)

Note that representation (3.3) is obtained using the identical transformation
of solution in polar coordinates, boundary function Q̊4(r, ϕ) being explicitly sepa-
rated. N

Example 3.2. Consider the Dirichlet problem (1.9), where the boundary of the circ-
le is specified by the equation

F2(x) = (x1 + 2)2 + (x2 − 1)2 − 9 = x2
1 + x2

2 + 4x1 − 2x2 − 4 = 0 .

a) Let the boundary function be given as Q2(x) = x1x2 . On S3(−2, 1) accor-
ding to formulas (1.3) the boundary function reads
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Q̃2(ϕ) = −2 + 3 cosϕ− 6 sinϕ+
9

2
sin 2ϕ ,

and it is straightforward to write the solution to the Dirichlet problem (1.9)
in polar coordinates

ů(r, ϕ) = −2 + r cosϕ− 2 r sinϕ+
1

2
r2 sin 2ϕ .

The solution to the Dirichlet problem (1.9) in cartesian coordinates admits
trivial representation (1.10)

u(x) = x1x2 = F2(x)P0(x) +Q2(x) = Q2(x) , (3.4)

where polynomial of zero degree P0(x) equals zero. This conclusion is evident,
since the boundary function Q2(x) = x1x2 is a harmonic monomial (as it was
noticed in Section 1).

b) Let the boundary function be given as Q3(x) = x2
1 x2 . On S3(−2, 1)

the boundary function reads

Q̃3(ϕ) = +
17

2
− 12 cosϕ+

75

4
sinϕ+

9

2
cos 2ϕ− 18 sin 2ϕ+

27

4
sin 3ϕ ,

and using straightforward procedure the solution to the Dirichlet problem (1.9)
is written as

ů(r, ϕ) = +
17

2
− 4 r cosϕ+

25

4
r sinϕ+

1

2
r2 cos 2ϕ− 2 r2 sin 2ϕ+

1

4
r3 sin 3ϕ .

When changing independent variables in function ů(r, ϕ) above from polar
to cartesian coordinates one gets the solution to the Dirichlet problem (1.9) as
a polynomial of third degree in variables x1, x2

u(x) = +
3

4
x2

1x2 −
1

4
x3

2 −
1

4
x2

1 − x1x2 +
1

4
x2

2 − x1 +
3

2
x2 . (3.5)

Representation (1.10) for the solution (3.5) is obtained using division with
remainder Q3(x) of polynomial u(x) by polynomial F2(x)

u(x) =
(
x2

1 + x2
2 + 4x1 − 2x2 − 4

)(
−1

4
x2 −

1

4

)
+ x2

1x2 . (3.6)
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c) Let the boundary function be given as Q4(x) = x2
1 x

2
2 . On S3(−2, 1)

the boundary function reads

Q̃4(ϕ) = +
293

8
− 39 cos 1ϕ+

75

2
sin 1ϕ− 27

2
cos 2ϕ− 36 sin 2ϕ+

+ 27 cos 3ϕ+
27

2
sin 3ϕ − 81

8
cos 4ϕ ,

and the solution to the Dirichlet problem (1.9) in polar coordinates is as follows

ů(r, ϕ) = +
293

8
− 13 r cos 1ϕ+

25

2
r sin 1ϕ− 3

2
r2 cos 2ϕ− 4 r2 sin 2ϕ+

+ r3 cos 3ϕ+
1

2
r3 sin 3ϕ− 1

8
r4 cos 4ϕ .

Changing polar coordinates to cartesian ones in function ů(r, ϕ) above gives
the solution to the Dirichlet problem (1.9) as a polynomial of fourth degree
in variables x1, x2

u(x) = −1

8
x4

1 +
3

4
x2

1x
2
2 −

1

8
x4

2 +
3

4
x2

1 − 2x1x2 −
3

4
x2

2 − 9x1 +
9

2
x2 + 7 . (3.7)

Division with remainder Q4(x) of polynomial u(x) by polynomial F2(x) leads
to representation (1.10) for the solution (3.7)

u(x) = F2(x)

(
−1

8
x2

1 −
1

8
x2

2 +
1

2
x1 −

1

4
x2 −

7

4

)
+Q4(x) . (3.8)

d) Let the boundary function be given as Q5(x) = x3
1 x

2
2 . On S3(−2, 1)

the boundary function reads (using formulas (1.3) when changing variables (x1, x2)
to variables (r, ϕ) is shown explicitly)

Q̃5(ϕ) = (r cosϕ− 2)3(r sinϕ+ 1)2
∣∣
r=3

=

= −527

4
+

1341

8
cos 1ϕ− 129 sin 1ϕ+ 9 cos 2ϕ+

297

2
sin 2ϕ−

−1431

16
cos 3ϕ− 81 sin 3ϕ+

243

4
cos 4ϕ+

81

4
sin 4ϕ−

−243

16
cos 5ϕ ,
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and it is straightforward to obtain the solution to the Dirichlet problem (1.9)
in polar coordinates as

ů(r, ϕ) = −527

4
+

447

8
r cosϕ− 43 r sinϕ+ r2 cos 2ϕ+

33

2
r2 sin 2ϕ−

− 53

16
r3 cos 3ϕ− 3 r3 sin 3ϕ+

3

4
r4 cos 4ϕ+

1

4
r4 sin 4ϕ−

− 1

16
r5 cos 5ϕ .

Applying trigonometric formulas (2.6) to the solution above and changing
polar coordinates to cartesian ones according to (1.3) gives the solution to the Di-
richlet problem (1.9) as a polynomial of fifth degree in variables x1, x2



u(x) = − 1

16
x5

1 +
5

8
x3

1x
2
2 −

5

16
x1x

4
2 +

+
1

8
x4

1 −
1

4
x3

1x2 −
3

4
x2

1x
2
2 +

1

4
x1x

3
2 +

1

8
x4

2−

− 3

16
x3

1 −
3

2
x2

1x2 +
9

16
x1x

2
2 +

1

2
x3

2−

−29

8
x2

1 +
67

8
x1x2 +

29

8
x2

2 +
121

4
x1 −

57

4
x2 −

45

2
.

(3.9)

There formally remain to prove function (3.9) being the solution to the Dirichlet
problem (1.9). This means that both the Laplace equation and the boundary
condition hold. Finding the first and the second repeated partial derivatives
of function u(x) (3.9):

∂u

∂x1

= − 5

16
x4

1 +
15

8
x2

1x
2
2 −

5

16
x4

2 +
1

2
x3

1 −
3

4
x2

1x2 −
3

2
x1x

2
2 +

1

4
x3

2−

− 9

16
x2

1 +
9

16
x2

2 − 3x1x2 −
29

4
x1 +

67

8
x2 +

121

4
,

∂u

∂x2

= +
5

4
x3

1x2 −
5

4
x1x

3
2 −

1

4
x3

1 −
3

2
x2

1x2 +
3

4
x1x

2
2 +

1

2
x3

2 +

+
3

2
x2

2 +
9

8
x1x2 −

3

2
x2

1 −
67

8
x1 +

29

4
x2 −

57

4
,

∂2u

∂x2
1

= −5

4
x3

1 +
15

4
x1x

2
2 +

3

2
x2

1 −
3

2
x1x2 −

3

2
x2

2 −
9

8
x1 − 3x2 −

29

4
= −∂

2u

∂x2
2

,

demonstrates that the Laplace equation actually holds.
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To write down representation (1.10)

u(x) = F2(x)P3(x) +Q5(x) , (3.10)

one should perform division with remainder Q5(x) of polynomial u(x) by poly-
nomial F2(x) to obtain

P3(x) = − 1

16
x3

1 −
5

16
x1x

2
2 +

3

8
x2

1 −
3

8
x1x2 +

1

8
x2

2 −
31

16
x1 +

3

4
x2 +

45

8
. (3.11)

From representation (3.10), (3.11) for function u(x) (3.9) there immediately
follows that the boundary condition holds as well.
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