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Abstract: Investigation of the functional neuronal activity in the human brain depends on the localization of 

Electroencephalographic (EEG) signals to their cortex sources, which requires solving the source localization inverse 

problem. The problem is ill-conditioned and under-determinate, and so it is ill-posed. To find a treatment of the ill-posed 

nature of the problem, a regularization scheme must be applied. A crucial issue in the application of any regularization 

scheme, in any domain, is the optimal selection of the regularization parameter. The selected regularization parameter has to 

find an optimal tradeoff between the data fitting term and the amount of regularization. Several methods exist for finding an 

optimal estimate of the regularization parameter of the ill-posed problems in general. In this paper, authors investigate the 

normalized cumulative periodogram (NCP) and apply it to the source localization problem. Furthermore, authors compare 

its performance with other two parameter choice methods which are L-curve and Generalized-Cross Validation (GCV) in 

terms of accuracy and reliability. Authors opted the WMNE algorithm to solve the EEG inverse problem with the application 

of different noise levels and different simulated source generators. Our results indicate that NCP method gives the best 

estimation for the regularization parameter in general. However, for some levels of noise, GCV method has similar 

performance. In contrast, both NCP and GCV methods outperform the L-curve method and resulted in a better average 

localization error. 
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1. Introduction: 

In neuroscience, the accuracy of brain imaging 

techniques like electroencephalography (EEG) (Grech et 

al., 2008; Tucker, 1993) and magnetoencephalography 

(MEG) (Van Uitert et al., 2003), requires solving what is 

called the source localization problem. The source 

localization problem is the problem of inferring an estimate 

of the brain current sources that generate the electric 

potentials on the scalp and the magnetic field near the 

scalp. These fields are measured using recording sensors 

technologies (Tucker, 1993). 

Electromagnetic-based (EM) imaging techniques 

like EEG and MEG provide a direct measurement of the 

neural activity in the range of milliseconds temporal 

resolution (Modarreszadeh & Schmidt, 1997). However, 

due to the ill-posed nature of the neuroscience source 

localization problem and the volume conduction 

characteristics of the human head (Greenblatt et al., 2005; 

Pascual-Marqui, 1999; Pascual-Marqui, 2002), the spatial 

resolution is limited to few centimeter. In contrast, indirect  

 

 

 

imaging modalities such as functional Magnetic Resonance 

Imaging (fMRI) (Liu et al., 1998) and Positron Imaging 

Tomography (PET) (Cherry, & Phelps, 1996), provide 

indirect measurements of brain spatiotemporal activity in 

the range of seconds temporal resolution and millimeter 

spatial resolution. Therefore, improving the spatial 

resolution of EM-based imaging will allow achieving a 

high spatiotemporal brain functional imaging. 

Two approaches are used in solving the source 

localization problem (Grech, et al., 2008) the equivalent 

dipole model (Tucker, 1993), and the distributed dipole 

model (Grech, et al., 2008; Darvas et al., 2004; Baillet et 

al., 2001). The equivalent dipole model is based on the 

assumption that the scalp EEG signal is generated by one 

or few current dipoles, whose locations and moments to be 

determined using a nonlinear search algorithm (Fender, 

1987; Scherg, & Von Cramon, 1985). The drawback of this 

approach is the required specification of the number of 

dipoles. Underestimating them causes biased results by the 

missing dipoles. Overestimating them, causes the dipoles 

to fit any data. In the distributed model approach, the 

primary current sources are assumed to be current dipoles 
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distributed inside the brain.  The number of dipoles must 

be large enough (~10,000) to cover the cortex with an 

optimal resolution. Then, the potentials due to these dipoles 

at the scalp electrodes is computed using the forward solver 

of Poisson equation to obtain a lead field matrix (LFM), 

which provides the linear relationship between the current 

dipoles and potentials at the scalp electrodes, Φ = K J + € 

(Tong, & Thakor, 2009). Then, the goal of the source 

localization problem is to solve the forward equation to 

find an estimate of the current sources J, given the LFM K 

and a scalp measurements ΦEEG. 

However, since the LFM K is 1) ill-condition (has 

high condition number), causes unstable highly-sensitive 

solutions to noise and 2) underdetermined, the number of 

dipoles (columns) is much higher than the number of 

electrodes (rows), which means the solution is not unique 

and there are an infinitely many solutions that would 

explain a given EEG signal. One approach to find a unique 

and stable solution is to apply a regularization scheme 

(Pascual-Marqui, 1999; Pascual-Marqui, 2002).  

In this approach, the inverse solution is 

approximated by a family of stable solutions. However, 

these regularization schemes involve a regularization 

parameter α that controls a tradeoff between the stability 

of the solution and the goodness of the fit to the data. 

Overestimating α, results in a stable solution but bad fit to 

the data. Underestimating α, cause a good fit to the data, 

but the unstable solution. Therefore, tuning and finding the 

optimal value of α  is crucial to the quality of the solutions. 

In the literature, there exist several methods for tuning the 

regularization parameter includes: L-curve (Hansen, & 

O’Leary, 1993; Hansen, 1994), normalized cumulative 

periodogram (NCP) (Hansen, et al., 2006; Hansen, & 

Kilmer, 2007), and the Generalized-cross validation 

(GCV)(Wahba, 1977; Golub et al., 1979). 

However, the quality of each method likely depends 

on the characteristic of the particular inverse problem. In 

this paper, authors investigated the quality of these 

methods in tuning the regularization parameter for 

neuroscience source localization problem. Authors 

compared their performance and the quality of the inverse 

solution using three measures of error, localization error 

(Pascual-Marqui, 2002), the center of gravity (Baillet, 

1998; Salman et al., 2013), and spatial spreading (Pascual-

Marqui, 1999). Authors solved the inverse problem using 

WMNE algorithm (Hamalainen, 1984; Lin et al., 2006). 

 

2. Background concepts: 

2.1. Forward Problem 

In response to external stimuli, thousands or tens of 

thousands of arranged neurons are activated in a way that 

their induced current adds up. This net current is strong 

enough to propagate through the head tissues to the scalp 

where it can be measured using EEG sensors. These current 

generators are well accepted to be modeled as current 

dipole sources because the measuring sensors are far away 

from the current source region. Computing the electric 

potential on the scalp for a given current dipole source 

inside a brain is a well-defined problem, called the EEG 

forward problem (Rubio, & Troparevsky, 2006; Neilson et 

al., 2005). Formally, it can be stated as follows: Given a 

volume conductor with boundary Ω, current sources within 

the volume induce electric and magnetic fields which can 

be calculated on the surface.   If the conductivities σ and 

the current sources S are known, the electric and magnetic 

fields inside the volume are fully described by the quasi-

static approximation of Maxwell’s equations–Poisson 

equation (Hämäläinen et al., 1993), 

∇.(σ∇Φ) = S , (1) 

where σ is the conductivity tensor, Φ is the 

potential, S is the current source. The solution of Equation 

depends on the volume conduction properties, geometry 

(Munck, & Peters, 1993; De Munck, 1988; Van Uitert, & 

Johnson, 2002) and conductivity (Clerc, et al., 2005; 

Oostendorp, et al., 2000; Gonçalves, et al., 2003; Meijs et 

al., 1988) and its solution can be obtained using numerical 

methods such as Finite Difference Method (FDM) and 

Finite Element Method (FEM). In this study, authors used 

an FDM solver that authors already have (Salman et al., 

2013; Hallez et al., 2005). 

 

2.2. Inverse Problem: 

Several approaches are used to solve the source 

localization inverse problem (Darvas et al., 2004; Baillet, 

et al., 2001; Pascual-Marqui, 1999). However, in this 

study, authors only consider models based on the 

distributed dipole approach. In this approach, the brain is 

covered with a large number of dipoles N (N 5,000- 

10,000). Then the electrical potential due to each dipole at 

the scalp electrodes, called the lead field (the potential at 

M 32-512 scalp electrodes) is computed using the forward 

solver for the three orthogonal orientations of the dipole 

moment, x, y, and z. The lead field matrix defines the 

relationship between the dipole current density J and the 

electric potentials at the scalp electrodes Φ, in what is 

called, the forward linear equation, 

Φ = K J + €, (2) 

where K € RM×3N is the Lead Field matrix with three 

donates for each current dipole, each element in K 

represents the electric potential due to its current source, J 

€ R3N×1 is the primary current density vectors, z is a 

perturbation error, and Φ € RM×1 is a vector containing scalp 

electric potentials measured at M sensors. Every row in K 

is a lead field corresponding to a current dipole obtained by 

solving the forward problem. 

The goal of the inverse problem is to invert Equation 

2 to find an estimate of the current densities column 

vectorJˆ.Two issues must be addressed in finding a useful 

solution for the inverse problem: 

1. The system is underdetermined since the number of 

unknowns (the locations and orientations of the distributed 

dipoles are in the range of thousands) is significantly larger 
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than the number of constraints (the number of electrodes in 

the range of hundreds). 

2. The system is ill-conditioned since a small perturbation 

in the right-hand side ΦEEG due to noise or a small 

perturbation to the coefficient matrix K would result in a 

large change in the solution. 

 

To address these issues, a regularization term is 

added in order to give a preference to a particular solution 

with some desirable properties (Pascual-Marqui, 1999; 

Pascual-Marqui, 2002), and also to improve the 

conditioning of the problem and obtain a unique and stable 

solution. Then instead of minimizing the sum of the 

squared residuals only, a regularization term is added, and 

the problem becomes to minimize, 

Fα(J) = ||ΦEEG − K J||2  + α||ΓJ||2, (3) 

Where ||ΓJ||2 is the constraints and regularization 

term,||K J - ΦEEG ||   is the data fitting term or residual norm, 

and α is the regularization parameter. The regularization 

parameter α must find a good compromise between the two 

norms in order to minimize the error in the regularized 

solution. Overestimating α results in a stable solution but a 

bad fit to the data. Underestimating α, causes a good fit to 

the data, but the unstable solution. 

 

3. Methods and Materials: 

Modeling the Human Head: 

Solving the source localization problem using the 

distributed dipole model approach require first solving the 

forward problem that maps a current source generator 

inside the brain to the scalp potentials at the electrodes. The 

forward problem is a well-posed problem that has a unique 

solution. To solve the forward problem, first, authors need 

to build a computational head model. In this model, the 

human head is modeled as a volume conductor consists of 

5 different uniform tissues. The computational model 

requires a geometry model of the different tissues of the 

human head, and a conductivity model to assign a 

conductivity for each tissue. 

 

The geometry model: 

The geometry model defines the boundaries 

between different tissues of the human head. Medical 

imaging such as Magnetic Resonance Imaging (MRI) 

provides images of anatomical details with resolution 

better than 1 mm3. These images can be segmented to a 

number of tissues where each tissue is assumed to have 

uniform electrical properties. In this study, authors used the 

geometrical model obtained from an MRI image with a 

resolution of 1 mm3 for a subject, segmented into five 

uniform tissues, white matter, gray matter, CSF, skull, and 

scalp. Figure 1 shows these tissues. The segmented image 

is obtained from previous work done at Neuroinformatic 

Center (University of Oregon) and Electrical Geodesics 

Incorporated (EGI). 

                         

(a)   Scalp                      (b)  White matter 

 

(c)   Skull     (d)      Gray matter 

Figure 1. Geometric model of the tissues of the human 

head. 
 
The conductivity model: 

Once different tissues of the human head are 

identified from the segmented MRI image, a conductivity 

model and values must be specified. In this study, authors 

assumed the conductivities of all tissues are isotropic and 

have values obtained from the literature and shown in 

Table 1. 
 

Table 1: Tissues Parameters in realistic head model 

Tissue Type σ(Ω−1m−1) Reference 

Gray matter 0.25           Geddes (1967) 

Csf               1.79            Daumann (1997) 

Scull              0.0180               Law (1993) 

Scalp                0.44            Burger (1943) 

White matter  0.35       Ferree(2000)  

 

The forward solver algorithm: 

In this study, authors used the Alternating Direction 

Implicit (ADI) method, which is a finite difference method 

FDM to solve Poisson equation. The solver was 

implemented in previous work (Salman et al., 2013). The 

solver is efficient and can handle only isotropic tissues. 

Using the forward solver, authors can calculate the 

potential of the scalp electrodes for a given current source 

modeled as a current dipole inside the brain. 

 

The current source model: 

It is well accepted to model a current source 

generator inside the brain as a current dipole consists of a 

current source and a current sink placed close to each other. 

To obtain the potential due to a current dipole source with 

arbitrary orientation, authors first computed the potential 

due to three orthogonal unit dipoles placed along the x, y 
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and z-axis to obtain their potentials, φx,φy, and φz, 

respectively, at the scalp electrodes, see figure 2. Then, 

since Poisson equation is linear regarding current sources, 

the potential corresponding to a dipole placed at the three 

orthogonal dipoles location with arbitrary orientation, 

given by the direction cosines (α, β, and γ ) can be 

calculated by the superposition principle: 

ΦEEG  = αφx + βφy + γφz. (4) 

 

 

Figure 2. The potential corresponding to a dipole with 

arbitrary orientation is a linear combination of the potential 

due to three orthogonal unit dipoles. 

 

The generics LFM (gLFM): 

The generic Lead Field Matrix (gLFM) construct 

introduced in (Salman et al., 2013) serves as generators of 

LFMs. It maps the orthogonal generic dipole sources to 

generic electrodes potentials. Three orthogonal generic 

distributed dipoles are placed at every voxel in the gray 

matter and the generic electrodes are placed at 1 mm3 inter- 

spacings on the scalp.  

Once a gLFM is computed using the forward solver, 

many different LFMs can be sampled based on different 

constraints or resolution imposed on the sources (e.g., the 

number and locations of the electrodes). This can be 

achieved efficiently by sampling from the rows and 

columns of the gLFM appropriately. The computation of a 

gLFM factor out the common and computationally 

intensive part of the analysis from the application of 

different inverse algorithms. 

 In the case of distributed dipole models, the 

appropriate columns corresponding to imposing constraints 

on the sources are sampled as well. Then different 

distributed dipoles algorithms can be applied. In this study, 

authors used a gLFM matrix that was computed previously 

at University of Oregon computing cluster. Each row 

contains the potential due to three orthogonal dipole 

moments placed at every dipole location at a scalp 

electrode. And, every three column correspond to the 

potential due to three orthogonal dipoles at all electrodes. 

 

 

 

Sampling the Lead field Matrix: 

Different LFMs with differently distributed dipoles 

configuration and different scalp electrodes configuration 

can be downsampled from the gLFM. This is achieved by 

downsampling from the rows and columns of the gLFM. In 

this study, authors selected 128-electrodes uniformly 

distributed on the scalp from the generic electrodes and 

authors sampled 2500 current dipoles from the generic 

distributed dipoles, using the method illustrated in (Salman 

et al., 2013) at a resolution of 7 mm. 

 

3.1. EEG Simulated data (Synthetic Data) 

To test the accuracy of the inverse solution using 

different automatic regularization parameter tuning 

methods, authors simulated the EEG data corresponding to 

a current dipole source placed at the certain location and 

have a certain orientation following the simulation method 

in (Pascual-Marqui, 2007): 

1. From the generic dipoles set, authors selected a dipole 

in a certain location D. 

2. The potentials φx,φy,φz due to the three orthogonal 

dipoles dx, dy, dz in that location at the electrodes are 

then extracted from the gLFM. 

3. For a certain dipole moment orientation (α, β, γ), 

authors calculated the potential to obtain the simulated 

EEG potential using equation 4. 

4. A white Gaussian noise with different levels is added to 

ΦEEG, to simulate noisy data. Authors used the Matlab 

function awgn() to generate the white Gaussian noise. 

This new generated potential vector represents the EEG 

potentials  ΦEEG ∈ RM×1. 

 

3.2. Regularization parameter choice methods 

A crucial issue in the application of any 

regularization scheme, in any domain, is the optimal 

selection of the regularization parameter. The 

regularization parameter controls the smoothness of the 

solution and tuning of this parameter is essential in 

achieving a meaningful and reliable solution. Several 

methods have been developed to automatically tune it 

(Hansen, & O’Leary, 1993; Hansen, 2001; Morozov, 1966; 

Krawczyk-StańDo, & Rudnicki, 2007; Wahba, 1977; 

Hansen, et al., 2006). In this study, authors estimate the 

regularization parameter using three methods, L-curve 

method, generalized cross-validation (GCV) and 

normalized cumulative peirdogram (NCP). 

The L-curve method has emerged as a popular 

method over the past few years (Hansen, 1994). It 

considers a log-log plot of the regularized norm of the 

inverse solution versus the residual norm. The L-curve 

method produces a sharp corner shaped like ‘L’. The 

optimal value of α corresponds to the corner of the curve 

since this point corresponds to a compromise between the 

two quantities. The corner of the curve can be computed by 

finding the maximum curvature of the curve κ (Hansen, 

2001). 
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In GCV method, it has the following basic idea: the 

good value of regularization parameter should make K Jα 

able to predict the missing value on the right-hand side 

(Φexact in our case). Thus, the optimal value of α 

corresponds to the minimum value of the GCV function 

G(α) (Golub et al., 1979). The GCV function is given by, 

 

G(α)     ||K J − ΦEEG||2                   (5) 

             (Tr(I − KK§))2 

 

3.2.1. The normalized cumulative periodogram (NCP) 

This technique seeks to extract more statistical 

information available in the residual vector, which contains 

information that is worth extracting. The idea is to choose 

the largest regularization parameter that makes the residual 

vector resemble white noise vector (Hansen, & Kilmer, 

2007). Authors start to choose a large α and reduce it until 

having a residual vector that looks like white noise vector 

in terms of the frequencies of the power spectrum of the 

residual vector. It uses Fourier Transform to change the 

time domain of the residual vector to be in the frequency 

domain in order to compute its normalized cumulative 

periodograms C(rα). 

The definition of the NCP for the Tikhonov residual 

vector can be as the vector C(rα) whose elements involve 

the cumulated sums of the power spectrum: 

 

C(rα)I  =   p(α)2 + ... + p(α)i+1 . (6) 

p(α)2 + ... + p(α)q+1 

 

where P(α) is the power spectrum (peridogram) of 

the residual vector can be obtained by using Discrete 

Fourier transforms. The optimum alpha for NCP is the 

corresponding to the minimum value of the function D: 

 

D(α) = ||C(rα) − Cwhite||2 (7) 

 

The Matlab regularization toolbox (Hansen, 1994) 

was used to compute the parameter and apply 

regularization technique. 

 

3.3. Discrete Picard Condition: 

An important condition must be satisfied to apply L- 

curve and NCP method for tuning the regularization 

parameter. This condition is called the Discrete Picard 

Condition which states that the decaying of Fourier 

coefficients on an average, must be faster than the decay of 

the singular values of the lead field matrix. Because of the 

presence of the noise, authors don’t expect to, Therefore, 

investigating Picard condition is necessary to find out 

whether a useful solution can be obtained. If the Picard 

Condition is not satisfied, there is no reason to solve the ill-

posed problem. To do this, authors made the plots of the 

discrete Picard for the simulated EEG potential concerning 

all the three locations of the current dipoles (Superficial, at 

the middle and deeply located dipoles). 

3.4. Tuning the regularization parameter α and solving the 

Inverse Problem 

For this study, authors selected several EEG data 

sets as described above corresponding to three locations 

inside the brain. One location is superficial (D1), which is 

close to the surface of the brain. The second location is in 

the middle region of the brain, at about the middle distance 

between the center of the brain and the surface of the brain 

(D2). The third location is deep inside the brain close to the 

center (D3). The reason for these choices is to include into 

consideration the fact that the minimum norm estimate 

inverse problem solver is biased toward superficial 

sources. For each dipole location, authors considered 30 

different orientations selected by uniformly distributing 30 

points on a unit sphere centered at each dipole location. For 

each dipole location and orientation, authors considered 

128 electrodes uniformly distributed on the scalp. Then, 

authors used distributed dipole grid spacing of 7 mm to 

localize each dipole location and orientation. 

 

3.5. Error Evaluation Measures: 

Authors considered three error measures to evaluate 

the influence of the number of scalp sensors Ne and solution 

space resolution on the source localization accuracy. The 

first measure is the Localization error (Pascual-Marqui, 

2002). It was defined as the distance between the actual test 

source and the location of the maximum estimated current. 

The second measure is the spatial spreading or blurring of 

the solution (Pascual-Marqui et al.,1999). It corresponds to 

a measure of the spatial standard deviation of the imaging 

method centered at the actual test sources. Defined as: 

 
Where rtest is the actual test dipole location, ri is the 

location of the ith source, and ji is the estimate of the current 

density. 

The final measure that authors sued is the Euclidean 

distance between the actual dipole location and the center 

of gravity (COG) of WMNE source estimate scores, 

defined as (Salman et al., 2013; Baillet, 1998): 

4. Results: 

4.1. Discrete Picard Plots 

As a first step in solving the EEG inverse problem, 

the Discrete Picard Plots were obtained for the simulated 

EEG data sets corresponding to the dipole locations D1, 

D2, and D3. The simulated EEG data is obtained for the 

radial orientations of these test dipoles. A noise level of the 

signal to noise ratio (S NR) of 4 and 12 is added to the 

simulated EEG data. The Discrete Picard Plots describes 

the decaying rate of the absolute values of the SVD 

.
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coefficients (Fourier coefficients) and the decaying rate of 

the corresponding singular values in addition to the 

decaying rate of their ratio. 

Authors found that the Discrete Picard Condition is 

satisfied for all datasets. It is clear from the plots that the 

rate of decay of the Fourier coefficients (black stars) is 

fairly faster than the decay rate of the singular values (blue 

dots) for small indexed singular values, as shown in figure 

3. For higher singular values the decay rate of the singular 

values becomes faster. These singular values correspond to 

noise and must be truncated to obtain a useful solution. It 

is also clear in the figure that the rate of the decay of the 

Fourier coefficients increases as the S NR increase for the 

small indexed singular values as expected. Furthermore, 

Authors see that the location of the dipole does not affect 

the decay- ingrate of the singular values and the Fourier 

coefficients. However, authors must consider more 

locations to make such a conclusion. The satisfaction of the 

Picard condition indicates that it is possible to obtain a 

useful solution for the ill-posed problem. 

Figure 3. Discrete Picard Plots for the D1, D2, and D3 with 

radial orientation at different SNR (4 and 12). The blue dots 

are the singular values, the Fourier coefficients are shown 

in green and red circles are Fourier coefficients divided by 

singular values. 

 

4.2 Estimation of α using NCP method, NCPs curves 

Authors tuned the regularization parameter using the 

simulated EEG data sets corresponding to the three dipole 

locations with different orientations using L-curve, GCV, 

and NCP methods. Authors added different levels of noise 

to the simulated EEG data. In order to observe the effect of 

the white Gaussian noise, authors plotted the NCP of the 

simulated EEG data Φ corresponding to the dipole location 

D1 without noise and after adding white noise with S NR = 

6. In figure 4, authors see that the noisy data set Φ (green 

line) fits within Kolmogorov-Smirnoff (KS) limits, which 

means that it is dominated by low-frequency components. 

The two gray lines in the figure correspond to the KS limits. 

The NCPs curves for the three simulated EEG data 

sets corresponding to the dipoles (D1, D2, and D3) with 

radial orientation are shown in figure 5. As the figure 

shows, some curves have a high-frequency component, 

while others have low-frequency components. Curves 

above the blue line correspond to high-frequency 

components. While those below the blue line corresponds 

to low-frequency component. The blue line represents the 

optimal NCP, which corresponds to the optimal 

regularization parameter. On the other hand, for smaller S 

NR = 4, most of the NCP curves are below the blue line KS 

corresponds to low-frequency components. This means 

that these components have higher white noise compared 

to 16 S NR case as expected. Also, authors can see that 

for deep current sources in the brain (D3 and D2), the NCPs 

of the residual vector become closer to each other and they 

fit within KS limits. The difference can be noticed in the 

figure 5 part A. 

Figure 4: The NCPs for the synthetic exact (Blue line), 

and the NCP of the synthetic data after adding white 

Gaussian noise 

 

4.3. Estimating the solution using WMNE algorithm 

Here authors present the results obtained using 

WMNE algorithm (Hamalainen, 1984; Lin et al., 2006). 

Authors opted WMNE algorithm to solve the EEG inverse 

problem because it has no reference to the superficial 

dipoles as in the case of minimum norm estimate. Authors 

computed the weighting matrix as illustrated in the 

Pascual-Marqui, 2007 study, authors inserted the computed 

regularization parameter by the previous three illustrated 

methods into the algorithm. Figure 6 shows the results in 
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terms of three error measures, localization error, the center 

of gravity and spatial spreading, respectively. 

Figure 6 shows the error measures obtained by using 

WMNE method in terms of SNR. For these solutions, the 

optimal regularization parameter α was obtained using the 

L-curve (green line), GCV (black line) and 

Figure 5. The NCPs curves for shallow D1, mid D2, deep 

D3 dipoles for two levels of signal to noise ratio (from left 

to right). The red thick line represents the optimum NCP, 

which corresponds to the optimum regularization 

parameter. 

NCP (red line). The synthetic data sets used 

corresponds to three test dipole locations, the left subfigure 

of figure 6 corresponds to D1, middle sub figure 

corresponds to D2 and the right corresponds to D3. 

It can be clearly seen that for the three dipole 

locations, the localization error is highest when WMNE 

method uses the regularization parameter obtained using 

the L- curve method compared to those obtained when 

using the NCP and GCV method. On the other hand, the 

localization error is small when WMNE algorithm uses the 

NCP methods compared to the error obtained when GCV 

method is used. For instance, at S NR = 14, the error was 

22.3 mm when L-curve is used compared to 20.2 mm when 

GCV is used and 19.1 mm when NCP is used. 

Furthermore, it is clear that the localization errors 

decrease with increasing the signal-to-noise ratio (SNR) 

when using the three methods for all dipole locations. 

These results agree with the intuition. Further, authors see 

that the localization error slightly increases at SNR values 

of 2 to 4 as the depth of the test dipole location increases, 

but it does not change much at SNR =14.  

These results indicate that the WMNE can overcome 

the bias toward superficial sources of the minimum norm 

estimate (MNE) method and the method can handle deep 

current source generators as well, and this came in 

agreement with the literature (Lin et al., 2006; Pascual-

Marqui, 2002). These error results are the average of using 

30 uniformly distributed orientations for each test dipole 

location. Figure 6 B), shows the errors measure defined as 

the distance of the location of the center of gravity of the 

estimated current to the actual dipole location (COG error). 

Using this measure, our results indicate similar to 

localization error measure performance result. It can be 

seen that when α, obtained using the L-curve method, used 

in the WMNE, the COG error is the high- est for the three 

dipole locations. In contrast, the accuracy obtained using 

the NCP and GCV methods are almost the same according 

to this measure. However, in some cases, the GCV method 

outperforms the NCP method. Furthermore, it is clear that 

the COG measure decreases with increasing the signal to 

noise ratio when using the three methods for all datasets 

corresponding to three dipole locations. According to this 

measure, a small increase in the errors is noticed when 

authors move from the superficial dipole to deep dipole 

locations, in particular when authors used low SNRs, such 

as 2 and 4. But, when SNR = 12, or 14, the positions of the 

dipole did not affect the COG error since they reach the 

same amount of errors. 

The third measure authors considered is the spatial 

spreading, which provides a measure of how the solution is 

focused in space. A focused solution gives a distribution of 

the estimated current values such that it is high around the 

active region while it is low far away from the active 

region. It is desired to obtain a focused solution. According 

to the spatial spreading measure, our results shown in 

figure 6 C indicate that the solution obtained using the L-

curve gives the least focused solution compared to the 

solution obtained using the NCP and GCV methods. 

Further, solutions obtained using the NCP are slightly more 

focused than the solution obtained using GCV method. 

And it is clear that the spatial spreading measure decrease 

with increasing the signal to noise ratio, which means 

larger noise produce blurred less focused solutions. 

Moreover, the focus of the solution remains the same as 

authors move to deeper locations. 

 

5. Conclusion: 

In this paper, authors show the results of using three 

regularization parameter choice methods (L-curve, 

Generalized cross-validation and normalized cumulative 

periodogram) for tuning the regularization parameter of 

EEG inverse problem of the source localization. Source 

Localization aims to find the sources of the neural activities 

inside the brain.
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The inverse ill-posed problem is characterized by a 

difficulty of tuning the regularization parameter of the 

Tikhonov regularization. Estimating the optimal or near 

optimal parameter improves the localization error in 

finding an estimated solution of the problem. 

Distributed dipole model approach was used in this 

study for solving the source localization problem, authors 

used a computational human head model as a volume 

conductor consists of 5 different uniform tissues to solve 

the EEG forward problem, the forward problem was solved 

using the Alternating Direction Implicit (ADI) algorithm. 

Whereas, WMNE algorithm is used as a solver of the 

inverse problem. 

Three dipole locations have been selected to 

generate the synthetic EEG data (shallow location, at the 

middle of the cortex and deeply located dipole) with 

different noise levels. The application of the L-curve and 

NCP methods requires the problem to satisfy the Pi- card 

Condition and the noise must be white Gaussian. In order 

to check the satisfaction of these conditions, authors 

checked the Picard condition for the three dipole locations 

with two signals to noise ratios. 

The L-curve, GCV curve and the NCPs curve have 

been plotted. The plots correspond to the three test dipole 

locations. The next step was to tune the regularization 

parameter using the three-parameter choice methods (L-

curve, GCV, and NCP), authors inserted these parameters 

into the WMNE algorithm to solve the inverse problem. 

Authors evaluated the WMNE solution using three 

measures (Localization error, the center of gravity and 

spatial spreading). For the three measures, the algorithm 

gives the highest errors when it uses α obtained using L-

curve, then GCV and NCP, respectively. Although, the 

algorithm with α obtained using GCV method sometimes 

gives error values similar to those obtained using the NCP 

method. Also, WMNE handled the three locations without 

any bias, since it gives similar localization error at the three 

dipole locations. 
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