
Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3290-3293 (2017) ISSN: 0975-0290

3290

SECURE: An Ameliorated SQL Semiotic for

Security

 Dr. Ajeet A. Chikkamannur
Department of Computer Science and Engineering, R. L. Jalappa Institute of Technology, Bangalore 561203, India

ac.ajeet@gmail.com

 Dr. Shivanand M. Handigund
Department of Information Science and Engineering, Vemana Institute of Technology, Bangalore 560034, India

smhandigund@gmail.com

---ABSTRACT--
The Information Systems, Databases are vital and critical in the arena of Business, Enterprise, Governance

etc., for the decision making. Further, the Information Systems are designed to reach maximum number of people
for interaction with system. This intent of system usage appears to be resourceful but the identification of reliable
users of system has challenged the technocrats

Most of the applications uses relational data base system (RDBMS) for the database support but with
intelligent exploitation of vulnerability in Structured Query Language (SQL) of RDBMS, the dishonest people are
interested in manipulation or processing of the data for business value reduction or damage

This paper attempts to endow with security to a relational database system by the inclusion of newly designed
semiotic to keyword SECURE into a lexicon of SQL. Then the semiotic is articulated in relational algebraic
expression for current query engine execution.

Keywords - Query, Security, Relation, Set Difference, Semiotic

Date of Submission: June 02, 2017 Date of Acceptance: June 16, 2017

 I. INTRODUCTION

Any business organization keeps a purpose of attracting

the various populaces for their business services. To

support this desirability, the information systems like Web

Technology etc. are used for design a system to reach

maximum number of populace for interaction. This intent

of system usage is admirable but the identification of

reliable users of system has hardened the aptitude of

developers in a development of information systems.

Among the user, the dishonest community exercise, spoil

and ruin the value of information. Hence, the

technological convene we observed is that how to make

available the right information to a right person?

Currently, many contemporary information systems are

designed with a database support. The data of databases

are vital and decisive in the arena of Business, Enterprise,

Governance etc., for various analysis. But, with a smart

exploitation of vulnerability in a database system, the

dishonest people are manipulating or processing the data

for value reduction or damage. This is another technical

apprehensive activity in a database? Hence, it is time to re-

inspect or reengineer the core database system design in

purview of security, which causes the clout to the system.

This paper tries to provide security to a relational database

by the blend of innovatively intended semiotic i.e. syntax,

semantics and pragmatics into a lexicon of Structured

Query Language (SQL). Then the semiotic is translated to

the relational algebraic expression for practical query

engine execution.

II. BACKGROUND

The relational database model is developed by Codd [7, 8].

Most of the applications are using the relational database

for their data storage and retrieval. The Structured Query

Language (SQL) is designed and developed to access the

Relational Database. In relational database, the security to

multiple users is given by the Database Administrator

depending on the access privilege of users i.e. GRANT

privileges. At early stages, the relational model is subject

for a centralized computer system. But over a period of

time the evolution in the technology viz., client-server,

distributed computing, cloud computing etc. have used the

SQL carefully in many applications by several deviation in

the database system.

Currently, the web applications with database are

developed for multi consumers to operate the database.

These multi loggers may belong to legitimate or

illegitimate type. The recognition of reliable and

trustworthy users of web technology is a herculean task for

proviso of accessing the relational database. On ignorance

of recognition, the dishonest populace tries to damage or

use the database to ruin the business value of an

organization.

Though the security is provided by the pragmatic

relational database systems, the hackers of the system are

enjoying with the SQL injection vulnerability [5, 6].

Though many security solutions are provided to a database

but in literature, we have not observed the effort in the

arena of broadening the lexicon of the SQL. Hence, the

semiotic of SQL, has to be reengineered or broaden for

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3290-3293 (2017) ISSN: 0975-0290

3291

security point of view with addition of new word(s).

Further, we have observed that most of the work of

security on relational database is carried in middleware

without ameliorating the basic semiotic of language.

Various ways of broadening the base of SQL can be

referred in [1, 2, 3, 4] where the limitation of language

phrase is broadened or expanded.

III. FRAME WORK
This paper proposes a formula of securing the relational

database. The formula is underpinned with the second

principle of information technology; “the right

information is given to the right person”. The study on a

statement discloses in a two practical measurements i.e.

“right information’, “right person”. These practical

measurements are to be ensured to facilitate the multi user

systems in an efficient and secured way. Hence, we

consider the quantum of data stipulation to an end user for

security i.e. the quantization is enumerated on the amount

of data retrieval through a SQL query.

The unlawful users’ curiosity is that they use SQL

semiotics for accessing the entire data of a database. This

is our observed trace of vulnerability of unauthorized user

where the user tries to access the irrelevant data. With

superfluous information and/or logical query (ies)

combinations, they exploit the database for gaining the

control of system. The SELECT, FROM and WHERE,

query semiotic of SQL is logically used for accessing the

database. Hence, this semiotic is ameliorated to resolve the

drawback by defining further distinctiveness to a relation.

Hence, to protect a relation of relational database, the

keyword SECURE is proposed to the lexicon of SQL.

Like use of keyword PRIMARYKEY for elimination of

duplication of values in a relation, the keyword SECURE

is added to the Data Definition Language (DDL) of SQL

for the protection of relation in threefold viz., secure at

table level, secure at column level and secure at row level.

The SECURE table name differentiates that the content of

entire table is non-visible i.e. out of sight to user. The

SECURE column name or tuple are designed to protect the

column name contents or row values by the non-display of

data belonging to the specified column or tuple. Since

contents are not put on show, for the reliable users the data

corroboration is ensured by returning the true condition.

Further, the query with convened character ‘*” in SQL

semiotic is blocked to carry out on SECURED relation.

The proposed semiotic for SECURE keyword is given

below

SECURE [table_name | attribute | primary key value];

The semiotic is used to SECURE the table, attribute or

tuple depending on the application requirement. The

secured table_name, attribute or tuple is stored in the

metadata. Before executing the SQL query given by the

user, the table_name, attributes or tuple specified in the

query are verified with the meta data contents. For regular

condition i.e. tables, attributes or tuples without security

are executed with existing process of execution. On secure

condition; the following functionalities are to be carried

out depending on the secure semiotic expression.

CASE 1: User needs to secure the contents of entire
table. The designer has to utilize the below semiotic for a

relation definition in a relational database. This causes the

non-visibility of entire table contents on access. Further

the SQL query with meta character ‘*” is disabled for

execution on the table.

SECURE table_name;

On expression of a query, the table name specified is

appended with word “security”. This is stored in a meta

data for further utilization. Any SQL query expressed in a

relational algebraic form is implemented and executed on

SQL compiler. Hence, on encountering the secured

relation name in the SQL query, the routine semiotic of

SELECT, FROM, WHERE execution is ameliorated to a

following relational algebraic expression.

Result = <condition> <table name> 1<table name>

CASE 2: User needs to secure the particular column’s
content. The proposed designed semiotic of a query is

given below

SECURE attribute;

The below semiotic is designed to disable the visibility of

the entire column content on access. Again the meta

character ‘*’, expression in SQL is prevented for

execution in query engine. The relational algebraic form of

query execution is;

 Result = <condition> <table name> 2 <attribute> <table
name>

CASE 3: User needs to secure the particular row
content. The designed semiotic of query is given below;

SECURE primary key value;

This semiotic is designed to secure the row of relation for

non access i.e. the particular row is not visible to the user.

In this case the primary key value of particular row is to be

specified. The relational algebraic form of query execution

is given below;

Result = <condition> <table name> 3 <primary key

 attribute = value> <table name>

IV. CASE STUDY
To demonstrate the execution of designed semiotic of

query, the relation MYTABLE is constituted with some

data values. Most of the applications are using this table

for authentication of user in web application.

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3290-3293 (2017) ISSN: 0975-0290

3292

MYTABLE

UID PASSWORD
abc@org.com Abc

lmn@org.com Lmn

ijk@org.com Ijk

xyz@org.com Xyz

The pragmatic SQL semiotic allows routine queries like

SELECT * FROM MYTABLE, SELECT * FROM

MYTABLE WHERE UID= “ “. The unrelated users

access the data values from a table with vulnerability in

such query expression [5, 6]. The exploitation of query

leads to confidentiality destruction of a data. Our approach

works in the following way;

CASE 1: Entire table is secured. The entire table is

secured with execution of following steps.

Step1: The table name MYTABLE is to be secured for

non access. Hence, the following semiotic is used

SECURE MYTABLE;

The table name MYTABLE is appended with secure

keyword and stored in the metadata for executing ensuing

steps. Any retrieval access on table initially execute the

below relational algebraic expression query.

 1<MYTABLE>;

Step2: The result of the step1 execution is

UID PASSWORD
abc@org.com Abc

lmn@org.com Lmn

ijk@org.com Ijk

xyz@org.com Xyz

Step 3: The unauthorized user of this table attempts the

following query

SELECT * FROM MYTABLE:

The relational algebraic form this query is;

 <MYTABLE>;

Step 4: The result of step 3 execution is;

UID PASSWORD
abc@org.com Abc

lmn@org.com Lmn

ijk@org.com Ijk

xyz@org.com Xyz

Step 5: Here the ameliorated relational algebraic

expression is executed on the table

Result = <condition> <table name> 1<table name>

This is executed with set difference operation among the

results of step 2 and 4.

 Result = {step 4 values} – {Step 2 values}
 = NULL

Hence, the content of table is displayed as NULL.

CASE 2: The attribute of table is secured. The attribute

of a table is secured by the execution of following steps.

Step 1: The PASSWORD attribute of a table is secured by

the following semiotic

SECURE PASSWORD;

Step 2: On encountering the secure tag with PASSWORD

attribute the following relational algebraic operation is

executed

 1<PASSWORD> <MYTABLE>

The result of this step is given below

PASSWORD
Abc

Lmn

Ijk

Xyz

Step 3: Suppose the following is attempted to execute

SELECT UID, PASSWORD

FROM MYTABLE;

The result of this step will yield the following on regular

query

UID PASSWORD
abc@org.com Abc

lmn@org.com Lmn

ijk@org.com Ijk

xyz@org.com Xyz

Step 4: Since the attribute PASSWORD is designated as

secured attribute the following algebraic expression is

executed.

Result = <MYTABLE> 2 <PASSWORD>
<MYTABLE>

This is executed with a set difference operation on

resulting values of step 3 and step2. The order is strictly

tracked to shun the confusion. On completion of this step

gives the following result

UID
abc@org.com

lmn@org.com

ijk@org.com

xyz@org.com

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3290-3293 (2017) ISSN: 0975-0290

3293

The column PASSWORD contents are unseen by the users

CASE 3: The particular row value is secured. The

following steps are executed.

Step1: The relation is constituted with one of its attribute

value as primary key. Here, we will consider the

PASSWORD attribute as primary key attribute. Now the

row pertaining to “Abc” is to be secured. So the following

semiotic is used to define it as secured.

SECURE “Abc”;

Step 2: On encountering the SECURE tag with

PASSWORD attribute’s value “Abc”, the following

relational algebraic expression is executed

3 <PASSWORD = “Abc”> <MYTABLE>

The resulting values are depicted below;

UID PASSWORD
abc@org.com Abc

Step 3: Suppose the following routine query is executed

by the user

SELECT *
FROM MYTABLE

WHERE PASSWORD =”Abc”;

This step will yield the following

UID PASSWORD
abc@org.com Abc

Step 4: since the primary key value “Abc” is appended

with SECURE keyword the following ameliorated

algebraic expression is executed for the final result

Result = <MYTABLE> 3 <PASSWORD = “Abc” >

 <MYTABLE>

Here the set difference operator is applied among values

of step 3 and step 2. This order is strictly followed for

avoid the ambiguity. This step results in following values.

UID PASSWORD
lmn@org.com Lmn

ijk@org.com Ijk

xyz@org.com Xyz

The row with primary key value “Abc” is unseen by the

user.

V. CONCLUSION
The work carried out in this paper is including the

semiotic for the new keyword SECURE at the level of

table, attribute and tuple of the relation in Relational

Database Management System. The designed semiotic

appends the keyword “secure” with table, attribute or tuple

depending on semiotic use and stores in metadata.

On encountering the appended keyword, the semiotic

is disabling the execution of meta character ‘*” from SQL

query and only the specific information is provided

depending on the level of security on relation i.e.

irrelevant data is made invisible
Further, the work is to be extended for the provision

of data for reliable users.

REFERENCE

[1] Ajeet Chikkamannur, “Design of Fourth Generation

Language with Blend of Structured Query Language

and Japanese Basic English”, Ph.D. thesis,

Visvesvarya Technological University Belgaum, 2013

[2] Ajeet Chikkamannur, Shivanand Handigund, “A

Concoct Semiotic for Recursion in SQL”,
International Journal of Emerging Trends &

Technology in Computer Science (IJETTCS), ISSN:

2278-6856, Vol. 2, Issue 3, page 204-210, June 2013

[3] Ajeet Chikkamannur, Shivanand Handigund,

“Automated Methodology to Reduce the Redundancy

in Relational Database”, Elixir Comp. Science. &

Engineering 61, ISSN: 2229-712X, page 16946-

16949, August, 2013

[4] Ajeet Chikkamannur, Shivanand Handigund, “An

Ameliorated Methodology for Ranking the Tuple”
International Journal of Computers and

Technology(IJCT), Vol 14, No. 4, pp 5616-5620,

January 2015

[5] Amit Chaturvedi et al, “Analysis of SQL Injections

Attacks and Vulnerabilities”, International Journal of

Advanced Research in Computer Science and

Software Engineering ,Volume 6, Issue 3, 2016

[6] Atefeh Tajpour et al, “SQL Injection Detection and

Prevention Techniques” International Journal of

Advancements in Computing Technology, Vol 3, Issue

7, pp 82-91, DOI: 10.4156/ijact.vol3.issue7.11, 2011

[7] C. J. Date, A. Kannan, S. Swaminathan, “An

Introduction to Database Systems”, 8
th

 Edition,

Pearson Education (Dorling Kindersley (India) Pvt.

Ltd.), 2008.

[8] E.F. Codd, "A Relational Model of Data for Large

Shared Data Banks", Comm. ACM 12 (6), page 377-

387, 1970

https://www.researchgate.net/profile/Atefeh_Tajpour
https://www.researchgate.net/journal/2005-8039_International_Journal_of_Advancements_in_Computing_Technology
https://www.researchgate.net/journal/2005-8039_International_Journal_of_Advancements_in_Computing_Technology

	[6] Atefeh Tajpour et al, “SQL Injection Detection and Prevention Techniques” International Journal of Advancements in Computing Technology, Vol 3, Issue 7, pp 82-91, DOI: 10.4156/ijact.vol3.issue7.11, 2011

