
Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3274-3282 (2017) ISSN: 0975-0290

3274

A Survey of Cyber foraging systems: Open Issues,

Research Challenges
Manas Kumar Yogi

Department of Computer Science and Engineering, Pragati Engineering College(Autonomous)

Email: manas.yogi@gmail.com

Darapu Uma

Department of Computer Science and Engineering, Pragati Engineering College(Autonomous)

Email: umadarapu03@gmail.com

---ABSTRACT---
This paper presents a survey on current applications which practice the pervasive mechanism of cyber foraging.

The applications include the LOCUSTS framework, Slingshot, Pupetter. This applications advocated the

operating principle of task sharing among resource deficient mobile devices. These applications face some design

issues for providing efficient performance like task distribution and task migration apart from the security aspect.

The general operating mechanism of the cyber foraging technique are also discussed upon and the design options

to leverage the throughput of the inherent mechanism is also represented in a suitable way.

Keywords - Cyber foraging, resource deficient, LOCUSTS, Sligshot, Pupetter, Task migration.

--

Date of Submission: May 01, 2017 Date of Acceptance: May 16, 2017

--

I. INTRODUCTION

Cyber foraging refers to pervasive computing

mechanism where resource deficient, mobile devices

offload some of their heavy task to stronger surrogate

machines in the surroundings. The term cyber foraging

was given by Mr. M. Satyanarayanan in his 2001 paper.

Cyber foraging, helps the mobile devices to take on more

resource intensive tasks by leveraging unused resources on

larger computers in the vicinity. Cyber foraging is

foraging for a multiple resource types , not limited to

processing power. Among the resources that can be

foraged for is network connectivity, storage, processing

power, bandwidth and much more. All of these resource

types are equally important in a cyber foraging scenario.

There are many possible usage scenarios where cyber

foraging can be utilized. Some designs for pervasive

computing advocates for wearable computing devices

which include small computing devices that may be worn

by their users like clothes[1]. Users of such devices are not

interested in carrying around equipment which are heavy,

and these devices must therefore be as lightweight as

possible. This is opposite to the user’s need to have as

powerful a device as possible. The desired computing

power can be added to these small wearable devices

through techniques such as cyber foraging. Consider the

following situation : a doctor doing house calls is

wearing a small headset (similar in size and form to the

well-known Bluetooth headsets for mobile phones). Using

this headset he would like to be able to enter data

pertaining to his patients into an electronic journal. This

means that the headset is faced with the difficult task of

continuous voice recognition. The headset is unable to

perform this translation task by itself, so instead of

performing the actual voice recognition it only records the

words uttered by the doctor. Whenever the headset comes

within range of usable computing resources it forwards

some of the recordings to these machines who respond by

returning the translated text[2]. In case the surrogate has

an Internet connection it may even be given the task of

updating the patient’s journal directly. After translation the

headset may discard the recording and thus free storage for

additional recordings. In the preceding scenario the

application running on the mobile device works in two

modes; high fidelity and low fidelity. When no surrogates

are within range the headset simply saves the recordings

(low fidelity), and when surrogates can be used the

recordings are immediately translated into text (high

fidelity). This high/low fidelity aspect is inherent in all

cyber foraging applications, when surrogates are available

high quality work may be done, but this does not mean

that the applications will only work in the presence of

surrogates. For cyber foraging to be usable a low fidelity

setting must also be possible, where the mobile device

itself is running the application, but at a diminished

fidelity. In the scenario low fidelity means that the headset

only stores the recordings, but it would also be possible to

ask the mobile device to do the processing itself, or even

to do it in combination with other mobile devices that

reside in the doctors personal area network. To be able to

perform the actions described above a number of things

are needed. At first the mobile device must be able to

monitor the network looking for any available

surrogates[3]. Once found the mobile device must be able

to distribute tasks to surrogate machines, and, in the case

that the user is moving while tasks are being performed,

surrogates must be able to migrate tasks between each

other so that the result may be returned. This amount to

complex operations, and it should not be the work of the

application programmer to implement this.

https://en.wikipedia.org/wiki/M._Satyanarayanan

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3274-3282 (2017) ISSN: 0975-0290

3275

2. CURRENT RESEARCH CHALLENGES

There are a considerable number of challenges that must

be addressed when designing a framework for cyber

foraging.

2.1 Distribution of task

How can the complex tasks be delegated to surrogates,

and exactly up to what complexity of tasks should be

moved onto the surrogates.

2.1.2 Migration of task

When mobile devices are using surrogates the tasks that

are distributed to surrogates must be transferrable. It must

be possible to move running tasks between surrogates and

also to move a task back to the mobile device. Apart from

this remote execution specific challenges a number of

other challenges are posed as well in a cyber foraging

framework, challenges such as device discovery,

capability announcement, data staging[4]. One final

important challenge for cyber foraging is security.

Surrogates must execute code on behalf of, possibly

unknown and thus untrusted, mobile devices and data must

be transmitted over wireless links that are easy for an

eavesdropper to monitor. Finally, the client must be able to

trust that the surrogate actually performs the task that it is

asked to. How can this be done in a secure manner? A fine

balance between security and flexibility must be found

here.

2.2 Cyber Foraging Steps

 A cyber foraging approach includes some steps that every

available cyber foraging systems have considered all or

some of them. These steps can be summarized as follows.

2.2.1 Surrogate discovery
At the onset, available idle surrogates that are ready to

share their resources with the mobile device must be

determined. Some researchers have addressed surrogate

discovery in quite an impressive way.

2.2.2 Context gathering
To build a good decision about target execution location,

there is a requirement to monitor available resources in

surrogates and mobile devices and estimate application

resource consumptions which is regarded as context

gathering in some cyber foraging systems:

2.2.2.1 Partitioning
 Here, a task is divided into smaller size subtasks, and

undividable i.e. unmovable parts are specified. Some

researchers do the partitioning automatically.

2.2.2.2 Scheduling

The most important step of cyber foraging is to assign

individual task at the surrogate(s) or the mobile device

most capable of executing it, based on the context

information and the estimated cost of doing so.

2.2.3 Remote execution control

The final step includes the establishment of a reliable

connection between the mobile device and the appropriate

surrogate to pass required information, remote execution,

and the receipt of returned results. Various researchers

have considered remote execution control.

2.3 Cyber Foraging Goals

Cyber foraging is a way to execute resource intensive

applications on resource constrained mobile devices. In

fact, researchers in cyber foraging have tried to augment

some resources of mobile devices in terms of effective

metrics to obtain more efficient application execution.

The most important resources have been considered by

offloading approaches are as follows:

2.3.1 Energy

 One of the most crucial limits of mobile devices is energy

consumption because mobile device’s energy cannot be

replenished by itself. Many researchers have considered

energy consumption as a factor for offloading.

2.3.2 Memory and storage

Memory capacity of mobile devices is less than stationary

computers and memory intensive applications cannot

usually run on mobile devices. Many researchers have

considered the availability of memory and storage as

another effective parameter for offloading decision.

2.3.3 Response time

When the processing power of mobile devices is

considerably lower than static computers, task offloading

is advantageous to decrease execution time. Many

researchers that have considered the response time and

latency as a major factor affecting the offloading decision.

2.3.3 I/O

Showing a movie on a bigger screen, playing music on

more powerful speakers, and printing are examples of task

offloading to improve I/O quality or exploit more I/O

devices. Some researchers have focused on augmenting

I/O as an effective parameter for offloading decision.

3. THE LOCUSTS FRAMEWORK

The LOCUSTS framework aims to provision developers

with a complete cyber foraging toolbox that can ease the

process of developing applications that utilize cyber

foraging [6]. In the following the architecture of

LOCUSTS will be briefly described in Section 3.1, and

then the chosen approach towards task distribution is

described in Section 3.2. Finally, task migration is

illustrated in Section 3.3.

3.1 Architecture

 A clear view of the current architecture of LOCUSTS

system is shown in Figure 1. The LOCUSTS daemon runs

as a different process on both client and surrogate devices

and the individual applications can interact with the local

LOCUSTS instance. As depicted, a cyber foraging enabled

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3274-3282 (2017) ISSN: 0975-0290

3276

application includes some local code which is executed by

the local device, and multiple number of distributable

tasks. Every time a task is executed, the local LOCUSTS

instance is communicated so that it may determine a

suitable plan for execution. This execution plan is

developed by the scheduler who depends on resource

measurements, both local and remote.

Fig. 1. LOCUSTS architecture

 At the moment an execution plan has been obtained the

task may either be distributed to one or more surrogates, or

it may be transferred to the task processor for executing

locally. At the bottom layer of the LOCUSTS client the

network services layer exists. These help the mobile node

to do all the required P2P operations like peer discovery,

network roaming etc. All devices can opt to act as

surrogates and thus the software running on surrogates and

clients is identical. When performing operation as a

surrogate, a device generally offers three things:

 1) Execution of known tasks on behalf of clients

 2) Client can author new tasks

 3) Support for full task migration

 The storage manager shown below the LOCUSTS

daemon in above figure has a provision for a simple file

system that can be accessed by tasks executed by

LOCUSTS. The storage manager provides a virtual file

system that can be accessed from within tasks. When

executing a task on the local device, files in this virtual file

system simply refer to the local files, but when a task is

delegated for remote execution, the storage managers of

the client and the surrogate are linked, so that remote files

may be transparently perform read operation . This small

distributed system is simple in design and is designed

specifically for the purpose of cyber foraging. It has

property of on-demand synchronization of file data to

minimize the amount of data transferred, and has built in

support for temporary files that will only be synchronized

when the task is migrated.

3.2. Task Distribution

Task distribution is at the core of cyber foraging. The

delegation of complex work to surrogates is the

fundamental idea of cyber foraging. When designing a

cyber foraging framework decision must be taken for

exactly what is delegated, when it is delegated, and at

which granularity. The question about task granularity is

difficult to give a definite answer to, because it depends on

numerous factors. The main factors to focus are network

bandwidth and latency in network , processing power of

the mobile device and the surrogate, the amount of energy

used at the mobile device when communicating with the

surrogate, and the rate of mobility of the device. When

delegating tasks to a surrogate the mobile device needs to

send the task to the surrogate, and similarly the surrogate

must transmit a response back to the mobile device. This

means that data must be transmitted over the wireless link

between the mobile device and the surrogate. It must be

taken care that whether the cost of this transmission, both

in time and energy, is acceptable, i.e. whether the cost of

distributing the task is smaller than the cost of doing the

processing locally. Due to this reason distribution happens

for only larger, longer running tasks, as the cost of

delegating a small task will be more than the cost of local

execution. But how does a small task get designated? It is

variable as per context depending on factors mentioned

above. To face this challenge, decisions regarding when to

distribute a task is advisable to be taken dynamically

depending on the current resource availability. This is

achieved by resource usage monitoring at the client and

surrogates and using this data in the scheduler application

when future execution is being planned. The LOCUSTS

framework takes the same approach towards task

distribution; monitoring resource usage and dynamically

deciding where and when to distribute tasks. In LOCUSTS

task can be resized. A resizable task is a task that can be

solved to different degrees which means that a surrogate

may opt to solve only a small fraction of the task before

returning the task to the client. It happens when the

surrogate is under timing constrains given by the client.

LOCUSTS also have functionality of the concept of

migratable tasks as will be described in section below. The

next important issue to face is exactly what is distributed

and how it is done. When a mobile device is executing an

application that can use cyber foraging, a part of the

application will always be running locally while other

parts may or may not be distributed to surrogates. The

parts of the program that can be distributed must be

identified and, possibly, modified to make the distribution

possible. After identifying the parts of a program that can

be delegated to surrogates a mechanism for actually

distributing these tasks must be found. LOCUSTS do not

have the need to preinstall anything on the surrogates. A

task in LOCUSTS is therefore more than just an RPC

invocation. It also contains the actual source code of the

task presented in a way such that any surrogate, regardless

of architecture etc., will be able to execute it. This means,

that the portions of the code that designate distributable

tasks must be written in a specific, interpreted language so

that it can be moved on to surrogates, and thus allowing

the clients to author new tasks on the surrogate. Allowing

clients to execute unknown code on surrogates of course

leads to an abundance of security issues that will have to

be addressed, but that is out of the scope of this paper.

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3274-3282 (2017) ISSN: 0975-0290

3277

Currently the language used for distributable tasks is

Python.

3.3. Task Migration Distribution

Distributing very large tasks increases the merits of remote

execution, since it helps to reduce the overhead of sending

tasks back and forth. But, in existing cyber foraging

frameworks, working with large tasks needs the user to

stay within range of a specific surrogate for an extended

period of time. To remove this problem, functionalities are

made so that tasks may span multiple surrogates

throughout their lifetime. The solution to the problem is

task migration. Task migration enables surrogates to shift

running tasks to other surrogates or even back on to the

mobile device. Using migration a client no longer needs to

stay within range of a surrogate while performing a task

and it is thus possible to distribute larger tasks, which

decreases the considerable overhead of remote execution.

Task migration is depicted in Figure below. The ways that

such task migration could be implemented range from

simple surrogate-to-surrogate proxies to task check

pointing. Both methods are used in LOCUSTS. Proxies

are used in some scenarios when high speed network

connections exist between surrogates. Take for example

the scenario in Figure 2. The task is originated at S2 but

when M moves out of range of S2 the task is migrated to

S4. If, due to some reason, it makes sense to let S2 keep

the task S4 will simply be asked to proxy for S2. In the

viewpoint of the client M surrogate S4 is the one

executing the task and all communications about the task

goes through S4. Alternatively, the task could be moved

entirely to S4. Subsequently the current executing task

would be check pointed by S2 and its code and state sent

to S4.

Fig. 2 Task migration in LOCUSTS

Many factors must be considered when choosing which

kind of migration to use – factors such as network

bandwidth between the surrogates, current resource usage

at the surrogates, checkpoint size, estimated finish time of

the task etc. This preceding description of task migration

touches lightly on a very complex matter.

3.4 Slingshot

Slingshot is a new architecture for deploying mobile

services at wireless hotspots[8]. Slingshot replicates

applications on surrogate computers which are located at

hotspots. A first-class replica of each application executes

on a remote server owned by the mobile user. Slingshot

instantiates second-class replicas on surrogates at or near

the hotspot where the user is located. A proxy which is

running on a handheld broadcasts each application request

to all replicas; it returns the first response it receives to the

application. Second-class replicas improve interactive

response time since they are reachable through low-

latency, high-bandwidth connections (e.g. 54 Mb/s for

802.11g). Additionally, the first-class replica is a trusted

repository for application state, which means upon

surrogate failure state is not lost but it is preserved.

Slingshot also makes surrogate management easy. It

considers virtual machine encapsulation to remove the

need to install application-specific code on surrogates.,

Replication prevents the loss of application state when a

surrogate crashes or even permanently fails. The

performance impact of surrogate failure is reduced by

other replicas, which continue to service client requests.

The harnessing of surrogate computation is a complex

problem with many challenges. Our paper addresses

these challenges, including improving interactive response

time, hiding the perceived cost of migration, recovering

from surrogate failure, and simplifying surrogate

management. It also gives robust results that measure

the substantial benefit of surrogate computation for

stateless and stateful applications. Other research

challenges remain to be addressed. Slingshot does not yet

address privacy concerns, provide protocols for secure

replica management, manage surrogate load, or decide

when to instantiate and destroy replicas. Current

implementation of Slingshot has two services: a speech

recognizer and a remote desktop. Observatory results

show that instantiating a second-class replica on a

surrogate lets these applications run nearly 2.6 times

faster. Our results also show that replication lets Slingshot

move services between surrogates with little user-

perceived latency and recover gracefully from surrogate

failure.

4.1 DESIGN PRINCIPLES

We begin by discussing the three principles followed in

the design of Slingshot:

4.1.1 Location

Server location can be crucial to the performance of

remote execution. Suppose a handheld device is connected

to the Internet at a wireless hotspot. If the handheld device

executes code on a remote server, its network

communication not only passes through the wireless

medium; it also traverses the hotspot’s backhaul

connection and the wide area Internet link. In a general

hotspot, the backhaul connection is the bottleneck. For

instance, the nominal bandwidth of a 802.11g network (54

Mb/s) is more than an order of magnitude greater than that

of a T1 connection. If the handheld could instead execute

code on a server located at the hotspot, it could reduce

the communication delay associated with the bottleneck

link. For interactive applications that require sub-second

response time, server location can make the difference

between acceptable and unacceptable performance.

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3274-3282 (2017) ISSN: 0975-0290

3278

Network latency is also a concern. A server that is nearby

in physical distance can often be quite distant in network

topology due to the unexpected changes of Internet

routing. Firewalls, VPNs, and NAT components add

additional latency when connections cross administrative

boundaries [9]. For mobile users, a journey of only a few

hundred feet can enhance the round-trip time for

communication with a remote server. But a server located

at the current hotspot is only a network hop away.

4.1.2 Replicate instead of migrate

The need to locate services near mobile users refers that

services need to move over time. When a handheld user

moves to a new location, a surrogate at the new hotspot

will generally offer better response time than a surrogate at

the previous hotspot. In case we need to move

functionality, one option is migration: suspend the

application on the previous surrogate, send its state to the

new surrogate, and resume it there. This approach affects

the availability of the application while it is migrating.

Slingshot deploys an alternative strategy that instantiates

multiple replicas of each service. During instantiation of

new replicas, existing replicas continue to serve the user.

Slingshot replication is a form of primary-backup fault

tolerance; i.e. it tolerates the failure of any number of

surrogates. For each application, Slingshot creates a first-

class replica on a reliable server known to the mobile user

this server is referred to as the home server. Slingshot

ensures that all application state can be reconstructed from

information stored on the client and the home server. This

allows all state on a surrogate to be regarded as soft state.

Even if all surrogates crash, Slingshot continues to service

requests using the first-class replica on the home server. In

contrast, a naive approach that migrates applications

between surrogates might lose state when a surrogate fails.

We note that Slingshot handles both stateful and stateless

applications[10]. The result of a remote operation for a

stateful application depends upon the operations that have

previously executed. Slingshot assumes that applications

are deterministic; i.e. that given two replicas in the same

initial state, an identical sequence of operations sent to

each replica will produce identical results. Slingshot

instantiates a new replica by check pointing the first-class

replica, shipping its volatile state to a surrogate, and

replaying any operations that occurred after the

checkpoint. Instantiation of a new replica takes several

minutes since the volatile state must travel through the

bandwidth constrained backhaul connection. However,

existing replicas mitigate the perceived performance

impact. Until the new replica is instantiated, existing

replicas service application requests.

4.1.3 Ease of maintenance

We observe that the business case for deploying a

surrogate as being similar to that of deploying a wireless

access point. Desktop computers have become cheaper,

not much more than an access point. Further, it has been

shown by researchers that surrogates can provide

significant value-addition to wireless users in terms of

improved interactive performance. Nevertheless,

surrogates must be easy to manage if they are to be widely

deployed. Since we envision surrogates at hotspots in

airport lounges, coffee shops, and bookstores, they must

need negligible or no supervision. They should be

appliances that require little configuration. Apart from that

maximum trouble shooting should be possible by a normal

restart. For easy management of surrogates Slingshot has

the following policies.

4.1.3.1 Minimizes the surrogate computing base

Each replica runs within its own virtual machine, which

encapsulates all-application specific state such as a guest

OS, shared libraries, executables, and data files. The

surrogate computing base consists of only the host

operating system (Linux), the virtual machine monitor

(VMware), and Slingshot. No configuration or setup is

needed to enable a surrogate to run new applications each

VM is self-contained.

4.1.3.2 Uses a heavyweight virtual machine

 While Para virtualization and other lightweight

approaches to virtualization offer scalability and

performance benefits, they also restrict the type of

applications that can run within a VM. In contrast, by

deploying a heavyweight VMM (VMware), Slingshot

runs the two applications described in Section 4.2 without

modifying source code, even though their guest OS

(Windows XP) differs substantially from the surrogate

host OS (Linux)[11].

4.1.3.3 Places no hard state on surrogates

 As surrogates have only soft state, a normal or abnormal

restart does not result to incorrect application behavior or

data loss. If a surrogate crashes or is restarted, the only

effect observable by the user is that performance goes

down to the level that would have been available in the

absence of the surrogate.

4.2 Slingshot implementation

Figure 1 shows an overview of Slingshot. For simplicity of

exposition, this figure assumes that the mobile client is

executing a single application and that a single surrogate is

being used. In practice, we expect a Slingshot user to run

only one or two applications concurrently, with each

service replicated two or three times. Each Slingshot

application is partitioned into a local component that runs

on the mobile client and a remote service that is replicated

on the home server and surrogates. Ideally, we partition

the application so that resource-intensive functionality

executes as part of the remote service; the local component

typically contains only the user interface. This partitioning

enables demanding applications to run on clients such as

handhelds that are highly portable but also resource-

impoverished. The applications that we have studied so far

(speech recognition and remote desktops) already had

client server partitioning that fit this model. For some

applications, the best partitioning may not be immediately

clear—in these cases, we could leverage prior work to

choose a partition that fits our model. In Figure 1, a first-

class replica executes on the home server and a second-

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3274-3282 (2017) ISSN: 0975-0290

3279

class replica executes on the surrogate. The home server,

described in Section 3.2, is a well-maintained server under

the administrative control of the user, e.g. the user’s

desktop or a shared server maintained by the user’s IT

department. They are administered by third parties and

are not assumed to be reliable. Slingshot creates the first-

class replica when the user starts the application—this

replica is required for execution of stateful services. As the

application runs, Slingshot dynamically instantiates one or

more second-class replicas on nearby surrogates. These

replicas improve interactive performance because they are

located closer to the user and respond faster than the first-

class replica on the distant home server. If no second-class

replicas are instantiated, Slingshot’s behavior is identical

to that of remote execution. Each replica executes within

its own virtual machine. Replica state consists of the

persistent state, or disk image of the virtual machine, and

the volatile state, which includes its memory image and

registers. On the home server, requests are redirected to a

service database that stores the disk blocks of every

remote service. On a surrogate, VMware reads are first

directed to a service cache if the block is not found in the

cache, it is fetched from the service database on the home

server.

4.3 Slingshot applications
We have adapted the IBM Via Voice speech recognizer

and the VNC remote desktop to use Slingshot[5]. Due to

Slingshot’s use of virtual machine encapsulation, we did

not need to modify the source code of either application.

All Slingshot-specific functionality is performed within

proxies that intercept and redirect network traffic.

4.3.1 Speech recognition

We chose speech recognition as our first service because

of its natural application to handheld computers. We used

IBM Via Voice in our work. We created a server side

proxy that accepts audio input from a remote client and

passes it to Via Voice through that application’s API. Via

Voice returns a text string which the proxy sends to the

client. Via Voice and our server run on a Windows XP

guest OS executing within a VMware virtual ma-chine.

The local component of this application displays the

speech recognition output. We chose to implement speech

recognition as a stateless service. One can certainly make

a reasonable argument that speech recognition should be a

stateful service in order to allow a user to train the

recognizer. However, we wanted to explore the

optimizations that Slingshot could provide for stateless

services.

4.2 Virtual desktop

VNC allows users to view and interact with another

computer from a mobile device. In the case of Slingshot,

the remote desktop is a Windows XP guest OS executing

within a VMware virtual machine. This allows users to

remotely execute any Windows application from their

handhelds. This is clearly a stateful service; i.e., a user

who edits a Word document expects the document to exist

when the service is next instantiated. Adapting VNC to

Slingshot presented interesting challenges[12]. First, the

VNC server sends display updates to the client in a non-

deterministic fashion. When pixels on the screen change, it

reports the new values to the client in a series of updates.

Two identical replicas may communicate the same change

with a different sequence of updates. The resulting screen

image at the end of the updates is identical but the

intermediary states may not be equivalent. A second

challenge is that some applications are inherently non-

deterministic. One annoying example is the Windows

system clock; two surrogates can send different updates

because their clocks differ. We noted that some non-

determinism is unlikely to be relevant to the user (e.g. a

slightly different clock value).Unfortunately, other non-

determinism affects correct execution. For example, a key

stroke or mouse click is often dependent upon the window

state. If a user opens a text editor and enters some text, the

key strokes must be sent to each replica only after the

editor has opened on that replica. If this is not done, the

key strokes will be sent to another application. To solve

this problem, we associate a precondition with each input

event. When the user executes the event, we log the state

of the window on the client to which that event was

delivered. When replaying the event on a server, we

require that the window be in an identical state before the

event is delivered. Since each event is associated with a

screen coordinate, we check state equality by comparing

the surrounding pixel values of the original execution and

the background execution. In the above example, this

strategy causes Slingshot to wait until the editor is

displayed before it delivers the text entry events. A second

issue with VNC is that its non-determinism prevents us

from mixing updates from different replicas. We designate

the best-performing replica as the foreground replica and

the remainder as background replicas. Only events from

the foreground replica are delivered to the client. If

performance changes, we quiescence the replicas before

choosing a new foreground replica. Two replicas are

quiesced by ensuring that the same events have been

delivered to each, and by requesting a full-screen update

from the new foreground replica to eliminate transition

artifacts. New events are logged while quiescing replicas.

Note that the foreground replica is rarely the first-class

replica since nearby surrogates provide better performance

in the common case. We were encouraged that VNC can

fit within the Slingshot model, since its behavior is

relatively nondeterministic. Based on this result, we

suspect that application-specific wrappers can be used to

enforce determinism for many applications. For those

applications where this approach proves infeasible, we

could use a VMM that enforces determinism at the ISA

level. Handhelds can improve interactive response time by

leveraging surrogate computers located at wireless

hotspots. Slingshot’s use of replication offers several

improvements over a strategy that simply migrates remote

services between computers. Replication provides good

response time for mobile users who move between

wireless hotspots; while a new replica is being

instantiated, other replicas continue to service user

requests. Replication also lets Slingshot recover gracefully

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3274-3282 (2017) ISSN: 0975-0290

3280

from surrogate failure, even when running stateful

services. Slingshot minimizes the cost of operating

surrogates. For these computers to be of maximum benefit,

they must be located at wireless hotspots, rather than in

machine rooms that are under the supervision of trained

operators. Slingshot uses off-the-shelf virtual machine

software to eliminate the need to install custom operating

systems, libraries, or applications to service mobile users.

All application-specific state associated with each service

is encapsulated within its virtual machine. Further,

Slingshot’s replication strategy means that surrogates need

not provide 24/7 availability. If a surrogate fails or is

rebooted, no state is lost. Harnessing surrogate

computation is a complex problem. Slingshot currently

provides several pieces of the puzzle, including the use of

replication to improving response time and the elimination

of hard surrogate state to improve ease of management.

Other pieces of the puzzle remain. Slingshot does not yet

address the privacy issues inherent to running computation

on third-party hardware[13]. Trusted computing efforts

provide promise in this area. Slingshot does not provide a

mechanism for securely controlling replica instantiation

and termination. Other areas of potential investigation are

load management and policies for creating and destroying

replicas. We believe that Slingshot will be an extremely

useful platform on which to conduct such investigations.

5. PUPPETEER
5.1 Introduction
Puppeteer is advocated as a system for using applications

based on components in mobile environments. It reaps the

advantage of the exported interfaces of these applications

and the structured nature of the documents they

manipulate to perform adaptation without changing the

applications. The system is structured in a modular

fashion, allowing easy addition of new applications and

adaptation policies. The initial prototype concentrated on

adaptation to limited bandwidth. It was designed to run on

Windows NT, and included support for a variety of

adaptation policies for Microsoft PowerPoint and Internet

Explorer 5[7]. We represent in this paper that Puppeteer

can support complex policies without any major change to

the application and with negligible cost.

Fig 3 Overall architecture

Figure above shows the four-tier Puppeteer system

architecture. It includes the applications which are to be

adapted, the Puppeteer client proxy, the Puppeteer server

proxy, and the data server. The application and data server

are completely untouched. The Puppeteer client proxy and

server proxy work combinely to perform the adaptation.

The Puppeteer client proxy is in control of executing the

policies that adapt the applications. The Puppeteer server

proxy has to parse the documents, exposing their structure

and transcoding components as needed and requested by

the client proxy. The Puppeteer server proxy is considered

to have robust connection with the data server. In the most

common situation, it executes on the same machine as the

data server. Data servers can be random repositories of

data such as Web servers, file servers or databases.

5.2 Puppeteer Architecture
The Puppeteer architecture is represented by four types of

modules: Kernel, Driver, Transcoder, and Policy (see

Figure 2). The Kernel appears once in both the client and

server Puppeteer proxy. A driver supports adaptation for a

particular elemental type. A driver for a specific elemental

type may call on a driver for another elemental type, if an

elemental of the modern type is included in an elemental

of the basic type. The driver for a specific application

resides on the top of this driver hierarchy. Driver

execution may happen in both the client and the server

Puppeteer proxies, as may Transcoders which model

particular transformations on elemental types. Policies

denote specific adaptation mechanisms and subsequently

execute in the client Puppeteer proxy.

5.2.1 Kernel

The Kernel is a part which is independent module that

derives the Puppeteer protocol. The Kernel executes in

both the client and server proxies and triggers the shift of

document components. The Kernel does not include

knowledge regarding the specifics of the documents being

transmitted. It functions on a representation neutral

description of the documents, which are referred to as the

Puppeteer Intermediate Format (PIF). A PIF has a skeleton

of components, each of which possess a set of related data

items. The skeleton includes the structure of the data used

by the application. it has the form of a tree, with the root

being represented as the document, and the children being

pages, slides or any other elements in the document. The

skeleton is a multi-level data structure as elements in any

level can contain sub elements. The skeleton is element

independent, but elements in the skeleton are element

specific[8]. To improve functional performance, the

Kernel batches requests for multiple elements into a single

message and has provisional support for asynchronous

requests.

5.2.2 Drivers

Puppeteer requires an import and an export driver. A

tracking driver is necessary to implement compound

policies. The import drivers resolves the documents,

extracting their elemental structure and converting them

from their application limited file formats to PIF.In the

general case where the application’s file format is

parsable, either because it is human readable (e.g., XML)

or there is sufficient documentation to create a parser,

Puppeteer can parse the files directly to uncover the

structure of the data[13]. This leads to good performance,

and enables clients and server to run on different

platforms. When the application only exposes a DMI, but

has an opaque file format, Puppeteer runs an particular of

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3274-3282 (2017) ISSN: 0975-0290

3281

the application on the server, and handling the DMI to

uncover the structure of the data, in some cases using the

application as a parser. This configuration allows for a

high degree of flexibility, since Puppeteer need not

understand the application’s file format. It creates,

however, more overhead on the server proxy, and requires

both the client and server to run the environment of the

application, which in most cases amounts to running the

same operating system on both servers and clients.

resolving at the server does not work well for documents

that choose what data to fetch and display by executing a

script. Instead, import drivers for dynamic content run in

the Puppeteer client proxy, and built on a prevent

mechanism that traces requests. Regardless of whether the

skeleton is built statically in the server proxy or

dynamically in the client proxy, any changes to the

skeleton are reflected by the Kernel at both ends to

maintain a persistent view of the skeleton. Export drivers

unparsed the PIF and update the application using the DMI

interfaces exposed by the application. A minimal export

driver has to support inserting new components into a

running application. Tracking drivers are important for

many complex methods. A tracking driver tracks which

components are being viewed by the user and intercepts

load and save requests. Tracking drivers can be

implemented using polling or event registration

mechanisms.

5.2.3 Transcoders

Puppeteer makes huge use of transcoding to perform

conversions on basic data. Transcoders include the

conventional ones, such as compression and diminish

image resolution. An exclusive transcoding system is used

to setup loading subsets of components. Each element of

the PIF skeleton has a number of associated data items

that, among other things, encode in a component-distinct

pattern the relationship between the component and its

children. To load a subset of the children of a given node,

it is required to change the data items associated with the

parent node to follow the fact that we are only loading

some of its children. In effect, by transcoding the parent

node’s data items, we create a new temporary component

that consists only of a subset of the children of the original

component.

5.2.4 Policies

Policies are modules that work on the client proxy and

control the yielding of components. These policies

traverse the skeleton, choosing what components to fetch

and with what integrity. Puppeteer provides support for

two types of Policies: general purpose Policies that are

independent of the component type being adapted and

component define Policies that use their knowledge about

the component to drive the adaptation. Typical Policies

choose components and integrities based on available

bandwidth and user defined preferences. Other Policies

track the user or react to the way the user moves through

the document. Regardless of whether the decision to fetch

a component is made by a general purpose Policy or by a

component specific one, the actual data transfer is

performed by the Kernel, free the policy from the

elaborateness of communication.

5.3 The Adaptation Process

The adaptation process in Puppeteer is divided into three

stages: resolving the document to uncover the structure of

the data, fetching the initially selected components at

distinct integrity levels and supplying those to the

application, and, if the policy so defines, modernizing the

application with newly fetched data. When the user opens

a document, the Kernel on the Puppeteer server proxy

instantiates an import driver for the proper document type.

The import driver resolves the document, extracts its

skeleton and data, and generates a PIF. The Kernel then

transfers the document’s skeleton to the Puppeteer client

proxy. The policies running on the client proxy ask the

Kernel to fetch an initial set of components at a distinct

integrity. This set of components is supplied to the

application in return to its open call. The application has

finished loading the document, returns control to the user.

Meanwhile, Puppeteer knows that only a portion of the

document has been loaded. The policies in the client proxy

now decide what further components to fetch. They

instruct the Kernel to do so, and then the client proxy uses

the DMI to feed those newly fetched components to the

application.

6. CONCLUSION
As we have discussed in this paper the cyber foraging

technique is becoming popular day by day due to

increased mobility of device by users. Users want a cost

effective way of computing needs and cyber foraging

provides just the exact functionality. It has been observed

that many applications similar to the systems like

LOCUSTS, Slingshot, and Pupetter are coming up in near

future which will be released for commercial use in couple

of years in a massive way. The popularity of this

application is going to surge in an upward direction in

years to come. Researchers in this area are actively

working to realize this.

REFERENCES

[1] Perry,Mark, O'hara,Kenton, Sellen,Abigail,

Brown,Barry&Harper,Richard, (2001) "Dealing with

Mobility: Understanding Access Anytime,

Anywhere,"Transactions on Computer-Human

Interaction (TOCHI), Vol. 8, No. 4, pp. 323-347.

[2] M. Satyanarayanan, (2001) "Pervasive Computing:

Vision and Challenges," IEEE Personal Communication,

Vol. 8, No. 4, pp. 10-17..

[3] Balan, Rajesh Krishna, Flinn, Jason, Satyanarayanan,

Mahadev, Sinnamohideen,S.&Yang, H.I.,(2002) "The

Case for Cybef Foraging," presented at the 10th Workshop

on ACM SIGOPS European Workshop: beyond the PC,

New York, NY, USA, pp. 87-92..

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 06 Pages: 3274-3282 (2017) ISSN: 0975-0290

3282

[4] Chun, Byung-Gon & Maniatis, Petros, (2010)

"Dynamically Partitioning Applications between Weak

Devices and Clouds," in 1st ACM Workshop on Mobile

Cloud Computing and Services(MCS 2010), San

Francisco, pp. 1-5.

[5] Kemp, Roelof, Palmer, Nicholas, Kielmann, Thilo,

Seinstra, Frank, Drost, Niels, Maassen,Jason&Bal, Henri,

(2009) "eyeDentify: Multimedia Cyber Foraging from a

Smartphone," in IEEE International Symposium on

Multimedia (ISM2009), San Diego, pp. 392-399.

[6] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir.

Adapting to network and client variability via on-demand

dynamic distillation. Sigplan Notices, 31(9):160–170,

September 1996.

[7] Randy H. Katz. Adaptation and mobility in wireless

information systems. IEEE Personal Communications,

1(1):6–17, 1994.

[8] Brian D. Noble, M. Satyanarayanan, Dushyanth

Narayanan, James Eric Tilton, Jason Flinn, and Kevin R.

Walker. Agile application-aware adaptation for mobility.

Operating Systems Review (ACM), 51(5):276–287,

December 1997.

[9] M. Satyanarayanan, (2001) "Pervasive Computing:

Vision and Challenges," IEEE Personal Communication,

Vol. 8, No. 4, pp. 10-17.

[10] Balan, Rajesh Krishna, Flinn, Jason, Satyanarayanan,

Mahadev, Sinnamohideen,S.&Yang, H.I., (2002) "The

Case for Cybef Foraging," presented at the 10th Workshop

on ACM SIGOPS European Workshop: beyond the PC,

New York, NY, USA, pp. 87-92.

[11] Balan, Rajesh Krishna, Satyanarayanan, Mahadev,

Park, SoYoung&Okoshi, Tadashi,(2003) "Tactics-Based

Remote Execution for Mobile Computing," in 1st

International Conference on Mobile Systems, Applications

and Services, San Francisco, pp. 273-286.

[12] Gu, Xiaohui, Messer, Alan, Greenbergx, Ira,

Milojicic, Dejan&Nahrstedt, Klara, (2004) "Adaptive

Offloading for Pervasive Computing," IEEE Pervasive

Computing Magazine, Vol. 3, No. 3, pp. 66-73.

[13] Ou, Shumao, Yang, Kun&Liotta, Antonio,(2006) "An

Adaptive Multi-Constraint Partitioning Algorithm for

Offloading in Pervasive Systems," in 4th Annual IEEE

International Conference on Pervasive Computing and

Communications (PERCOM’06), Pisa, Italy, pp. 116-125.

	I. INTRODUCTION
	6. CONCLUSION
	References

