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-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
This paper presents a survey on current applications which practice the pervasive mechanism of cyber foraging. 

The applications include the LOCUSTS framework, Slingshot, Pupetter. This applications advocated the 

operating principle of task sharing among resource deficient mobile devices. These applications face some design 

issues for providing efficient performance like task distribution and task migration apart from the security aspect. 

The general operating mechanism of the cyber foraging technique are also discussed upon and the design options 

to leverage the throughput of the inherent mechanism is also represented in a suitable way. 
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I. INTRODUCTION 

Cyber foraging refers to pervasive computing 

mechanism where resource deficient, mobile devices 

offload some of their heavy task to stronger surrogate 

machines in the surroundings. The term cyber foraging 

was given by Mr.    M. Satyanarayanan in his 2001 paper. 

Cyber foraging, helps   the mobile devices to take on more 

resource intensive tasks by leveraging unused resources on 

larger computers in the vicinity. Cyber foraging is 

foraging for a multiple   resource types   , not limited to 

processing power. Among the resources that can   be 

foraged for is network connectivity, storage, processing 

power, bandwidth and much more. All of these resource 

types are equally important in a cyber foraging scenario. 

There are many possible usage scenarios where cyber 

foraging can be utilized. Some designs for pervasive 

computing advocates for wearable computing devices   

which include small computing devices that may be worn 

by their users like clothes[1]. Users of such devices are not 

interested in carrying around equipment which are heavy, 

and these devices must therefore be as lightweight as 

possible. This is opposite to the user’s need   to have as 

powerful a device as possible. The desired computing 

power can be added to these small wearable devices 

through techniques such as cyber foraging. Consider the 

following situation   : a doctor doing house calls is 

wearing a small headset (similar in size and form to the 

well-known Bluetooth headsets for mobile phones). Using 

this headset he would like to be able to enter data 

pertaining to   his patients into an electronic journal. This 

means that the headset is faced with the difficult task of 

continuous voice recognition. The headset is unable to 

perform this translation task by itself, so instead of 

performing the actual voice recognition it only records the 

words uttered   by the doctor. Whenever the headset comes 

within range of usable computing resources it forwards 

some of the recordings to these machines who respond by 

returning the translated text[2]. In case the surrogate has 

an Internet connection it may even be given the task of 

updating the patient’s journal directly. After translation the 

headset may discard the recording and thus free storage for 

additional recordings.  In the preceding scenario   the 

application running on the mobile device works in two 

modes; high fidelity and low fidelity. When no surrogates 

are within range the headset simply saves the recordings 

(low fidelity), and when surrogates can be used the 

recordings are immediately translated into text (high 

fidelity). This high/low fidelity aspect is inherent in all 

cyber foraging applications, when surrogates are available 

high quality work may be done, but this does not mean 

that the applications will only work in the presence of 

surrogates. For cyber foraging to be usable a low fidelity 

setting must also be possible, where the mobile device 

itself is running the application, but   at a diminished 

fidelity. In the scenario low fidelity means that the headset 

only stores the recordings, but it would also be possible to 

ask the mobile device to do the processing itself, or even 

to do it in combination  with other mobile devices that 

reside in the doctors personal area network. To be able to 

perform the actions described above a number of things 

are needed. At first the mobile device must be able to 

monitor the network looking for any available 

surrogates[3]. Once found the mobile device must be able 

to distribute tasks to surrogate machines, and, in the case 

that the user is moving while tasks are being performed, 

surrogates must be able to migrate tasks between each 

other so that the result may be returned. This amount to   

complex operations, and it should not be the work of the 

application programmer to implement this. 

 

 

 

 

https://en.wikipedia.org/wiki/M._Satyanarayanan
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2. CURRENT RESEARCH CHALLENGES 
 

There are a considerable number of challenges that must 

be addressed when designing a framework for cyber 

foraging. 

2.1 Distribution of   task  

How can the complex   tasks be delegated to surrogates, 

and exactly up to what complexity of tasks   should be 

moved onto the surrogates. 

 

2.1.2 Migration of   task 

When mobile devices are using surrogates the tasks that 

are distributed to surrogates must be transferrable. It must 

be possible to move running tasks between surrogates and 

also to move a task back to the mobile device. Apart from 

this remote execution specific challenges a number of 

other challenges are posed as well in a cyber foraging 

framework, challenges such as device discovery, 

capability announcement, data staging[4]. One final 

important challenge for cyber foraging is security. 

Surrogates must execute code on behalf of, possibly 

unknown and thus untrusted, mobile devices and data must 

be transmitted over wireless links that are easy for an 

eavesdropper to monitor. Finally, the client must be able to 

trust that the surrogate actually performs the task that it is 

asked to. How can this be done in a secure manner? A fine 

balance between security and flexibility must be found 

here. 

  

2.2 Cyber Foraging Steps 

 A cyber foraging approach includes some steps that every 

available cyber foraging systems have considered all or 

some of them. These steps can be summarized as follows. 

 

2.2.1 Surrogate discovery 
At the onset, available idle surrogates that are ready to 

share their resources with the mobile device must be 

determined. Some researchers   have addressed surrogate 

discovery in quite an impressive way. 

 

2.2.2 Context gathering 
To build a good decision about target execution location, 

there is a requirement to monitor available resources in 

surrogates and mobile devices and estimate application 

resource consumptions which is regarded as context 

gathering in some cyber foraging systems: 

 

2.2.2.1 Partitioning 
 Here, a task is divided into smaller size subtasks, and 

undividable i.e. unmovable parts are specified. Some 

researchers   do the partitioning automatically. 

 

2.2.2.2 Scheduling 

The most important step of cyber foraging is to assign 

individual   task at the surrogate(s) or the mobile device 

most capable of executing it, based on the context 

information and the estimated cost of doing so. 

 

 

 

2.2.3 Remote execution control   

The final step includes   the establishment of a reliable 

connection between the mobile device and the appropriate 

surrogate to pass required information, remote execution, 

and the receipt of returned results. Various researchers 

have considered remote execution control.  

 

2.3 Cyber Foraging Goals 

Cyber foraging is a way   to execute resource intensive 

applications on resource constrained mobile devices. In 

fact, researchers in cyber foraging have tried to augment 

some resources of mobile devices in terms of effective 

metrics to obtain   more efficient application execution. 

The most important resources have been considered by 

offloading approaches are as follows: 

  

2.3.1 Energy 

 One of the most crucial limits of mobile devices is energy 

consumption because mobile device’s energy cannot be 

replenished by itself. Many researchers   have considered 

energy consumption as a factor for offloading. 

 

2.3.2 Memory and storage 

Memory capacity of mobile devices is less than stationary 

computers and memory intensive applications cannot 

usually run on mobile devices. Many researchers   have 

considered the availability of memory and storage as 

another effective parameter for offloading decision. 

 

2.3.3 Response time 

When the processing power of mobile devices is 

considerably lower than static computers, task offloading 

is advantageous to decrease execution time. Many   

researchers that have considered the response time and 

latency as a major factor affecting the offloading decision. 

 

2.3.3 I/O 

Showing a movie on a bigger screen, playing music on 

more powerful speakers, and printing are examples of task 

offloading to improve I/O quality or exploit more I/O 

devices. Some researchers   have focused on augmenting 

I/O as an effective parameter for offloading decision. 

 

3. THE LOCUSTS FRAMEWORK 
  

The LOCUSTS framework aims to provision developers 

with a complete cyber foraging toolbox that can ease the 

process of developing applications that utilize cyber 

foraging [6]. In the following the architecture of 

LOCUSTS will be briefly described in Section 3.1, and 

then the chosen approach towards task distribution is 

described in Section 3.2. Finally, task migration is 

illustrated in Section 3.3.  

 

3.1 Architecture 

 A clear view of the current architecture of LOCUSTS 

system is shown in Figure 1. The LOCUSTS daemon runs 

as a different process on both client and surrogate devices 

and the individual applications can interact with the local 

LOCUSTS instance. As depicted, a cyber foraging enabled 
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application includes some local code which is executed by 

the local device, and multiple number of distributable 

tasks. Every time a task is executed, the local LOCUSTS 

instance is communicated so that it may determine a 

suitable plan for execution. This execution plan is 

developed by the scheduler who depends on resource 

measurements, both local and remote. 

 

  

Fig. 1. LOCUSTS architecture 

 

 At the moment an execution plan has been obtained the 

task may either be distributed to one or more surrogates, or 

it may be transferred to the task processor for executing 

locally. At the bottom layer of the LOCUSTS client the 

network services layer exists. These help the mobile node 

to do all the required P2P operations like peer discovery, 

network roaming etc. All devices can opt to act as 

surrogates and thus the software running on surrogates and 

clients is identical. When performing operation as a 

surrogate, a device generally offers three things: 

 1) Execution of known tasks on behalf of clients 

 2) Client can author new tasks 

 3) Support for full task migration  

 The storage manager shown below the LOCUSTS 

daemon in above figure has a provision for a simple file 

system that can be accessed by tasks executed by 

LOCUSTS. The storage manager provides a virtual file 

system that can be accessed from within tasks. When 

executing a task on the local device, files in this virtual file 

system simply refer  to the local files, but when a task is 

delegated for remote execution, the storage managers of 

the client and the surrogate are linked, so that remote files 

may be transparently perform read operation . This small 

distributed system is  simple in design  and is designed 

specifically for the purpose of cyber foraging. It has 

property  of  on-demand synchronization of file data to 

minimize the  amount of data transferred, and has built in 

support for temporary files that will only be synchronized 

when  the task is migrated.  

 

3.2. Task Distribution 

Task distribution is at the core of cyber foraging. The 

delegation of complex work to surrogates is the 

fundamental idea of cyber foraging. When designing a 

cyber foraging framework decision must be taken for 

exactly what is delegated, when it is delegated, and at 

which granularity. The question about task granularity is 

difficult to give a definite answer to, because it depends on 

numerous factors. The main factors to focus are network 

bandwidth and latency in network , processing power of 

the mobile device  and the surrogate, the amount of energy 

used at the mobile device when communicating with the 

surrogate, and the rate of mobility of the device. When 

delegating tasks to a surrogate the mobile device needs to 

send the task to the surrogate, and similarly the surrogate 

must transmit a response back to the mobile device. This 

means that data must be transmitted over the wireless link 

between the mobile device and the surrogate. It must be 

taken care that whether the cost of this transmission, both 

in time and energy, is acceptable, i.e. whether the cost of 

distributing the task is smaller than the cost of doing the 

processing locally. Due to this reason distribution happens 

for only larger, longer running tasks, as the cost of 

delegating a small task will be more than the cost of local 

execution. But how does a small task get designated?  It is 

variable as per context depending on factors mentioned 

above. To face this challenge, decisions regarding when to 

distribute a task is advisable to be taken dynamically 

depending on the current resource availability. This is 

achieved by resource usage monitoring at the client and 

surrogates and using this data in the scheduler application 

when future execution is being planned. The LOCUSTS 

framework takes the same approach towards task 

distribution; monitoring resource usage and dynamically 

deciding where and when to distribute tasks. In LOCUSTS 

task can be resized. A resizable task is a task that can be 

solved to different degrees which means that a surrogate 

may opt to solve only a small fraction of the task before 

returning the task to the client. It happens when the 

surrogate is under timing constrains given by the client. 

LOCUSTS also have functionality of the concept of 

migratable tasks as will be described in section below. The 

next important issue to face is exactly what is distributed 

and how it is done. When a mobile device is executing an 

application that can use cyber foraging, a part of the 

application will always be running locally while other 

parts may or may not be distributed to surrogates. The 

parts of the program that can be distributed must be 

identified and, possibly, modified to make the distribution 

possible. After identifying the parts of a program that can 

be delegated to surrogates a mechanism for actually 

distributing these tasks must be found. LOCUSTS do not 

have the need to preinstall anything on the surrogates. A 

task in LOCUSTS is therefore more than just an RPC 

invocation. It also contains the actual source code of the 

task presented in a way such that any surrogate, regardless 

of architecture etc., will be able to execute it. This means, 

that the portions of the code that designate distributable 

tasks must be written in a specific, interpreted language so 

that it can be moved on to surrogates, and thus allowing 

the clients to author new tasks on the surrogate. Allowing 

clients to execute unknown code on surrogates of course 

leads to an abundance of security issues that will have to 

be addressed, but that is out of the scope of this paper. 
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Currently the language used for distributable tasks is 

Python. 

 

3.3. Task Migration Distribution  

Distributing very large tasks increases the merits of remote 

execution, since it helps to reduce the overhead of sending 

tasks back and forth. But, in existing cyber foraging 

frameworks, working with large tasks needs the user to 

stay within range of a specific surrogate for an extended 

period of time. To remove this problem, functionalities are 

made so that tasks may span multiple surrogates 

throughout their lifetime. The solution to the problem is 

task migration. Task migration enables surrogates to shift 

running tasks to other surrogates or even back on to the 

mobile device. Using migration a client no longer needs to 

stay within range of a surrogate while performing a task 

and it is thus possible to distribute larger tasks, which 

decreases the considerable overhead of remote execution. 

Task migration is depicted in Figure below. The ways that 

such task migration could be implemented range from 

simple surrogate-to-surrogate proxies to task check 

pointing. Both methods are used in LOCUSTS. Proxies 

are used in some scenarios when high speed network 

connections exist between surrogates. Take for example 

the scenario in Figure 2. The task is originated at S2 but 

when M moves out of range of S2 the task is migrated to 

S4. If, due to some reason, it makes sense to let S2 keep 

the task S4 will simply be asked to proxy for S2. In the 

viewpoint of the client M surrogate S4 is the one 

executing the task and all communications about the task 

goes through S4. Alternatively, the task could be moved 

entirely to S4. Subsequently the current executing task 

would be check pointed by S2 and its code and state sent 

to S4.  

 
Fig. 2 Task migration in LOCUSTS 

 

Many factors must be considered when choosing which 

kind of migration to use – factors such as network 

bandwidth between the surrogates, current resource usage 

at the surrogates, checkpoint size, estimated finish time of 

the task etc. This preceding description of task migration 

touches lightly on a very complex matter. 

 

3.4 Slingshot 

Slingshot is a new architecture for deploying mobile 

services at wireless hotspots[8]. Slingshot replicates 

applications on surrogate computers which are   located at 

hotspots. A first-class replica of each application executes 

on a remote server owned by the mobile user. Slingshot 

instantiates second-class replicas on    surrogates at or near 

the hotspot where the user is located. A proxy which is 

running on a handheld broadcasts each application request 

to all replicas; it returns the first response it receives to the 

application. Second-class replicas improve interactive 

response time since they are reachable through low-

latency, high-bandwidth connections (e.g. 54 Mb/s for 

802.11g). Additionally, the first-class replica is a trusted 

repository for application state, which means upon 

surrogate failure state is not lost but it is preserved. 

Slingshot also makes surrogate management easy. It 

considers virtual machine encapsulation to remove   the 

need to install application-specific code on surrogates., 

Replication prevents the loss of application state when a 

surrogate crashes or even permanently fails. The 

performance impact of surrogate failure is reduced by 

other replicas, which continue to service client requests. 

The harnessing of surrogate computation is a complex   

problem with many challenges. Our   paper addresses   

these challenges, including improving interactive response 

time, hiding the perceived cost of migration, recovering 

from surrogate failure, and simplifying surrogate 

management. It also gives   robust   results that measure 

the substantial benefit of surrogate computation for 

stateless and stateful applications. Other research 

challenges remain to be addressed. Slingshot does not yet 

address privacy concerns, provide protocols for secure 

replica management, manage surrogate load, or decide 

when to instantiate and destroy replicas. Current   

implementation of   Slingshot has two   services: a speech 

recognizer and a remote desktop. Observatory   results 

show that instantiating a second-class replica on a 

surrogate lets these applications run   nearly 2.6 times 

faster. Our results also show that replication lets Slingshot 

move services between surrogates with little user-

perceived latency and recover gracefully from surrogate 

failure. 

 

4.1   DESIGN PRINCIPLES 

We begin by discussing the three principles   followed in 

the design of Slingshot: 

 

4.1.1 Location 

Server location can be crucial   to the performance of 

remote execution. Suppose a handheld device is connected 

to the Internet at a wireless hotspot. If the handheld device 

executes code on a remote server, its network 

communication not only passes through the wireless 

medium; it also traverses the hotspot’s backhaul 

connection and the wide area Internet link. In a general   

hotspot, the backhaul connection is the bottleneck. For 

instance, the nominal bandwidth of a 802.11g network (54 

Mb/s) is more than an order of magnitude greater than that 

of a T1 connection. If the handheld could instead execute 

code on a server located at the hotspot, it could reduce   

the communication delay associated with the bottleneck 

link. For interactive applications that require sub-second 

response time, server location can make the difference 

between acceptable and unacceptable performance. 
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Network latency is also a concern. A server that is nearby 

in physical distance can often be quite distant in network 

topology due to the unexpected changes   of Internet 

routing. Firewalls, VPNs, and NAT components   add 

additional latency when connections cross administrative 

boundaries [9]. For mobile users, a journey of only a few 

hundred feet   can enhance   the round-trip time for 

communication with a remote server. But a   server located 

at the current hotspot is only a network hop away. 

 

4.1.2 Replicate instead of migrate 

The need to locate services near mobile users refers that 

services need to move over time. When a handheld user 

moves to a new location, a surrogate at the new hotspot 

will generally offer better response time than a surrogate at 

the previous hotspot. In case we need to move 

functionality, one option is migration: suspend the 

application on the previous surrogate, send its state to the 

new surrogate, and resume it there. This approach affects 

the availability of the application while it is migrating. 

Slingshot deploys   an alternative strategy that instantiates 

multiple replicas of each service. During instantiation of 

new replicas, existing replicas continue to serve the user. 

Slingshot replication is a form of primary-backup fault 

tolerance; i.e. it tolerates the failure of any number of 

surrogates. For each application, Slingshot creates a first-

class replica on a reliable server known to the mobile user 

this server is referred to as the home server. Slingshot 

ensures that all application state can be reconstructed from 

information stored on the client and the home server. This 

allows all state on a surrogate to be regarded as soft state. 

Even if all surrogates crash, Slingshot continues to service 

requests using the first-class replica on the home server. In 

contrast, a naive approach that migrates applications 

between surrogates might lose state when a surrogate fails. 

We note that Slingshot handles both stateful and stateless 

applications[10]. The result of a remote operation for a 

stateful application depends upon the operations that have 

previously executed. Slingshot assumes that applications 

are deterministic; i.e. that given two replicas in the same 

initial state, an identical sequence of operations sent to 

each replica will produce identical results. Slingshot 

instantiates a new replica by check pointing the first-class 

replica, shipping its volatile state to a surrogate, and 

replaying any operations that occurred after the 

checkpoint. Instantiation of a new replica takes several 

minutes since the volatile state must travel through the 

bandwidth constrained backhaul connection. However, 

existing replicas mitigate the perceived performance 

impact. Until the new replica is instantiated, existing 

replicas service application requests. 

 

4.1.3 Ease of maintenance 

We observe that the business case for deploying a 

surrogate as being similar to that of deploying a wireless 

access point. Desktop computers have become cheaper, 

not much more than an access point. Further, it has been 

shown by researchers that surrogates can provide 

significant value-addition to wireless users in terms of 

improved interactive performance. Nevertheless, 

surrogates must be easy to manage if they are to be widely 

deployed. Since we envision surrogates at hotspots in 

airport lounges, coffee shops, and bookstores, they must 

need negligible or no supervision. They should be 

appliances that require little configuration. Apart from that 

maximum trouble shooting should be possible by a normal 

restart. For easy management of surrogates Slingshot has 

the following policies. 

 

4.1.3.1 Minimizes the surrogate computing base 

Each replica runs within its own virtual machine, which 

encapsulates all-application specific state such as a guest 

OS, shared libraries, executables, and data files. The 

surrogate computing base consists of only the host 

operating system (Linux), the virtual machine monitor 

(VMware), and Slingshot. No configuration or setup is 

needed to enable a surrogate to run new applications each 

VM is self-contained. 

 

4.1.3.2 Uses a heavyweight virtual machine 

 While Para virtualization and other lightweight 

approaches to virtualization offer scalability and 

performance benefits, they also restrict the type of 

applications that can run within a VM. In contrast, by 

deploying  a heavyweight VMM (VMware), Slingshot 

runs the two applications described in Section 4.2  without 

modifying source code, even though their guest OS 

(Windows XP) differs substantially from the surrogate 

host OS (Linux)[11]. 

 

4.1.3.3 Places no hard state on surrogates 

 As surrogates have only soft state, a normal or abnormal 

restart does not result to incorrect application behavior or 

data loss. If a surrogate crashes or is restarted, the only 

effect observable by the user is that performance goes 

down to the level that would have been available in the 

absence of the surrogate. 

 

4.2 Slingshot implementation 

Figure 1 shows an overview of Slingshot. For simplicity of 

exposition, this figure assumes that the mobile client is 

executing a single application and that a single surrogate is 

being used. In practice, we expect a Slingshot user to run 

only one or two applications concurrently, with each 

service replicated two or three times. Each Slingshot 

application is partitioned into a local component that runs 

on the mobile client and a remote service that is replicated 

on the home server and surrogates. Ideally, we partition 

the application so that resource-intensive functionality 

executes as part of the remote service; the local component 

typically contains only the user interface. This partitioning 

enables demanding applications to run on clients such as 

handhelds that are highly portable but also resource-

impoverished. The applications that we have studied so far 

(speech recognition and remote desktops) already had 

client server partitioning that fit this model. For some 

applications, the best partitioning may not be immediately 

clear—in these cases, we could leverage prior work to 

choose a partition that fits our model. In Figure 1, a first-

class replica executes on the home server and a second-
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class replica executes on the surrogate. The home server, 

described in Section 3.2, is a well-maintained server under 

the administrative control of the user, e.g. the user’s 

desktop or a shared server maintained by the user’s IT 

department.  They are administered by third parties and 

are not assumed to be reliable. Slingshot creates the first-

class replica when the user starts the application—this 

replica is required for execution of stateful services. As the 

application runs, Slingshot dynamically instantiates one or 

more second-class replicas on nearby surrogates. These 

replicas improve interactive performance because they are 

located closer to the user and respond faster than the first-

class replica on the distant home server. If no second-class 

replicas are instantiated, Slingshot’s behavior is identical 

to that of remote execution. Each replica executes within 

its own virtual machine. Replica state consists of the 

persistent state, or disk image of the virtual machine, and 

the volatile state, which includes its memory image and 

registers. On the home server, requests are redirected to a 

service database that stores the disk blocks of every 

remote service. On a surrogate, VMware reads are first 

directed to a service cache if the block is not found in the 

cache, it is fetched from the service database on the home 

server. 

 

4.3 Slingshot applications 
We have adapted the IBM Via Voice speech recognizer 

and the VNC remote desktop to use Slingshot[5]. Due to 

Slingshot’s use of virtual machine encapsulation, we did 

not need to modify the source code of either application. 

All Slingshot-specific functionality is performed within 

proxies that intercept and redirect network traffic. 

 

4.3.1 Speech recognition 

We chose speech recognition as our first service because 

of its natural application to handheld computers. We used 

IBM Via Voice in our work. We created a server side 

proxy that accepts audio input from a remote client and 

passes it to Via Voice through that application’s API. Via 

Voice returns a text string which the proxy sends to the 

client. Via Voice and our server run on a Windows XP 

guest OS executing within a VMware virtual ma-chine. 

The local component of this application displays the 

speech recognition output. We chose to implement speech 

recognition as a stateless service. One can certainly make 

a reasonable argument that speech recognition should be a 

stateful service in order to allow a user to train the 

recognizer. However, we wanted to explore the 

optimizations that Slingshot could provide for stateless 

services. 

 

4.2 Virtual desktop 

VNC allows users to view and interact with another 

computer from a mobile device. In the case of Slingshot, 

the remote desktop is a Windows XP guest OS executing 

within a VMware virtual machine. This allows users to 

remotely execute any Windows application from their 

handhelds. This is clearly a stateful service; i.e., a user 

who edits a Word document expects the document to exist 

when the service is next instantiated. Adapting VNC to 

Slingshot presented interesting challenges[12]. First, the 

VNC server sends display updates to the client in a non-

deterministic fashion. When pixels on the screen change, it 

reports the new values to the client in a series of updates. 

Two identical replicas may communicate the same change 

with a different sequence of updates. The resulting screen 

image at the end of the updates is identical but the 

intermediary states may not be equivalent. A second 

challenge is that some applications are inherently non-

deterministic. One annoying example is the Windows 

system clock; two surrogates can send different updates 

because their clocks differ. We noted that some non-

determinism is unlikely to be relevant to the user (e.g. a 

slightly different clock value).Unfortunately, other non-

determinism affects correct execution. For example, a key 

stroke or mouse click is often dependent upon the window 

state. If a user opens a text editor and enters some text, the 

key strokes must be sent to each replica only after the 

editor has opened on that replica. If this is not done, the 

key strokes will be sent to another application. To solve 

this problem, we associate a precondition with each input 

event. When the user executes the event, we log the state 

of the window on the client to which that event was 

delivered. When replaying the event on a server, we 

require that the window be in an identical state before the 

event is delivered. Since each event is associated with a 

screen coordinate, we check state equality by comparing 

the surrounding pixel values of the original execution and 

the background execution. In the above example, this 

strategy causes Slingshot to wait until the editor is 

displayed before it delivers the text entry events. A second 

issue with VNC is that its non-determinism prevents us 

from mixing updates from different replicas. We designate 

the best-performing replica as the foreground replica and 

the remainder as background replicas. Only events from 

the foreground replica are delivered to the client. If 

performance changes, we quiescence the replicas before 

choosing a new foreground replica. Two replicas are 

quiesced by ensuring that the same events have been 

delivered to each, and by requesting a full-screen update 

from the new foreground replica to eliminate transition 

artifacts. New events are logged while quiescing replicas. 

Note that the foreground replica is rarely the first-class 

replica since nearby surrogates provide better performance 

in the common case. We were encouraged that VNC can 

fit within the Slingshot model, since its behavior is 

relatively nondeterministic. Based on this result, we 

suspect that application-specific wrappers can be used to 

enforce determinism for many applications. For those 

applications where this approach proves infeasible, we 

could use a VMM that enforces determinism at the ISA 

level. Handhelds can improve interactive response time by 

leveraging surrogate computers located at wireless 

hotspots. Slingshot’s use of replication offers several 

improvements over a strategy that simply migrates remote 

services between computers. Replication provides good 

response time for mobile users who move between 

wireless hotspots; while a new replica is being 

instantiated, other replicas continue to service user 

requests. Replication also lets Slingshot recover gracefully 
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from surrogate failure, even when running stateful 

services. Slingshot minimizes the cost of operating 

surrogates. For these computers to be of maximum benefit, 

they must be located at wireless hotspots, rather than in 

machine rooms that are under the supervision of trained 

operators. Slingshot uses off-the-shelf virtual machine 

software to eliminate the need to install custom operating 

systems, libraries, or applications to service mobile users. 

All application-specific state associated with each service 

is encapsulated within its virtual machine. Further, 

Slingshot’s replication strategy means that surrogates need 

not provide 24/7 availability. If a surrogate fails or is 

rebooted, no state is lost. Harnessing surrogate 

computation is a complex problem. Slingshot currently 

provides several pieces of the puzzle, including the use of 

replication to improving response time and the elimination 

of hard surrogate state to improve ease of management. 

Other pieces of the puzzle remain. Slingshot does not yet 

address the privacy issues inherent to running computation 

on third-party hardware[13]. Trusted computing efforts 

provide promise in this area. Slingshot does not provide a 

mechanism for securely controlling replica instantiation 

and termination. Other areas of potential investigation are 

load management and policies for creating and destroying 

replicas. We believe that Slingshot will be an extremely 

useful platform on which to conduct such investigations. 

 

5. PUPPETEER 
5.1 Introduction  
Puppeteer is advocated as a system for using   applications 

based on components in mobile environments. It reaps the 

advantage of the exported interfaces of these applications 

and the structured nature of the documents they 

manipulate to perform adaptation without changing the 

applications. The system is structured in a modular 

fashion, allowing easy addition of new applications and 

adaptation policies. The initial prototype concentrated on 

adaptation to limited bandwidth. It was designed to run on 

Windows NT, and included support for a variety of 

adaptation policies for Microsoft PowerPoint and Internet 

Explorer 5[7]. We represent in this paper that  Puppeteer 

can support complex policies without any major change  to 

the application and with negligible cost. 

 

 
 

Fig 3 Overall architecture 

 

Figure above shows the four-tier Puppeteer system 

architecture. It includes the applications which are to be 

adapted, the Puppeteer client proxy, the Puppeteer server 

proxy, and the data server. The application and data server 

are completely untouched. The Puppeteer client proxy and 

server proxy work combinely to perform the adaptation. 

The Puppeteer client proxy is in control of executing the 

policies that adapt the applications. The Puppeteer server 

proxy has to parse the documents, exposing their structure 

and transcoding components as needed and requested by 

the client proxy. The Puppeteer server proxy is considered 

to have robust connection with the data server. In the most 

common situation, it executes on the same machine as the 

data server. Data servers can be random repositories of 

data such as Web servers, file servers or databases. 

 

5.2 Puppeteer Architecture 
The Puppeteer architecture is represented by four types of 

modules: Kernel, Driver, Transcoder, and Policy (see 

Figure 2). The Kernel appears once in both the client and 

server Puppeteer proxy. A driver supports adaptation for a 

particular elemental type. A driver for a specific elemental 

type may call on a driver for another elemental type, if an 

elemental of the modern type is included in an elemental 

of the basic type. The driver for a specific application 

resides on the top of this driver hierarchy. Driver 

execution may happen in both the client and the server 

Puppeteer proxies, as may Transcoders which model 

particular transformations on elemental types. Policies 

denote specific adaptation mechanisms and subsequently 

execute in the client Puppeteer proxy. 

 

5.2.1 Kernel 

The Kernel is a part which is independent module that 

derives the Puppeteer protocol. The Kernel executes in 

both the client and server proxies and triggers the shift of 

document components. The Kernel does not include 

knowledge regarding the specifics of the documents being 

transmitted. It functions on a representation neutral 

description of the documents, which are referred to as the 

Puppeteer Intermediate Format (PIF). A PIF has a skeleton 

of components, each of which possess a set of related data 

items. The skeleton includes the structure of the data used 

by the application. it has the form of a tree, with the root 

being represented as the document, and the children being 

pages, slides or any other elements in the document. The 

skeleton is a multi-level data structure as elements in any 

level can contain sub elements. The skeleton is element 

independent, but elements in the skeleton are element 

specific[8]. To improve functional performance, the 

Kernel batches requests for multiple elements into a single 

message and has provisional support for asynchronous 

requests. 

 

5.2.2 Drivers 

Puppeteer requires an import and an export driver. A 

tracking driver is necessary to implement compound 

policies. The import drivers resolves the documents, 

extracting their elemental structure and converting them 

from their application limited file formats to PIF.In the 

general case where the application’s file format is 

parsable, either because it is human readable (e.g., XML) 

or there is sufficient documentation to create a parser, 

Puppeteer can parse the files directly to uncover the 

structure of the data[13]. This leads to good performance, 

and enables clients and server to run on different 

platforms. When the application only exposes a DMI, but 

has an opaque file format, Puppeteer runs an particular of 
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the application on the server, and handling the DMI to 

uncover the structure of the data, in some cases using the 

application as a parser. This configuration allows for a 

high degree of flexibility, since Puppeteer need not 

understand the application’s file format. It creates, 

however, more overhead on the server proxy, and requires 

both the client and server to run the environment of the 

application, which in most cases amounts to running the 

same operating system on both servers and clients. 

resolving at the server does not work well for documents 

that choose what data to fetch and display by executing a 

script. Instead, import drivers for dynamic content run in 

the Puppeteer client proxy, and built on a prevent 

mechanism that traces requests. Regardless of whether the 

skeleton is built statically in the server proxy or 

dynamically in the client proxy, any changes to the 

skeleton are reflected by the Kernel at both ends to 

maintain a persistent view of the skeleton. Export drivers 

unparsed the PIF and update the application using the DMI 

interfaces exposed by the application. A minimal export 

driver has to support inserting new components into a 

running application. Tracking drivers are important for 

many complex methods. A tracking driver tracks which 

components are being viewed by the user and intercepts 

load and save requests. Tracking drivers can be 

implemented using polling or event registration 

mechanisms. 

 

5.2.3 Transcoders 

Puppeteer makes huge use of transcoding to perform 

conversions on basic data. Transcoders include the 

conventional ones, such as compression and diminish 

image resolution. An exclusive transcoding system is used 

to setup loading subsets of components. Each element of 

the PIF skeleton has a number of associated data items 

that, among other things, encode in a component-distinct 

pattern the relationship between the component and its 

children. To load a subset of the children of a given node, 

it is required to change the data items associated with the 

parent node to follow the fact that we are only loading 

some of its children. In effect, by transcoding the parent 

node’s data items, we create a new temporary component 

that consists only of a subset of the children of the original 

component. 

 

5.2.4  Policies 

Policies are modules that work on the client proxy and 

control the yielding of components. These policies 

traverse the skeleton, choosing what components to fetch 

and with what integrity. Puppeteer provides support for 

two types of Policies: general purpose Policies that are 

independent of the component type being adapted and 

component define Policies that use their knowledge about 

the component to drive the adaptation. Typical Policies 

choose components and integrities based on available 

bandwidth and user defined preferences. Other Policies 

track the user or react to the way the user moves through 

the document. Regardless of whether the decision to fetch 

a component is made by a general purpose Policy or by a 

component specific one, the actual data transfer is 

performed by the Kernel, free the policy from the 

elaborateness of communication. 

 

5.3 The Adaptation Process 

The adaptation process in Puppeteer is divided into three 

stages: resolving the document to uncover the structure of 

the data, fetching the initially selected components at 

distinct integrity levels and supplying those to the 

application, and, if the policy so defines, modernizing the 

application with newly fetched data. When the user opens 

a document, the Kernel on the Puppeteer server proxy 

instantiates an import driver for the proper document type. 

The import driver resolves the document, extracts its 

skeleton and data, and generates a PIF. The Kernel then 

transfers the document’s skeleton to the Puppeteer client 

proxy. The policies running on the client proxy ask the 

Kernel to fetch an initial set of components at a distinct 

integrity. This set of components is supplied to the 

application in return to its open call. The application has 

finished loading the document, returns control to the user. 

Meanwhile, Puppeteer knows that only a portion of the 

document has been loaded. The policies in the client proxy 

now decide what further components to fetch. They 

instruct the Kernel to do so, and then the client proxy uses 

the DMI to feed those newly fetched components to the 

application. 

 

6. CONCLUSION 
As we have discussed in this paper the cyber foraging 

technique is becoming popular day by day due to 

increased mobility of device by users. Users want a cost 

effective way of computing needs and cyber foraging 

provides just the exact functionality. It has been observed 

that many applications similar to the systems like 

LOCUSTS, Slingshot, and Pupetter are coming up in near 

future which will be released for commercial use in couple 

of years in a massive way. The popularity of this 

application is going to surge in an upward direction in 

years to come. Researchers in this area are actively 

working to realize this.  
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