
Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3188

Use Case Modeling in Software Development: A

Survey and Taxonomy
Zahra Rashidi

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

zrashi@ce.sharif.edu

Zeynab Rashidi

Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran

zeynabrashidi@aut.ac.ir

Hassan Rashidi

Department of Mathematics and Computer Science, Allameh Tabataba'i University, Tehran, Iran

hrashi@atu.ac.ir

---ABSTRACT---
Identifying use cases is one of the most important steps in the software requirement analysis. This paper makes a

literature review over use cases and then presents six taxonomies for them. The first taxonomy is based on the

level of functionality of a system in a domain. The second taxonomy is based on primacy of functionality and the

third one relies on essentialness of functionality of the system. The fourth taxonomy is concerned with supporting

of functionality. The fifth taxonomy is based on the boundary of functionality and the sixth one is related to

generalization/specialization relation. Then the use cases are evaluated in a case study in a control command

police system. Several guidelines are recommended for developing use cases and their refinement, based on some

practical experience obtained from the evaluation.

Keywords -Use cases, Taxonomy, Software Engineering.

--

Date of Submission: April 10, 2017 Date of Acceptance: April 18, 2017

--

I. INTRODUCTION

Domain analysis paves the way from gathering

requirements to an object-oriented analysis and modeling.

In turn, system analysis feeds back into domain analysis

by demanding richer and more refined definitions for

concepts and scopes. Fig. 1 shows that domain analysis

feeds conceptual modeling, but is also updated and refined

through that modeling[1].

Figure 1- Steps in domain analysis

Domain analysis discovers and defines business concepts

within the context of the problem space. Use case

modeling channels, transforms and expands these concepts

into a model of system behavior (see [2], [3], [4], [5], [6]).

Use cases are the first step towards conceptual modeling in

which a set of related use cases provide the behavioral

model of a system (see Fig. 1). The boundaries of the

system or the subsystem depicted by use cases are defined

by domain definition. The starting point of use cases are

the concepts discovered through domain analysis—

primarily, but not limited to, those categorized as

processes. Use case modeling is a set of use cases that,

together, describe the behavior of a system. A use case is a

unit of this model in which is a description of an

interaction that achieves a useful goal for an actor.

A use case can be a textual narrative, but it must have four

well-defined components to qualify as a use case. The first

component is a goal as the successful outcome of the use

case and second one are stakeholders whose interests are

affected by the outcome (including actor(s) who interact

with the system to achieve the goal. The third component

is a system that provides the required services for the

actors, and forth one is a step-by-step scenario that guides

both the actor(s) and the system towards the finish line.

The narrative of a use case is made up of one or more

flows. The normal flow is the best-case scenario that

results in the successful completion of the use case. An

alternate flow exists only if conditional steps are needed. It

may have sub-flows if steps in the normal flow contain

sub-steps and have exceptions that describe what may

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3189

prevent the completion of one-step or the entire use case.

Table 1 summarizes information associated with a use

case and shows a template for developing use cases.

Table 1: A Template for developing a use case and

information associated with it

Use Case Name

Description
 This part describes one or two

sentence of the use case

Stakeholders/

Actors

 This part identifies the actors

participating in the use case

Includes
 This part identifies the use cases

included in it

Extends
 This part identifies the use case

that it may extend

Pre-Conditions

This part identifies the

conditions which must be met to

invoke this use case

Details/Flow
This part identifies the details of

the use case.

Goal/Post-

Conditions

This part identifies the

conditions hold at the conclusion

of the use case

Exceptions

This part identifies any

exceptions that might arise in

execution of the use case

Constraints
This part identifies any

constraints that might apply

Variants/Alternate

Flow

This part identifies any

variations that might hold for the

use case

Comments

This part provides any additional

information, which might be

important in the use case

The main motivation of this paper is to survey over the use

case modeling and makes six taxonomies for use cases.

The structure of remaining sections is as follows. In

Section 2, the literature review and taxonomies of use case

are presented. In Section 3, a case study for the control

command police system is presented. In Section 4, the

most important guidelines to develop use cases are

recommended. Finally, Section 5 is considered to

summary and conclusion.

2. LITERATURE REVIEW AND TAXONOMIES

Use case modeling represents the behavior of a system. A

use case details the interaction of entities outside a system,

called actors, with the system to achieve a specific goal by

following a set of steps called a scenario. Use case

modeling is the first step for transforming domain

concepts into models for building a solution. A use case is

a textual narrative that details how one or more entities

called actors interact with a system to achieve a result that

is primarily of value to one of them, the primary actor.

Various authors define use cases differently:

 Rumbaugh (1994) states that a use case is a

description of all of the possible sequences of

interactions among the system and one or more

actors in response to some initial stimulus by one

of the actors [7].

 Iacobson el al (1999) states that a use case

specifies a sequence of actions, including a

variant that a system performs and that yields an

observable result of value to a particular actor [8].

 Cockburn (2000) states that a use case is a

collection of possible sequences of interactions

between the system under discussion and its

external actors, related to a particular goal [9].

 Bruegee and dudoit (2010) state that a use case is

initiated by an actor. After its initiation, a use

case may interact with other actors, as well. A use

case represents a complete flow of events through

the system in the sense that it describes a series of

related interactions that result from its initiation

[10].

The common threads in all of above definitions are actors

and sequences of interactions. In this approach, several

concepts are important: the goal, the system, and the actor

and use case bundle. The goal is the business value to the

‘user(s)’ of the system who usually initiate the interaction
with the system. The system is the application with all of

its associated hardware that will be used by the ‘users’. An
actor is external entity that interacts with a system. A use

case bundle is a collection of use cases that are highly

correlated with some activity or organizing business

element. A use case bundle gives us away to organize our

use cases into collections that will help us better

understand the functionality of the system that we are

developing any large systems.

In the literature, we found several kinds of use cases,

including ‘High-Level’, ‘Low-Level’, ‘Primary’ ,
‘Secondary’, ‘Essential’, ‘Concrete’, ‘Including’,
‘Extending’, ‘Starting, ‘Stopping’ use cases ([11], [12],

[13], [14],[15]). We added four other use cases:

‘Generalizing’, ‘Children’, ‘Frond End’ and ‘Back End’
use cases.

In capturing the functional aspects of the system, one of

the difficulties in generating a useful discussion of a

system is keeping the description at a consistent level of

abstraction. For use cases to be successfully developed, it

is necessary to know the dimension of the functional

description that one is attempting to capture. Then the

analyst can determine the level of detail, primacy of

functionality, designing and implementation issues in the

information that should be captured. Regarding these

issues, we have six taxonomies for the use cases.

2.1 First View: Level Of Functionality

In one dimension, we can distinguish between high-level

and low-level functional descriptions of a system:

 High-LevelUse Case (HLUC): It is a black box

view of the system by which we deal entirely with

the dialog between the actor and the system. High-

level use case provides general and brief

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3190

descriptions of the essence of the business values

provided. It is not concerned with how the business

values are achieved. For example, managing

accounts is a high-level use case in each accounting

system of banks.

 Low-Level Use Case (LLUC): It is a white box (or

transparent box) view of the system by which we

deal with the dialog between the actor and the

system and what the system does to provide the

functionality. For example, adding an account,

updating an account, and deleting an account are

low-level use cases that establish detailed activities

for managing an account in the account system of

banks.

2.2 Second View: Primacy Of Functionality

In a second dimension, we can distinguish between

primary and secondary functions of the system.

 PrimaryUse Case (PRUC): These use case provide

functions to users that constitute the reason for

which the system exists. For example, generating a

report is a primary use case in the account system of

banks.

 Secondary Use Case (SEUC): These use case are

functionality that deals with exceptional and rare

cases that may occur in the environment. They

allow analysts to capture system behavior under

error conditions. These functions are necessary to

deliver a robust system. For example, the

consistency of database must be controlled in the

account system and the crashed data must be

recovered.

2.3 Third View: Essentialness Of Functionality

In the third dimension, we can distinguish between the

essential and the concrete functions of the system:

 Essential Use Case (ESUC): It captures business

solutions that are independent of implementation. It

is usually depicted as black box models and is

independent of hardware and software.

 Concrete Use Case (COUC): It captures business

solutions in terms that are design-dependent, like

transparent box models. A concrete use case can

“extend” an abstract essential use case.

2.4 Forth View: Supporting of Functionality

Some use cases support other use cases. They are called

supporting use cases, which are categorized to the

following use cases:

 Including Use Case (INUC): we must view

including use case as a relation that identifies a use

case that acts like a subroutine to other use cases.

Typically, including use cases will not have actors

that initiate them. We can consider these use cases

as inheriting actors.

 Extending Use Case (EXUC): We can have some

situation in which several use cases are identical

with the exception of one or two specific

subsequences of interactions. In this case, we can

extract the common core (base use case) and treat

the use cases that differ as extensions of this base

use case. Thus, an extend relationship exists

between an extension and the core. This allows us

to capture in an easy form those situations where

the sequences captured in several use cases may

differ as the result of a simple conditional at the end

of the sequence.

2.5 Fifth View: Boundary of Functionality

In the fifth dimension, we must think about running the

system, which concern with start-up and shut down the

system.

 Starting Use Case (SRUC): These use cases

captures the behavior of the system when it is

being starting up. They are usually design-

dependent, like Transparent Box Models.

 Stopping Use Case (SPUC): These use cases

capture the behavior of the system when it is being

shutting down. They are usually design-dependent,

like Transparent Box Models.

 Frond End Use Case (FEUC): These use cases

capture the behavior of the system when it

interacts with users.

 Back End Use Case (BEUC): These use cases

capture the behavior of the system when it

interacts with servers such as Database server and

Web server.

These use cases will be the last use cases to be developed

because we must wait until sufficient details are known to

identify what information must be initialized during

startup and preserved during shutdown.

2.6 Six View: Supporting of Inheritance

In the sixth dimension, we consider inheritance between

use cases. In this view, there are two kinds of use cases:

 Generalizing Use Case (GEUC):If two or more

use cases achieve the same goal through different

means but share most activities, theGeneralizing

Use Case abstracts their common feature into a

generalized super-use case (also called the parent).

 Children Use Case (CHUC): The children use

cases inherit features from the parent, where they

override (or specialize) them, or when they add new

features.The relationship that exists between the

Generalizing use case and the Children is a

generalization/specialization relation.

The differences between extending and generalizing use

case are subtle, but they are important. The extending use

case defines a set of extension points in the basic use case,

but the generalization use case does not. With extending

use case, the basic core must know that it is going to be

extended in order to define the extension points. This is

not so with generalizing use case. The extending use case

adds to the basic core’s functionality, but generalizing use

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3191

case overridesit so that it totally replaces it, albeit with

something similar.

3. PRACTICAL EXPERIMENTS

In order to make specific guidelines for developing use

case model, we used a Control Command Police System

(CCPS) for which a mini-requirement is briefly described

in [16]. This system is extended in [17] and then it is used

in our study due to its fertility for reusability in both

application and system software. This police service

system must respond as quickly as possible to report

incidents and its objectives are to ensure that incidents are

logged and routed to the most appropriate police vehicle.

The most important factors that must be considered which

vehicle to choose to an incident include:

 Type of incident: some important and worsening

events need immediate response. It is recommended

that specified categories of response actions are

assigned to a definite type of incident.

 Location of available vehicles: Generally, the best

strategy is to send the closest vehicle to address the

incident. Keep in mind that it is not possible to

know the exact position of the vehicles and may

need to send a message to the car to determine its

current location.

 Type of available vehicles: some incident need

vehicles need and some special incident such as

traffic accidents may need ambulance and vehicles

with specific equipment.

 Location of incident: In some areas, sending only

one vehicle for response is enough. In other areas,

may be a police vehicle to respond to the same type

of accident is enough.

 Other emergency services such as fireman and

ambulance: the system must automatically alert the

needs to these services.

 Reporting details: The system should record

details of each incident and make them available for

any information required.

To identifying major use cases, we must arrive to

analyzing domain concepts marked as ‘process’ or
‘function’, but the conversion ratio is not one-to-one.

Sometimes we have to break up a process into more than

one use case; at other times we might have to combine

pieces of multiple processes or functions to arrive at one

use case. Other domain concepts, such as objects or

business rules might find their way into use cases if the

context requires it. Each process that will achieve a useful

business goal is definitely one use case. The other

fundamentally different processes in which they

participate usually result in other use cases. Although the

standard practice of documenting use cases is to start from

the external event to the system, in certain circumstances,

we want to document the use case from the external event

to the actor.

At first, we wrote two or three of the most common and

simple process. When identifying the use cases, we gave a

descriptive name and a one or two sentence description of

each. The names of use cases based upon the goal the

actor is attempting to achieve and, if necessary, to

distinguish variations in the circumstance in which it is

invoked. We used a verb to start the name of the use case.

Then, we make one or two sentences for description to

identify the approximate interaction that is to be captured

in the use case. We performed the analysis in an

incremental fashion and develop the use case model

iteratively. In each iteration, we provided very brief

descriptions initially and then refined them so that the goal

is to provide more details about the use case.

A couple of experts in IT field helped us to develop the

conceptual model of the CCPS. After a long discussion,

we prepared Table 2, in which shows the information

concerned with specific parts of the template (see Table 1)

in different kinds of use cases. It is used to guide the

development of use case. The development of high-level,

primary, essential use cases requires that analyst identifies

the essential business information to establish the business

value proposition, the preconditions that must apply for

the use case to complete, and the post-conditions that are

promised, and any constraints or variations that might

exist.

We immediately documented actors identified as the result

of describing a use case. These actors needed to be

documented in terms of what actions they are required to

provide. If multiple actors can initiate the same set of

actions, we introduced an abstract actor of which all the

others are specializations. A summary of the results in

identifying the main ‘high level’ use cases are put into
Table 3.

To document use case, we can use ‘use case diagram’ in
which there are several basic elements. Use case diagram

is a ‘meta-model’-an abstraction of use cases[1]. In its

basic form, it displays the boundaries of the system, the

name of the use cases, and the actors who interact with

each use case. The main use case diagram and activity

diagram of this system are depicted in Fig. 2 and Fig. 3,

respectively.

Use cases apply to many different paradigms to develop a

systems(see[18], [19], [20],[21]). In this study, we apply it

to object oriented software development. In this paradigm,

after developing use case model we must identify the

objects in system and their relationships (See Fig.1 for

Structural Modeling). There are many approaches to

identify objects ([22], [23], [24], [25], [26], [27],

[28],[29]). The Class Diagram of this system is depicted in

Fig. 4. In this class diagram, the main classes, are

‘Incident’, ‘Police Staff’, ‘Police Vehicle’, ‘Police
Officer’, ‘Director’, ‘Route Manager’, ‘Incident Waiting
List’, ‘Response’ and ‘GPS Receiver’. In the figure, the
attributes and methods of each class are shown.

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3192

Table 2: Information concerned with specific parts of the template in different kinds of use cases

Kind of Information

High-Level

Primary

Essential

Low-Level

Primary

Secondary

Essential

Low-Level

Primary

Concrete

Low-Level

Primary

Secondary

Concrete

Business Information Actors Actors Actors Actors

Technological Information Relations Relations

Relationships among primary and

secondary, extending, and including use

cases

Preconditions Preconditions Preconditions Preconditions

Essential information
Post-

conditions

Post-

conditions

Post-

conditions

Post-

conditions

High-level information about the interaction

between system and actors
Details Details

Detailed concrete information that applies

to use cases that are not generalizations
 Exceptions Details Details

Added information included as appropriate

for the specific use case

Constraints

Variants

Constraints

Variants

Constraints

Variants

Constraints

 Variants

Table 3: The main high level uses case identified in the Control Command Police system

Name of the use

case
Actors involved Description

Call Taking

Reporter Of Incident, Police

Station Operator, Police

Officer, Alarm

An operator in Police Station receives a phone call about

an accident at a given location

Incident

Registration

Police Station Operator,

Police Officer

Police Officer received the call center operator and

details of the incident. The system automatically

classifies the incident and determines its priorities.

Close Incident
Dispatcher, Record

Management System

Dispatcher collects information associated with the

accident and the record is saved into the system

Send Report
Primary Police Unit,

Dispatcher

A report associated with the incident is collected and

send to Dispatcher

Request More

Units
Primary unit, Dispatcher

Police Unit requests the new forces, Dispatcher comply

with this request or rejects it

Create Response Dispatcher Dispatcher makes the response and makes coordination

Unit

Management
Police Unit, Dispatcher

Dispatcher handles the incident and monitors the

resources/forces allocated to the incident

Send Data Police Unit, Dispatcher

Incident details (address, number of victims, ...) and call

details (field of call, number of units, ...) are sent police

unit

Request To

incident
Police unit

Police Officers at police cars received information about

the accident, then goes to the scene and handles the

mission. He/she will be available again for the next

mission.

Dispatch Units Police Unit, Dispatcher
Data, information and how to respond to accident are sent

to the selected units

Find Closest

Unit
Police Station Operator Finding the nearest unit to the location of the incident

Get Position of

Units
Positioning system The positioning system finds the closest unit to the scene

Alert

Emergency

service

Emergency Service
Emergency services such as fire or ambulance system are

alerted and called

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3193

Fig. 2: The main Use Case Diagram of the Control Command Police System

Fig. 3: The Activity Diagram of the Control Command Police System

Use cases and scenarios are not sufficient documentation

for conceptual modeling. So we went to Dynamic

Modeling step (See Fig.1). In this step, we had to look at

ways of documenting the events and documenting the

dynamic behavior in a form more suited for programming.

In particular, an event list is created and each event in the

list must be responded. In the abstraction view, four

aspects of an event including ‘Label’, ‘Meaning’, ‘Source
Object’ and ‘Destination Object’ must be specified. We
prepared Table 4, as the main event list for the CCPS.

Since we did not fully implement this system, the ‘Front
End and ‘Back End’ use cases are not in the table.

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3194

Fig. 4: The Class Diagram of the Control Command Police System

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3195

Table 4: The main event list captured in the Control Command Police System

Label Meaning
Source

Object

Destination

Object

H
ig

h
 L

ev
el

L
o
w

 L
ev

el

P
ri

m
a
ry

S
ec

o
n
d
ar

y

E
ss

en
ti

al

C
o
n

cr
et

e

In
cl

u
d
in

g

E
x
te

n
d
in

g

S
ta

rt
in

g

S
to

p
p
in

g

G
en

er
al

iz
in

g

C
h
il

d
re

n

1 CT3 getLocation Alarm Call taker √ 1 √

2 CT2 receiveCall Alarm Call taker √ √ √

3 PS1 getPosition
Available

vehicle list

Positioning

system
 √ √ √ √

4 O1 acceptCall Call taker operator √ √ √

5 I1 createRecord Call taker incident √ √ √

6 IWL5 getIncident Call taker
Incident waiting

list
 √ √ √

7 I2 getIncidentLocation Call taker incident √ √ √

8 I3 getIncidentType Call taker incident √ √ √ √

9 A1 getType Call taker alarm √ √ √ √

10 I4 prioritize Call taker Incident √ √ √ √

11 ADB1 search Call taker Alarm database √ √ √

12 I5 submitRecord Call taker incident √ √ √ √

13 I6 Update Call taker incident √ √ √ √

14 R9 allocateClass
class of

Response
Response √ √ √ √

15 UR4 accept Dispatcher Unit request √ √ √

16 R7 addVehicle Dispatcher Response √ √ √

17 R4
confirmNumOfVehi

cles
Dispatcher Response √ √ √ √

18 R5
confirmTypeOfVehi

cles
Dispatcher Response √ √ √ √

19 M1 Create Dispatcher Mission √ √ √

20 RC1 CreateResponse Dispatcher
Response

creator
√ √ √

21 RP1 findClosestVehicle Dispatcher Route planner √ √ √ √

22 RP4 findClosestVehicle Dispatcher Route planner √ √ √ √

23 FR11 receive Dispatcher Final report √ √ √

24 UR5 reject Dispatcher Unit request √ √ √

25 CR1 Select Dispatcher
Class of

Response
√ √ √ √

26 I17 select Dispatcher incident √ √ √

27 M2 update Dispatcher mission √ √ √ √

28 RMS1 receiveReport Final report

Record

management

sys.

 √ √ √

29 R8 updateStatus Final report Response √ √ √

30 IWL1 addIncident Incident
Incident waiting

list
 √ √ √

31 IRL2 deleteIncident incident
Incident

Response list
 √ √ √

32 IWL3 deleteIncident incident
Incident waiting

list
 √ √ √

33 CT4 getIncidentInfo incident Call taker √ √ √ √

34 RMS3 receiveIncident incident

Record

management

sys.

 √ √ √

35 IWL4 Sort
Incident

waiting list

Incident waiting

list
√ √ √ √

36 PP1 getAssistInfo mission Primary Police √ √ √

37 PV1 receiveInfo Mission Police vehicle √ √ √ √ √

38 I7 createRecord operator Incident √ √ √

39 I15
getIncidentDescripti

on
operator Incident √ √ √

40 I14 getIncidentExtent operator Incident √ √ √ √

41 I13 getIncidentFire operator Incident √ √ √

42 I12 getIncidentInjury operator Incident √ √ √

43 I9 getIncidentLocation Operator Incident √ √ √

44 I11 getIncidentStatus operator Incident √ √ √ √

45 I10 getIncidentTime Operator Incident √ √ √

46 I8 getIncidentType Operator Incident √ √ √ √

47 I16 submitRecord operator incident √ √ √ √

48 AVL3 addVehicle
Police

officer

Available

vehicle list
 √ √ √

49 ODL1 addVehicle
Police

officer
On duty list √ √ √

50 AVL1 deleteVehicle
Police

officer

Available

vehicle list
 √ √ √

51 ODL2 deleteVehicle
Police

officer
On duty list √ √ √

52 PO1 getMission
Police

vehicle
Police officer √ √ √

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3196

Label Meaning
Source

Object

Destination

Object

H
ig

h
 L

ev
el

L
o
w

 L
ev

el

P
ri

m
a
ry

S
ec

o
n
d
ar

y

E
ss

en
ti

al

C
o
n
cr

et
e

In
cl

u
d
in

g

E
x
te

n
d
in

g

S
ta

rt
in

g

S
to

p
p
in

g

G
en

er
al

iz
in

g

C
h
il

d
re

n

53 FR1 Create
Primary

Police
Final report √ √ √

54 IR2 create
Primary

Police
incident report √ √ √

55 UR1 create
Primary

Police
Unit request √ √ √

56 UR2
determineNumOfVe

hicles

Primary

Police
Unit request √ √ √

57 UR3
determineTypeOfVe

hicles

Primary

Police
Unit request √ √ √

58 FR10 finish
Primary

Police
Final report √ √ √

√

59 M3 Finish
Primary

Police
mission √ √ √

√

60 FR4 getArrivalTime
Primary

Police
Final report √ √ √

61 FR9 getAssistUnits
Primary

Police
Final report √ √ √

62 FR2 getDate
Primary

Police
Final report √ √ √

63 FR5 getDispatcher
Primary

Police
Final report √ √ √

64 FR7 getHowReceived
Primary

Police
Final report √ √ √

65 FR6 getMission
Primary

Police
Final report √ √ √

66 FR8 getPrimary Police
Primary

Police
Final report √ √ √

67 PO2 getStatus
Primary

Police
Police officer √ √ √ √ √

68 FR3 getTime
Primary

Police
Final report √ √ √

69 IR1 update
Primary

Police
Incident report √ √ √

70 CT1 receiveCall reporter Call taker √ √ √

√

71 I19 Close Response incident √ √ √

72 RMS2 receiveResponse Response

Record

management

sys.

 √ √ √

73 IRL1 addIncident
Response

creator

Incident

Response list
 √ √ √

74 ES2 alert
Response

creator

Emergency

service
√ √ √

75 R1 create
Response

creator
Response √ √ √

76 R2
determineNumOfVe

hicles

Response

creator
Response √ √ √ √

77 R3
determineTypeOfVe

hicles

Response

creator
Response √ √ √

78 ES1 getIncidentInfo
Response

creator

Emergency

service
 √ √ √

79 R6 Submit
Response

creator
Response √ √ √ √

80 RP2 calculateDistance
Route

planner
Route planner √ √ √ √

81 RP3 compareDistance
Route

planner
Route planner √ √ √ √

82 I18 getIncidentLocation
Route

planner
incident √ √ √

83 AVL2 search
Route

planner

Available

vehicle list
√ √ √ √

84 MAV1 select
Route

planner

Most

appropriate

vehicle

 √ √ √ √

85 D1 receiveRequest Unit request Dispatcher √ √ √

Sum 35 50 57 28 66 19 8 2 3 4 10 5

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3197

Fig. 5: Number of Use cases identified in the development of Control Command Police System

As we can see in the table, these are 85 events in the

control command police system. Each event must be

responded by a specific functionally of the objects. The

number of Use cases identified in the development of

Control Command Police System are depicted in Fig. 5.

From the figure, we derive several observations as

follows:

 Observation-1: The percentages of ‘Primary’ and
‘Essential’ use cases in the Control Command
Police system almost have the most highest value,

respectively. It is because of ‘Primary use cases’
constitute the reason for which the system

developed and ‘Essential use cases’ make business
solutions that are independent of implementation.

 Observation-2: The percentage of ‘Low Level’
use case is significantly more than ‘High Level’
use cases. It is due to the ‘High Level use case’ are
general activities while ‘Low Level use cases’ are
where we need the specific activities.

 Observation-3: The percentage of ‘Essential’ use
cases is significantly more than ‘Concrete’ use
cases.It is because of we have not too much use

cases concerned with specific hardware such as

GPS in the control command police system.

 Observation-4: The percentage of ‘Primary’ use
cases is significantly more than ‘Secondary’ use
cases.It is due to the ‘Secondary use cases’
involves rare and exceptional conditions.

 Observation-5: The percentage of ‘Including’ use
case is significantly more than ‘Extending’ use
cases.

 Observation-6: The percentages of ‘Starting use
cases’ in the system are more than that of ‘Stopping
use case’ use case, i.e. only one. This relatively
higher percentage shows that ‘Starting use cases’
have more important in the software.

4. GUIDELINES

From a modeling perspective, a use case must capture the

series of interactions between an actor and the system that

achieves some useful business goal for the initiator of the

interaction. The identification of responsibilities of the

actors is a good base from which to find reasons for the

actor to interact with the system. In this section, several

guidelines are recommended to perform any use case

modeling, based on our experience obtained from

developing use cases in the control command police

system.

4.1 Guideline for Identifying High-level, Primary and

Essential Use Cases

When dealing with high level, primary and essential use

cases, we must identify general activities first. These

general activities constitute high-level use cases that are

actually defined by a set of low-level use cases. The low-

level use cases are where the specific activities are

identified. The guidelines for performing this step follow:

 We must not introduce too much detail in the

basic descriptions of a use case. It is normal for a

description to seem trivial by the time that analyst

completes documenting the use case. The value

of keeping it simple is to give us a mental nudge

when we are bogged down in details later.

 The preconditions section of the use case

description should identify what information is

required for these use cases to execute normally.

 We must avoid ‘technology-dependent use cases’
like load, save, startup, and shutdown when

identifying ‘High Level’, ‘Primary’ and
‘Essential’ use cases because addressing business
use cases still does not finish. There is not

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3198

enough information available to effectively

identify appropriate behavior. These use cases

will be the last ones to be developed because we

must wait until sufficient details are known to

identify what information must be initialized

during startup and preserved during shutdown.

4.2 Guidelines for developing Secondary, Concrete and

Low-level Use Cases

When dealing with secondary, concrete and low-level use

cases, we are introducing details that border on design.

The development of these use cases should only be

attempted by individuals with significant design skills. An

extremely common problem encountered is for a poor

design to be specified in these use cases. We must look

into the structure of the system rather than the system

itself. The guidelines to following during the early

iterations are as follows:

 If the ‘detail section’ of a use case includes
another use case, we must identify all of the

exceptions that the included use case can throw

for that step. This allows the ‘including use case’
to identify the error condition to which it must

react. Of course, these exceptions will be

identified in the exceptions section of the

description for the ‘included use case’.
 For each step in the ‘details section’, we must

identify what errors or alternatives can occur.

Each error is examined in terms of what actions

should be taken to keep the model consistent. The

information necessary to identify what actions

should be taken is often clear from the context in

which the error occurs.

 We must not put a lots of ‘ifs’ and ‘go to/jumps’
in the ‘details section’ because they interfere with

understanding the domain.

 It is important to label each step appearing

within the ‘details section’ of the template (Table
1) with a number. This allows us to make cross-

references to that step in other sections of the use

case. This is extremely significant when it comes

to identifying ‘exceptions’ and ‘constraints’ of
the template.

 We must capture ‘exceptions’ in a table that
includes three columns: (a) the step in which the

error occurs, (b) a label for the error, and (c) the

actions that should be performed. As was the case

with the details section, it is useful to number

each step in the actions to be performed.

4.3 Guidelines for developing Generalizing, Children,

Including and Extending Use Cases

When dealing with ‘including’, ‘extending’, ‘generalizing’
and ‘children’ use cases, the following guidelines must be
considered:

 We must view ‘including use case’ as a relation
that identifies a use case that acts like a

subroutine to other use cases. Typically, included

use cases will not have actors that initiate them.

We can consider these use cases as inheriting

actors.
 In some cases, a number of use cases all share a

common structure with the exception of some

minor additional steps. These cases can be

simplified as an extension of a common

‘generalizing use case’. In this case, the use case
exploits the details of another use case and

identifies where the additional details are

incorporated.

 The precondition section of a use case that

extends another identifies the condition that

determines if the ‘extending use case’ should be
invoked.

 In some cases, the same general activity may take

place in several use cases, but have significantly

different details depending upon the entities that

participate in them. Even though ‘generalizing
use case’ should have been identified earlier than
this point, it is still a good idea to examine the

use cases to determine if new ‘generalizing use
case’ can be added.

4.4 Guidelines for Developing Starting, Stopping,

Frond End and Back End Use Cases

When dealing with ‘Starting, ‘Stopping’, ‘Frond End’ and
‘Back End’ use cases, the following guidelines must be
considered: The most common situation encountered

among people writing use cases for the first time is that

they immediately start writing use cases for starting and

stopping the system. The main problem is that they don't

even know what the system is to do, yet they are worried

about what initialization activities have to take place. The

guidelines to establish when these use cases should be

developed are as follows:

 In writing ‘Frond End’ Use case, we must be
worrying about screens that lead to difficulty in

writing the use cases. Often, analyst gets about

halfway through the use case and then starts

describing what some screen looks like. The

description can go on for pages if the screen

layout is complex. Instead, the analyst should

only identify the objects present on the screen.

Even then, only focus on those that apply to the

use case. We must not worry about the layout of

the buttons and fields on the screen. It is the

interaction with the screen that is important in the

use case. That can be done as a figure in the

‘comment section’ of the ‘use case description’ or
in a separate description from the use case.

 In writing ‘Starting’ Use case, we must consider
that the initialization activities are highly design-

dependent. If the analyst develops ‘essential’ use
cases, then there will not be sufficient

information to identify what actions should be

performed during ‘starting’ and ‘stopping’ use
cases’. These events should not be developed for
‘essential use cases’.

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3199

 When the analyst develops ‘concrete use cases’,
the ‘Starting’ and ‘Stopping’ use cases should

only be addressed once all of the ‘essential’ and
‘secondary’ use cases have been developed. At
this point, one has sufficient detail to identify if

connections to external actors should be created

during initialization or not; whether specific

structural details have to be constructed, and so

on.

 It is important to distinguish the service request

or event notification the actor is initiating from

the manner (action) in which the actor invokes

the request or event notification. In many cases,

the same service request can be invoked in

multiple fashions: by keystrokes, menu items, or

buttons. However, the resulting activities of the

system are identical. It is this later component

that we are attempting to capture in use cases.

5. SUMMARY AND CONCLUSION

This paper reviewed different use cases as a means for use

case modeling in software development. From a modeling

perspective, a use case must capture the series of

interactions between an actor and the system that achieves

some useful business goal for the initiator of the

interaction. The identification of responsibilities of the

actors is a good base from which to find reasons for the

actor to interact with the system. The recommended

approach is:

a) We must develop a primary, essential, high-level

use case model and consider scenarios as

instances of use cases. Creating more abstract

scenarios to develop use case is necessary if two

or three scenarios look very similar. We must be

cautious of creating more than 40 use cases to

cover the fundamental system actions, ‘High
Level’ use cases (It was 35 in our experiment, as
a large system). Additional use cases for unusual

events should be chosen with care and kept to a

manageable number.

b) If the business domain is not well understood, we

must use the model of the step (a) to develop a

primary and secondary, essential, low-Level use

case model. To identify details, we must start

simple and slowly introduce complexity. We

must focus first on the simple case where

everything is perfect and no problems exist. It is

not a bad idea to give a very brief set of details

initially for each use case, focusing only on

course features. This allows analyst to identify

supporting use cases that simplify the process by

extracting common details into other use cases.

c) If the technology is not well clarified, we must

use the model of the step (b) to develop a

primary, concrete, low-level use case model.

d) If the system involves with reliability, we must

use the models of the step (b) and the step (c) to

help develop a secondary, concrete, low-level use

case model.

REFERENCES

[1]. N. Ashrafi, H. Ashrafi, Object Oriented Systems

Analysis and Design, Pearson, 2009.

[2]. S.H. Pfleeger, and J.M. Atlee, Software

Engineering: Theory and Practice, 4
th

 Edition,

Pearson, 2010.

[3]. R.S. Pressman, Software Engineering: A

Practitioner's Approach, 8
th

 Edition, McGraw-

Hill, 2015.

[4]. J. Rumbaugh, M. Blaha, W. Premerlani, F.

Eddy, and W. Lorensen, Object-Oriented

Modeling and Design, Prentice-Hall, 1992.

[5]. D. Rosenberg, and M. Stephens, Use Case

Driven Object Modeling with UML: Theory and

Practice, Apress, 2007.

[6]. C. Larman, Applying UML and Patterns – An

Introduction to Object-Oriented Analysis and

Design and Iterative Development, 3
rd

 edition,

Prentice Hall, 2005.

[7]. J. Rumbaugh, Getting Started: Using Use Cases

To Capture Requirements,Object-Oriented

Programming, September, 1994.

[8]. I. Jacobson, G. Booth, and J. Rumbaugh, The

Unified Software Development Process,

Addison-Wesley, 1999.

[9]. A. Cockburn, Writing Effective Use Cases

(Draft 3), Addison Wesley Longman, 2000.

[10]. B. Bruegge, and A.H. Dutoit, Object-Oriented

Software Engineering: Using UML, Patterns,

and Java, Pearson Prentice Hall, 2010.

[11]. R.C Lee, and W.M. Tepfenhart, UML and C++:

A Practical Guide to Object-Oriented

Development, 2
nd

 Edition, Pearson Prentice Hall,

2005.

[12]. P. Coad, and E. Yourdon, Object-Oriented

Analysis, Yourdon Press, 1991.

[13]. N. Goldsein, and J. Alger., Developing Object-

Oriented Software for the Macintosh Analysis,

Design, and Programming, Addison-Wesley,

1992.

[14]. M. Langer, Analysis and Design of Information

Systems, 3
rd

 Edition, Springer-Verlag London

Limited, 2008.

[15]. J. Martin, and J. Odell, Object-Oriented

Analysis and Design, Prentice-Hall, 1992.

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3188-3200 (2017) ISSN: 0975-0290

3200

[16]. Y. Sommerville, Software Engineering, 9
th

Edition, Pearson Education, 2010.

[17]. H. Rashidi, Software Engineering - A

programming approach, 2
nd

 Edition, Allameh

Tabataba’i University Press (in Persian), Iran,
2014.

[18]. G. Booch, J. Rumbaugh, and I. Jacobson, The

Unified Modeling Language User Guide,

Addison-Wesley, 1999.

[19]. J. Rumbaugh, I. Jacobson, and G. Booch, The

Unified Modeling Language Reference Manual,

Addison-Wesley, 1999.

[20]. M. Fowler, and K. Scott, UML Distilled A Brief

Guide to The Standard Object Modeling Guide,

2
nd

 Edition,Addison Wesley Longman, Inc,

1999.

[21]. I. Jacobson, M.P. Christerson, and F. Overgaard,

Object-Oriented Software Engineering - A Use

Case Approach, Addison-Wesley, Wokingham,

England, 1992.

[22]. G. Bavota, A.De. Lucia, A. Marcus, and R.

Oliveto, Automating extract class refactoring:

an improved method and its evaluation,

Empirical Software Engineering, Vol. 19, pp.

1616-1664, 2014.

[23]. G. Canforaa, A. Cimitilea, A.D. Luciaa, and

G.A.D. Lucca, Decomposing Legacy Systems

into Objects: An Eclectic Approach, Information

and Software Technology, Vol. 43, pp. 401-412,

2001.

[24]. A.V. Deursen, and T. Kuipers, Identifying

Objects Using Cluster and Concept Analysis,

Proc. of 21
st
 International Conference on

Software Engineering, Los Angeles, CA, ACM

Press, New York, pp. 246-255, 1999.

[25]. M. Fokaefs, N. Tsantalis, E. Strouliaa, and A.

Chatzigeorgioub, Identification And Application

Of Extract Class Refactoring In Object-Oriented

Systems, Journal of Systems and Software, Vol.

85 , pp. 2241–2260, 2012.

[26]. J.V Gurp, and J. Bosch, Design,

Implementation, and Evolution of Object-

Oriented Frameworks: Concepts and

Guidelines, Software, Practice and Experience,

Vol. 31, pp. 277-300, 2001.

[27]. H. Rashidi, Objects Identification in Object-

Oriented Software Development - A Taxonomy

and Survey on Techniques, Journal of Electrical

and Computer Engineering Innovations, Vol. 3

(2), pp. 27-43, 2015.

[28]. S. Schlaer, and S. Melior, Object Lifecycles:

Modeling the World in States, Yourdon Press,

1992.

[29]. R. Wirfs-Brock, Designing Object-Oriented

Software, Prentice-Hall, 1990.

[30]. M. Josuttis Nicolai, The C++ Standard Library:

A Tutorial and Reference, Addison-Wesley,

1999.

	I. INTRODUCTION
	The main motivation of this paper is to survey over the use case modeling and makes six taxonomies for use cases. The structure of remaining sections is as follows. In Section 2, the literature review and taxonomies of use case are presented. In Secti...
	2. Literature Review and Taxonomies
	To document use case, we can use ‘use case diagram’ in which there are several basic elements. Use case diagram is a ‘meta-model’-an abstraction of use cases[1]. In its basic form, it displays the boundaries of the system, the name of the use cases, ...

