
Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3175-3180 (2017) ISSN: 0975-0290

3175

Web-Based User Interface for the Floodlight SDN

Controller
Hakan Akcay

Department of Computer Engineering, Istanbul University, Istanbul

Email: hknakcay@gmail.com

Derya Yiltas-Kaplan

Department of Computer Engineering, Istanbul University, Istanbul

Email : deryayiltas@gmail.com

--ABSTRACT---

Software Defined Networking (SDN) was born as a solution for next-generation network design. Due to its flexible

architecture, SDN promises to make network devices simpler while giving better centralized control ability over

network and improving parameters such as flexibility, resilience, reliability, and security. In this paper, we briefly

introduce the SDN architecture and the Floodlight Controller that is one of the popular SDN controllers. We build

a web-based user interface for the Floodlight Controller by using REST API. This application is the first program

in the Floodlight SDN Controller literature to view the controller upon several properties such as device

connections and flow tables.

Keywords – Floodlight Controller, OpenFlow, Programmable Networks, SDN Web, Software-Defined Network.

Date of Submission: March 14, 2017 Date of Acceptance: March 22, 2017

-- ---------------------------

INTRODUCTION

The increase in the number of devices connected to the

Internet, makes it very difficult to control the network.

Problems such as configuration errors, lack of capacity of

routing tables, security leaks are more common than ever

before. Controlling the network by an administrator has

become highly complex because of the inflexible behavior

of the network components from switches and routers to

firewalls, network address translators, load balancers, and

intrusion detection systems.

 In this context, Software Defined Networking (SDN) is

a new way to design and manage networks [1]. SDN is a

network programming framework that allows developers

to program the network services with making it more

intelligence and enhancing the performance of the network

[1]. SDN is an agile, simple to implement and not costly

architecture that decouples the data level from the control

level [2].

 SDN is being contributed by many prominent vendors

like Cisco, Google, HP, Big Switch Networks, etc. [1].

 The rest of this paper organized as follows: Section 2

introduces traditional networks. Section 3 describes SDN

in more detail. Section 4 is about Floodlight Controller

and finally Section 5 presents the conclusions.

1. TRADITIONAL NETWORKS

In the traditional networks, all network elements are

defined by OSI (Open Systems Interconnection) model.

This model has 7 layers that can have multiple protocols

individually [3]. Each layer operates depending on its own

lower layer and serves the upper layer. There are simple

network devices on the lower layers of the OSI model

while more complicated devices work on the upper layers.

Therefore, operating the devices on the upper layers is

more complicated than that on lower layers [3]. Switches

are layer 2 elements and also the simplest devices in

present networks. Routers are more complex, because they

manage network traffic based on the forwarding decisions

with using the routing tables which are constructed

manually.

 According to the traditional network approach, most of

the network functionalities are implemented in a dedicated

manner such as configuration of routers and switches,

delivery of network applications using a hardware such as

ASIC (Application Specific Integrated Circuit) [4]. Data

flow is managed by routers and switches by using certain

protocols.

 We represent a traditional network architecture in Fig.1

by including the data, control, and management planes

together.

Fig. 1. Traditional network management

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3175-3180 (2017) ISSN: 0975-0290

3176

 The limitations of the traditional networks are

becoming more important. In addition, they are not agile,

slow to implement and takes too long to market [2].

 In the traditional network approach, network

administrators typically configure individual network

devices by using the vendor based configuration

interfaces. Network operators are responsible for

configuring policies and implement many complex

protocols to a wide range of network applications [5].

They have to apply these high-level policies into low-level

configuration commands manually to configure network

elements. They have very limited tools to perform these

complex tasks [5].

 However, internet applications and services become

more complex and difficult to control day by day [5]. The

idea of “Programmable Networks” emerged to facilitate
network evolution. In particular, SDN is a new network

design that promises to simplify network management and

enable network innovation and evolution [5].

2. SOFTWARE-DEFINED NETWORKING

SDN is changing the way of design and management of

the networks. SDN is a result of long work to make

computer networks more programmable and flexible [6].

SDN has two important characteristics. First, SDN

separates the control plane and the data plane of the

network elements. Second, SDN centralizes the control

plane with a single software called SDN Controller that

manages the entire network and its components, such as

OpenFlow switches, routers, and other middleboxes, via

Application Programming Interfaces (API) [6]. An SDN

Controller uses a protocol called OpenFlow to control

switches and routers from the controller software. We

represent a simplified view of the SDN architecture in Fig.

2.

Fig. 2. Simplified view of the SDN architecture.

 With the separation of control and data planes, network

components return to the simple forwarding devices and

the control of these elements is implemented in the

logically centralized controller software [7]. The SDN

Controller directly controls the forwarding elements via

well-defined APIs. The mostly used one of these APIs is

OpenFlow. An OpenFlow switch has one or more flow

table inside and each table consists of some flow rules.

Each rule of table matches a subset of the traffic actions

such as dropping, forwarding, and modifying. The

controller software has the ability of inserting, modifying,

and deleting the rules of a flow table of switch. Therefore,

an OpenFlow switch can be instructed by a controller and

behaves like a router, firewall or performs other roles like

load balancer [7].

2.1. SDN CONTROLLERS

SDN works on five fundamental traits: plane separation, a

simplified network device, centralized control, network

automation, and openness [8].

 SDN Controllers fulfill the task of centralized control.

The Controller is the main component of the network

operation system (NOS) and the SDN networks.

Controllers take the responsibility of establishing every

flow in the network by modifying flow entries on the

network devices [9]. Controllers must perform

management of the network state and also the distribution

of this state. A controller may involve a database to store

information about network elements and the related

softwares. A Controller software must provide a modern,

commonly RESTful (Representational state transfer) API

to an external application [10]. The communication

between a controller and all network devices must be

provided via a secure TCP control session. Additionally, a

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3175-3180 (2017) ISSN: 0975-0290

3177

device and topology discovery mechanism and a service

management system must be provided.

3. FLOODLIGHT CONTROLLER
Floodlight is Java-based, open source and one of the most

popular SDN controllers supporting physical and virtual

OpenFlow compatible switches. It has a number of

packages denoted by org.openlow [8]. Floodlight is based

on Bacon controller from Standford University [10].

 The Floodlight architecture is modular with including

device management module, topology module, learning

switch, load balancer, Web Graphical User Interface (Web

GUI) for web access, counter module for statistics.

Floodlight controller presents a RESTful API allowing

some applications to learn and get the state of the

controller and network [10]. It uses LLDP protocol to

discover network topology. Floodlight Provider module

called as core module, handles I/O from network devices

and turns incoming OpenFlow messages into Floodlight

events.

 Floodlight controller uses event listeners for receive

notifications. Most important listeners are: SwitchListener,

DeviceListener, MessageListener.

 SwitchListener is used to receive notifications

whenever a switch is connected or disconnected to the

internet or has a change in its port status. DeviceListener is

notified whenever a device (generally an end-user node)

has been added, removed, moved or has changed its IP

address or VLAN address [8].

 MessageListener gets notifications whenever a packet

has been received by the controller. When a packet is

received, the application processes the packet and takes

the appropriate action [8].

 Floodlight controller provides both reactive and

proactive applications: Java APIs for reactive and

RESTful APIs for proactive application style. Proactive

Floodlight applications can use the RESTful APIs to get

information about the network state. Floodlight RESTful

API uses the Restlet framework and includes a small web

server inside that allows external applications to

communicate with the SDN controller. Floodlight

Controller Structure is shown in Fig.3.

Fig. 3. Floodlight controller structure [11]

3.1. FLOODLIGHT REST API

In the early days of commercial Internet, setting

configuration parameters of devices has been possible only

using methods such as CLI, TL1, NETCONF, SNMP, TR-

069 [10]. These mechanisms are available now and have

been rarely used with SDN. But they are slow and difficult

to maintain [10]. Furthermore, they are not suitable for

today’s data centers because that the data centers are

required dynamic, frequent, and automated management

tasks.

 In the last few years, newer methods have been

developed to make remote configuration changes on the

network devices. The most popular and common one is the

REST API. REST has been developed to make API calls

across networks and uses Hypertext Transfer Protocol

(HTTP) which is commonly used to pass the web traffic

[10]. They are simple and extensible and use a standard

TCP port and thus do not require any special configuration

to allow API calls to pass through firewalls [10]. SDN

Controller northbound API is shown in Fig. 4.

Fig. 4. SDN controller northbound API

 The web-based REST mechanism is based on some

methods such as HTTP GET, PUT, POST, and DELETE.

It is very easy to make these REST calls secure by using

HTTPS (Secure HTTP) protocol instead of HTTP. The

Floodlight Web GUI is built on the REST API.

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3175-3180 (2017) ISSN: 0975-0290

3178

3.2. FLOODLIGHT WEB GUI

In this section, we mention our Floodlight Web GUI in

detail. This GUI provides a way for users to view the

controller’s state information, to connect switches via
inter-switch links and the hosts to the network, to monitor

the flow tables of the switches and the network topology

[11]. Most of the statistics can be queried and displayed in

an easy-to-read and tabular fashion by using this web GUI.

Additionally, several modules of the Floodlight Controller

can be exposed to the end users via this web GUI. For

example, the Static Flow Pusher module has this GUI to

insert the flows easily [11].

 We develop the Floodlight Web GUI’s home page as
the controller’s dashboard as in Fig. 5. Here, network

administrators can monitor the status, uptime, selected role

of the controller, connected switches count, connected

hosts count, and the links between the switches.

 Also, the details about the controller’s memory
consumption, the storage tables, and all loaded modules

can be monitored. All of these parts of the GUI uses the

REST API calls of the Floodlight Controller.

Fig. 5. Home page of the controller

 One of the most important module of the GUI is the

switches module that gives some detailed information of

the connected switches such as flow count, packet count,

buffer size, flow table count, vendor, hardware, and

software version (see Fig. 6). Additionally, the

administrators can change the role of a switch to Master,

Slave or Equal by using this module.

Fig. 6. Flow summary table of a switch

 It is possible to add static flow entries to the flow table

of a switch (see Fig. 7) and to monitor the port table of this

switch.

Fig.7. Flow table of a switch

 Web GUI presents a list of the hosts connected to the

network with the information of the MAC address of a

host, IPV4 address, IPV6 address, MAC address of the

connected switch, connected port of the switch, and last

seen time.

 All links between the switches can be monitored via

GUI. Properties such as the direction of links, source

switch and its port, destination switch and its port, and

type of the link (internal, external) are the information

provided.

 Floodlight controller comes with a firewall module. A

network administrator can change the status of the

firewall, can enable/disable the firewall and change subnet

mask of the firewall by using this module as in Fig. 8.

Also, new firewall rules can be added or deleted.

Fig. 8. Firewall module of GUI

 While adding a firewall rule, the parameters that must

be provided are switch id, source port, source mac address,

destination mac address, source IP address, destination IP

address, protocol type (TCP, UDP or ICMP), priority, and

action (ALLOW, DENY) [11].

 Floodlight contains an application that enforces Access

Control Lists (ACL) in a reactive way. It is a firewall

application that monitors Packet-in messages and then

pushes appropriate flow entries [11]. In a proactive way,

without being requested by the switch, the controller

enforces ACL rules to switches too. Thus, the controller

prevents additional delays [11].

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3175-3180 (2017) ISSN: 0975-0290

3179

 Fig. 9 represents the record insertion to the ACL and

Table 1 gives the properties of an ACL rule.

Fig.9. Adding a record to the ACL

Table 1. Properties of an ACL rule

Key Value Notes

nw-

proto

string "TCP" or "UDP" or

"ICMP" (ignoring case)

src-ip IPv4

address[/mask]

Either src-ip or dst-ip

must be specified.

dst-ip IPv4

address[/mask]

Either src-ip or dst-ip

must be specified.

tp-dst number Valid when nw-proto ==

"TCP" or "UDP".

action string "DENY" or "ALLOW"

(ignoring case), set to

"DENY" if not specified.

 Topology discovering module of the Floodlight uses

LLDP protocol. And GUI calls the related RESTful API

method of this module. Topology view of network is

based on DIRECT and TUNNEL links discovered based

on LLDP packets [11]. Our sample SDN topology built in

the GUI is represented in Fig. 10.

Fig.10. SDN topology view in the GUI

4. CONCLUSION
The traditional network architecture cannot fulfill today’s
network requirements efficiently and the popularity of

SDN is increasing day by day.

 SDN is the new network paradigm and can be easily

implemented to the classical networks. The Floodlight

controller and GUI provide many useful tools and a

programmable network framework. SDN is just a new tool

for developing new applications to solve network-

management problems more easily. To support more

widely ranged network services, SDN applications would

require much more complex methods to analyze and

control the network traffic, and programmable hardware.

 Before developing an SDN application, the developer

must decide between two general styles of SDN

applications: reactive or proactive. In case of the reactive

SDN applications, the output of the communication

between the switch and the controller is usually a new

flow entry in the switch’s flow table. Reactive applications
can program multiple switches parallelly. On the other

hand, the proactive SDN applications require less

communication from switch to controller. The proactive

SDN applications program switches connected to the

network with the flow entries that are appropriate to

control and manage the incoming traffic before it arrives at

the switch.

 The reactive type is more useful when the connectivity

to the controller is lost but less additional latency is

provided with the proactive programming.

REFERENCES

[1] A. Shahid, J. Fiaidhi and S. Mohammed,

Implementing Innovative Routing Using Software

Int. J. Advanced Networking and Applications

Volume: 08 Issue: 05 Pages: 3175-3180 (2017) ISSN: 0975-0290

3180

Defined Networking (SDN), International Journal

of Multimedia and Ubiquitous Engineering, 11(2),

2016, 159-172.

[2] G. Wiley, Software networks, virtualization, sdn, 5g

and security (Great Britain: ISTE Ltd and John

Wiley & Sons, 2015).

[3] K. Ahokas, Software-defined networking, Aalto

University CSE-E4430 Methods and Tools for

Network Systems, Finland, Autumn 2014.

[4] Pooja, M. Sood, SDN and Mininet: Some Basic

Concepts, Int. J. Advanced Networking and

Applications, 07(02), 2015, 2690-2693.

[5] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K.

Obraczka and T. Turletti, A Survey of Software-

Defined Networking: Past, Present, and Future of

Programmable Networks, IEEE Communications

Surveys & Tutorials, 16(3), 1617-1634.

[6] N. Feamster, J. Rexford, and E. Zegura, The road to

SDN: an intellectual history of programmable

networks, SIGCOMM Comput. Commun, 44(2),

2014, 87-98.

[7] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E.

Rothenberg, S. Azodolmolky and S. Uhlig,

Software-Defined Networking: A Comprehensive

Survey, in Proceedings of the IEEE, 103(1), 2015,

14-76.

[8] P. Göransson, C. Black, Software defined networks

(USA: Morgan Kaufmann, 2014).

[9] Y. Jarraya, T. Madi and M. Debbabi, A Survey and a

Layered Taxonomy of Software-Defined

Networking, IEEE Communications Surveys &

Tutorials, 16(4), 2014, 1955-1980.

[10] T. D. Nadeau, K. Gray, SDN: software defined

networks (USA: O’Reilly, 2013).

[11] R. Izard (administrator), H. Akcay (GUI developer),

(2017). Floodlight WEB GUI. [online]

Floodlight.atlassian.net. Available at:

https://floodlight.atlassian.net/wiki/spaces/floodlight

controller/pages/40403023/Web+GUI [Accessed 17

Mar. 2017].

	1. TRADITIONAL NETWORKS
	2. SOFTWARE-DEFINED NETWORKING
	2.1. SDN CONTROLLERS
	3. FLOODLIGHT CONTROLLER
	3.1. FLOODLIGHT REST API
	3.2. FLOODLIGHT WEB GUI
	4. CONCLUSION
	REFERENCES

