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Introduction 
Binary ± 1-valued Golay – Rudin – Shapiro sequences 

(2-GRSS) associated with the cyclic group 2
nZ  were in-

troduced independently by Golay [1, 2, 3] in 1949-1951, 
Shapiro [4, 5] and Rudin [6] in 1951.M.J.E.Golay [2] in-
troduced the general concept of “complementary pairs" of 
finite sequences all of whose entries are ± 1. For building 
the classical FGRST in bases of classical 2-GRSS the fol-
lowing actors are used: 1) Abelian group Z2, 2) 2-point 
Fourier transform 2, and 3) complex field С, i.e., these 

transforms are associated with the triple (Z2, 2, C).  
In previous papers [7, 8], we have shown a new uni-

fied approach to the GF(p) -, or Clifford-valued comple-
mentary sequences and Golay transforms. It was associ-
ated not with the triple (Z2, 2, C), but with triples  
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and 2 ( , , )    is a single transform, lg  is an algebra 
(for example, Clifford algebra). 

In this work, we develop a new unified approach to 
the so-called generalized multi-parameter m –
 complementary sequences. This construction has a rich 
algebraic structure. It is associated not with the triple 

 2 2, ,Z C , but with 

 1) , , ,  m m lgZ U    1 22) , , ,..., , ,n
m m m m lgZ U U U   

  1 23) , , ,..., , ,n
m m m m lgGr U U U   

    1 2 1 24) , ,..., , , ,..., , .n n
m m m m m m lgGr Gr Gr U U U   

where  1 2, ,..., n
m m mGr Gr Gr  is a set of arbitrary finite 

groups of given order m Here  1 2, ,..., n
m m mU U U  is a set of 

arbitrary unitary (m×m) – transforms represented in the 
many-parameter Jacobi-Euler form [9 – 10]: 
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is the Jacobi orthonormal rotation with reflection, 
1 1 1 1

0 1 0 1( , ,..., ),..., ( , ,..., )n n n n
q q q q       φ φ  are the Jacobi  

parameters, 2 ( 1) / 2,mq C m m    c (r, s) = cos (r, s), 

s (r, s) = sin (r, s).  
 The rest of the paper is organized as follows: in Sec-

tion 2, the object of the study (Golay – Rudin – Shapiro 
m-ary sequences) is described. In Section 3 we propose 
method based on new generalized iteration rule with n 
unitary (m×m)-transforms 1 2, ,..., n

m m mU U U  and single 
group Zm.  Then we generalize the previously method on 
n unitary (m×m)-transforms 1 2, ,..., n

m m mU U U  and on n fi-

nite groups  1 2, ,..., n
m m mGr Gr Gr . In Section 5 we derive 

fast algorithms for binary Golay transforms. 
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The object of the study.  
New iteration construction for original Golay sequences 

We begin by describing the original Golay m-
complementary sequences. 

Definition 1. A generalization of the Golay comple-
mentary pair, known as the Golay m-Complementary m-
element Set (m-GCS) of complex-valued sequences [11] 
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functions of  
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 and  COM ( ) com ( )k kz t   

are their  transforms. 
We use two symbols n[0, mn–1–1] = Zmn and 

tn[0, mn–1–1] = Zmn for numeration of Golay sequences 
and discrete time, respectively. For integer n[0, mn–1–
1] = Zmn and tn[0, mn–1–1] = Zmn we shall use m-
arycodes  1 2, ,...,n n   α


,  1 2, ,..., ,n nt t tt


where 

iti{0, 1,…, m–1} = Zm, i = 1, 2,…, n. 
Let  1 2, ,...,n n   α


 and  1 2, ,...,n nt t tt


 be m-

ary codes, then define  

1
1

1

,
n

i
n n n i

i

m 
 



  α α


 and 1
1

n
n i

n n n i
i

t m 
 



  t t
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, where n, t1 are less significant bits 

(LSB) and 1, tn are most significant bits (MSB) of 
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and  1 2, ,..., ,n nt t tt
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α t  be mn+1-element set of m com-

plementary sequences (of length mn+1), where 
n+1, tn+1 = 0, 1,.., mn+1–1 They form rows of a (mn+1×mn+1) 

-matrix 
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m-Golay matrix. Here index [n+1] shows that Golay ma-
trix have been obtained on the n+1 iteration step. We are 
going to group these rows (sequences) as 
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Let us to select the more fine structure of the m-Golay matrix: 
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Example 1. For n = 1 and n = 2 we have, respectively, 
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The matrix 1
[ 1]

n
n

m 
G  is constructed by an iteration con-

struction. The initial matrix 1
[1]
m

G  is formed by starting 

with an arbitrary unitary (m×m)-matrix (in many-
parameter form or not) 
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and initial sequences in the form of rows of an unitary 
matrix (in particular case, in the form of characters 
comk(t1) = (1, k1, k2,…, k(m–1)) of cyclic group Zm) are 
the Golay m-complementary sequences.  
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Where 0, tn+2  0. New sequences in (9) are orthogonal 
and m-complementary sequences.  

Generalizations 

In this section, we introduce generalized m-
complementary sequences. It is based on using new per-
mutation matrices n

m
P  in (7). The mappings g: XX of 

a set X into (or onto) itself are of particular importance. 
They form the following set XX: = {g|g: XX }. 

Definition 2. One-to-one map from a set X to itself 

g: XX, x = g(x) = gx is called a transformation of the 

set X. 
If X is finite and consists of m elements (for example, 

X = {0, 1, 2,…, m}) then a transformation of the set X is 
called a permutation. As is well known, the set of all 
permutations of X forms a group Sm = Sum{X} in which 
the product  of a pair of permutations   is defined 

by ()x: = (x).  

If X contains more than two elements, Sm is not com-
mutative. Any subgroup of Sm is called a permutation 
group on X, or a group of permutations of X. We shall 
say that the permutations in Sym(X) act or operate on the 
elements of X. 

Definition 3. A homomorphism of a group  on a set  
h: GrSym{X} is called a permutation representation 
(or realization) of . 
The image h (Gr)  Sym{X} is a permutation group and 
the elements of  are represented as permutations of . A 
permutation representation is equivalent to an action of  
on the set :  To specify an action, we need to define for 
element gGr the corresponding permutation h(g) of , 

that is, h(g)x for any xX. We are going to write h(g)x 
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in the short form gx and to call  the group of transfor-

mations of . The pair  is called a space  with transfor-
mation group  the elements xX are called points of the 
space .  

Definition 4. If is a permutation group of degree , 
then the permutation representation of  is the linear per-
mutation representation of : P: GrGLm(lg) which 

maps  to the corresponding permutation matrix P(g), .  

That is,  acts on  by permuting the standard basis vec-
tors {en}nXlgm such that 

 '( ) ,n g n n n n
g e e e e


  

X
P   

where P(g)'s are the operators in lgm which define the 

above mentioned linear representation. 
Example 3. Let 

[0,1,..., 1]m X , {0,1,..., 1},m
m

m   Gr Z  

be the cyclic group of order m. Then 
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

(0) ,  (1) ,  (2) ,..., ( 1) .m

       
       
       
           
       
       
              

P P P P     

In particular, for m = 2 and m = 3we have 

1 1
(0) ,  (1) ;

1 1

   
    
   

P P  

1 1 1

(0) 1 ,  (1) 1 ,  (2) 1 . 

1 1 1

     
            
          

P P P   

In expression (7) was used linear permutation representation P(g) of only one group . However, we can use others 

finite groups  of given order m. Let   1

0

m
m g


 

 Gr Gr  be a group of given order m and   1

0
( )

m
g


 

P . Then  
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 (12) 

is the Golay matrix associated with triple   1 2 1, , ,..., ,n
m m m m lgGr U U U  .  

Example 4. For m = 4 we have two groups: Z4 = {0, 1, 2, 3} and Z2×Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. For both groups we 
have the following permutation representations: 

1 1 1 1

1 1 1 1
(0)  ,  (1)  ,  (2)  ,  (3) ,

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
(0,0) ,  (0,1) ,  (1,0) ,  (1,1) .

1 1 1 1

1 1 1 1

       
       
          
       
       
       

       
       
          
       
       
       

P P P P

P P P P

 

Hence, we can construct two different set of Golay 
matrices associated with two triples 

  
  

1 2 1
4

1 2 1
2 2

1) , , ,..., , ,

2) , , ,..., , ,

n
m m m

n
m m m

lg

lg





Z U U U

Z Z U U U
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respectively.   
Let    1 2 1 1

1 : , ,..., , ,n n n n
n m m m m m m

 
  Gr Gr Gr Gr Gr  be 

a set of arbitrary groups of given order 

   1 11 1

11
1 1 1 1

0 0
:  ,..., .

n n
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m mm g g
 

 
    

 Gr Gr  Then we 

can use on each kthiteration permutation representations 
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P  for k
mGr . In this case, we obtain the fol-

lowing Golay transform 

1

1

( 1)

[ ]
1 1( ,0)

[ ]-1
1 1( ,1)[ 1]

1 1

0
[ ]

1 1( , 1)

-1
1

0

1

com ( | ; )

com ( | ; )
( ; )

..................

)

...

com

(

( | ; )

 

n

n

n

n

n

n

n

n
n

n

n

n

n

n

m

m m

n
n n n

nm
n n n

n

n
m

n
nm

n
n n nm

m
n
m g





 



 

 
 



 






 
 
   
 
  




  



t

t

t

α

α

α

α

α

I

T

T

G

P

t

t

t

U


 

 
 

 




1

1

1

[ ]
( ,0)

[ ]
( ,1)

]
(

1

[
, 1)

com ( | ; )

com ( | ; )
.

.....................

com

( )

( | ; )

n

n

n

n

n
n n n

n

n

n n n n

n
nm

m

n

g












   
   
          
           

α

α

α

t

P
t

t



 

 

 

 (13) 

It is associated with triple 

    1 2 1 1 2 1, ,..., , , ,..., ,n n
m m m m m m lg Gr Gr Gr U U U  .  

Fast Golay transforms 

Let us consider expressions (8) and (9) for m = 2 (i.e., 
expressions (6) and (7) from our work [7]): 

   
1 1 1
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and find matrix representations of these expressions. We introduce the following -parametrized (2n×2n)-matrix: 
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and construct the direct sum of  introduced matrices 
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From (16) we see that 1
[ 1]
2n
n

G  represents  
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where 
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is the permutation matrix with controlling digit {tn+1}. According to (15) the Golay matrix 1
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G  is the product of three 
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Where {(–1)nn+1} = diag{(–1)nn+1} is diagonal matrix, and 1 1(2 )
, ( 1)

n
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n n

t    α t  has the following structure 
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Here ̂  is new tensor product: 
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From recurrent relation (17) we obtain 
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This expression represents the fast algorithm for the Golay transform. 
Example 5.  
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Conclusion and future researches  

In this paper, we have shown a new unified approach 
to the so-called generalized multi-parameter m–
complementary sequences. The approach is based on a 
new iteration generating construction. This construction 
has a rich algebraic structure.  It is associated not with the 
triple (Z2, 2, C), but with  

1) (Zm, Um, lg),  

2)   1 2, , ,..., ,n
m m m m lgZ U U U  ,  

3)   1 2, , ,..., ,n
m m m m lgGr U U U  or with  

4)     1 2 1 2, ,..., , , ,..., ,n n
m m m m m m lgGr Gr Gr U U U  ,  

where 1 2, ,..., n
m m mU U U  is a set of arbitrary unitary (m×m) 

-transforms and  1 2, ,..., n
m m mGr Gr Gr  is a set of arbitrary 

groups of given order m. Furthermore, we have derived 
demonstrated fast algorithms for Golay transforms. 

We are going to use generalized multi-parameter m-
complementary sequences as subcarriers of Intelligent 
OFDM telecommunication system. Most of the data 
transmission systems nowadays use orthogonal frequency 
division multiplexing telecommunication system 
(OFDM-TCS) based on the discrete Fourier transform 

(DFT) N. The conventional OFDM will be denoted by 

the symbol N-OFDM. Conventional OFDM-TCS makes 

use of signal orthogonality of the multiple sub-carriers 
ej2kn/N

 (complex exponential harmonics). Sub-carriers  

    11 2 /
0 0

( )
NN j kn N

k k k
n e

 
 
subc

 
form matrix of DFT 
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, 0 , 0
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N k k n k n
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    subc  

At the time, the idea of using the fast algorithm of dif-

ferent orthogonal transforms   1

, 0
( )

N
N k k n

n



U subc

 
for a 

software-based implementation of the OFDM’s modulator 
and demodulator, transformed this technique from an at-
tractive, but difficult to implement idea, into an incredibly 
successful story of the data transmission. OFDM-TCS, 
based on arbitrary orthogonal (unitary) transform UN will 
be denoted as UN-OFDM. The idea which links N-

OFDM and UN-OFDM is that, in the same manner that the 

complex exponentials   12 /
0

Nj kn N
k

e

  

are orthogonal to each-

other, the members of a family of UN-sub-carriers 

  1

0
( )

N
k k

n



subc  (rows of the matrix N ) will satisfy the 

same property.  The UN-OFDM reshapes the multi-carrier 

transmission concept, by using carriers   1

0
( )

N
k k

n



subc

 
in-
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stead of OFDM’s complex exponentials   12 /
0

Nj kn N
k

e



. In 

this paper, we propose a simple and effective anti-
eavesdropping and anti-jamming Intelligent OFDM sys-
tem, based on MPTs.  In our Intelligent-OFDM-TCS we 
are going to use multi-parameter Golay transform 
G2n(1, 2,…, q) at the place of DFT N. We are going to 

study of Intell- G2n(1, 2,…, q)-OFDM-TCS to find out 
optimal values of parameters optimized PARP, BER, SER, 
anti-eavesdropping and anti-jamming effects. 
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