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ABSTRACT 

 

A map has a fixed point at P. If fixed point theorems have useful applications in analysis. Some of the 

iterative methods which have been studied are related to S. Banach, W.R. Mann, J. Riemermann, 

W.G. Dastonand a host of other mathematics. 

Studies by Prof. S. Ishikawa and Prof. B.E. Rhoads, throw new light on the iteration process of W.R. 

Mann, Prof. Ishikawa studied by the following iteration process. 

For a subset E of an Ailbert space H, if and only if the sequence generated by 

 Where (cn) are real sequence in [0, 1]. 
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1.1. INTRODUCTION 
 Prof B.E. Khoades has shown in [17] 

that from amongst various generalizations 

of Banach’s contraction principle the 

definition of quasi contraction by circle [1] 

is one of the most general contractive 

definition for which Picard’s Iteration gives 

a unique fixed point. We recall the 

definition of a Quasi contractive method 

which states that if there exists a constant k, 

0 k < 1 such that for each x, y E. || Tx - 

Ty ||  k max {|| x - y ||,|| x - Tx||, ||y - Ty||, || 

y - Tx||}......(x). In [3] Hu." has shown that 

most of the results of [17] which use M 

(x11, Cn, T) can be extended to Ishikawa’s 

iteration scheme I (X1, Cn, dn, T). Thus I 

(X1, Cn, dn, T) becomes a larger class of 

fixed point iteration method. However he [4 

theorem 9] posed an open question whether 

mann iterative process M (X1, Cn, T) can be 

replaced by that of Ishikawa I (X1, Cn, dn, 

T) for quasi contractive mapping in this 

chapter our purpose is to show that in a 

Hilbert space I (X1, Cn, dn, T) converges to 

the fixed point of a Quasi contractive map. 

This is embodied is theorem I below. 

Theorem 2 provides a generalization of 

theorem. 

1.2 MAIN RESULTS 
Theorem: Let E be a compact and 

convex subset of a Hilbert space. H and T 

be a quesi contractive self map on E. Let a 

sequence (Xn) be defined iteratively on E 

by 
X1 E, Xn+1 = (1 - Cn) Xn + CnT [(1-dn) 

Xn+dnTXn].........                                       (1) 

 Where (Cn) and (Tn) are sequences 

of real numbers such that 

(i) 0 Cn dn 1 

(ii)  

(iii)  

1 (1 ) , 1.
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Then (Xn) converges to the fixed point of T. 

Pf : Since T is quasi contractive by circle 

[1] it has a unique fixed point P say. Hence 

from (*) putting P for y we have for each x

E, 
|| Tx - P ||  k max {|| x - p ||, ||x - Tx||}         (2) 

writing Yn = (1-dn)Xn + dn         (3) 

we can express X n+1 in (1) as 

X n+1 = (1 - Cn) Xn + CnTyn         (4) 

 We know [33] that for any X, Y, Z 

in a Hilbert space and for any real number t. 

|| tx + (1-t)y-z ||2 = t || x - z ||2 + (1-t) || y - z ||2 - t (1 - 

t) || x - y ||2                            (5) 

Hence from (3) and (4) we have the 

following relation. 

||xn+1-p||2 = 1 - Cn || Xn-p||2 + Cn ||Tyn-p||2 - Cn (1-

Cn) ||Xn-Tyn||
2                   (6) 

||Yn-Tyn||
2 = (1-dn) ||Xn-Tyn||

2 + dn || Txn-Tyn ||
2 - dn 

(1-dn) ||Xn - Txn||
2...                 (7) 

||Yn-p||2 = (1-dn) ||xn - p||2 + dn ||Txn-p||2 - dn (1-dn) 

||xn-Txn||
2.....                 (8) 

Also by (2) 

       ||Tyn-p|| k max {||yn-p||, ||yn-Tyn||} 

and 

       ||Txn-p|| k max {||xn - p ||, ||xn -Txn ||} 

Let S1 = {n N: ||Tyn - p ||  k || Yn-p ||} 

and S2 = {n N: ||Tyn - p ||  k || Yn-Tyn ||}  

where N denote the set of positive integers. 

Obviously S1 S2 = N 

Suppose n S1. Then using (8) we have 

||Tyn-p||2 k2 ||Yn - p||2 

        =k2(1-dn) ||xn - p||2 + k2dn ||Txn-p||2-k2dn (1-

dn) ||Xn-Txn||
2 ......                                   (10*) 

If in (10) ||Txn-p|| k ||xn-p|| holds. Then 

form 10*. 

||Tyn - p||2  [k2(1-dn) + K4dn] ||Xn - p||2 - k2dn(1-dn) 

- ||xn-Txn||
2 

  ||xn-p||2 - k2dn(1-dn) ||xn-Txn||
2 

Thus for all n S1 

k2cndn(1-dn-k
2) ||xn - Txn||

2 ||xn-p||2 - ||xn+1 - 

p||2......                                       (11) 

Now supposing that n S2 we have by (7) 

|| Tyn- p||2 k2 ||yn-Tyn||
2 

 = k2 (1-dn) || Xn -Tyn||
2 + k2dn ||Txn -Tyn||

2-

k2dn(1-dn) ||xn -Txn ||
2.....             (12) 

Since ||xn-Tyn|| = dn ||xn–Txn|| 

 ||yn - Tyn|| = (1-dn) ||xn–Txn || and 

T satisfies (*) we have 

||Txn -Tyn||  kmax {||xn - Txn|"|, || yn-Tyn||, 

||xn-Txn||} = k An 

Where An denotes the maximum of the set. 

Let  S2
1
= {n S2 : An = ||xn-Txn||} 

 S2
11

 = {n S2 : An = ||yn-Tyn||} 

 S2
111

 = {n S2 : An = ||xn-Tyn||} 

Clearly  

Now if  i.e. if 

||Txn-Tyn||  k ||xn-Txn||, then form     (12) 

||Tyn-p||2 k2(1-dn) ||xn-Tyn||
2 - x2dn(1-dn-k2) ||xn-

Txn||
2 

and using (6) we get 

|| xn+1 - p ||2  (1-cn) ||xn - p||2 + cnk2 (1-dn) ||xn-

Tyn||
2-cnk2dn (1-dn-k2) ||xn-Txn||

2cn(1-cn) ||xn-Tyn||
2 

            = (1-cn) ||xn - p||2 - k2 cndn (1-dn-k2) ||xn-

Txn||
2 - cn [1-cn-k2 (1-dn)] || xn-Tyn||

2 

  ||xn - p||2 - k2cndn (1-dn-k2) ||xn - Txn||
2 

Since k2 (1-dn) < (1-dn) (1-cn) 

or k2 cndn (1-dn-k2) ||xn -Txn ||
2 || xn - p||2 - ||xn+1 

- p||2                             (13) 

I  i.e. if || Txn –Tyn ||  k ||yn-Tyn||  

Thenusing (7) we obtain 

|| Txn –Tyn ||
2 k2 ||yn-Tyn||

2 

k2(1-dn) ||xn-Tyn||
2 + k2dn ||Txn –Tyn||

2 

- k2dn(1-dn) ||xn-Txn||2 

and hence 

||Txn –Tyn||
2 [k2(1-dn) / (1-k2dn)] ||xn-

Tyn||
2 

 -[k2dn(1-dn) / (1-k2dn)] ||xn-Tyn||
2 

Then by         (12) 
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||Tyn- p||2 k2(1-dn) [(1+k2dn / (1-k2dn)] 

||xn-Tyn||
2 

  - k2dn(1-dn) [1+k2dn (1-k2dn)] ||xn-Txn||2 

  = [k2(1-dn) / (1-k2dn)] ||xn-Tyn||
2 

 - [k2dn(1-dn) / (1-k2dn)] ||xn-Txn||2 

From which we obtain on using        (6) 

||xn+1 - p||2  (1-cn) ||xn - p||2 + Cn [k2 (1-

dn) / (1-k2dn)] 

          ||xn-Tyn||
2 - cn[k2dn (1-dn) / (1-k2dn)] 

          ||xn-Txn||2 - cn (1-cn) ||xn-Tyn ||
2 

     = (1-cn) ||xn-p||2 - [k2cndn (1-dn) / (1-

k2dn)] ||xn-Txn||2 

    - [cn (1 - k2 - cn (1-k2dn)) / (1-k2dn ] 

||xn-Tyn||
2 

Since Cn 0 as n there exists 

an n0  N such that 1- k2>cn for all n n0. 

Thus n  n0 the last form on the right hand 

sides of the above expression is positive and 

hence we get n> n0. 

[k2cndn (1-dn) / (1-k2dn)] ||xn-Txn||2 ||xn - p||2 - 

||xn+1 - p||2......            (14) 

If  i.e. iff 

||Txn –Tyn||  k ||xn-Tyn||, then form (6) and 

12 we obtain. 

||xn+1 - p||2 (1-cn) ||xn - p||2 + Cn [k2 (1-

dn) ||xn-Tyn||
2 

+ k2dnk2||xn-Tyn||
2 - k2dn (1-dn) 

||xn-Txn||2] 

 - cn(1-cn) ||xn-Tyn||
2 

Hence for n n0 we get as before 

k2cndn (1-dn) ||xn-Txn||2 ||xn - p||2 - 

||xn+1 - p||2 

Since 1-dn-k2 1-dn (1-dn) / (1-

k2dn) for all n. 

We obtain from the inequalities (13) 

(14) and (15) that for all n S2 and n n0 

k2cndn (1-dn-k2) ||xn-Txn||2 ||xn - p||2 -

||xn+1 - p||2 

Since this inequality holds for all n

S1 sec (11) it follows that (11) holds for all n

N, n n0 

 Now choosing m n0 and adding the 

in equalities (11) for values m, m + 1.....n of 

n. 

We obtain 

||xj - Txj ||2  ||xm - p||2 - 

||xn+1 - p||2 .....                       (16) 

Since dj  0 as J  , k2 (1 - dj - 

k2) is +ve and bounded away from zero. 

The fact that right hand side of the above 

inequality is bounded and that 

imply that . Hence by 

compactness of E. It follows that there 

exists a subsequence (Xnk) such that and

 and ||q - Tq || = 0 i.e. Tq = q. 

But by uniqueness of a fixed point of T. q = 

p. Again since the sequence (|| xn- p ||) is 

monotonically decreasing (as evident from 

(11)) and it ultimately follows 

that . 

 This completes the proof. 

1.3 FURTHER GENERALISATION 
 B. Fisher [7p, 8p] established the 

existence of a common fixed point of a pair 

of commuting mapping S and T satisfying 

the inequality. 

||Sx - Ty|| k max {||x - y||, ||x - Ty|| ||y - Sx|| 

||x - Sx|| ||y - Ty||} 

 She proved the following theorem. 

Theorem - 1 
 Let S and T be commuting mapping 

of a complete metric space (x, d) into itself 

satisfying (2) (with d (x, y) = ||x - y|| of 

cause) for all X, Y in X, where 0  k < 1 
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and the inequality. Sup {d (Sr+1 Tnx, 

SrTnx), d (Sr Tn+1 X, SrTnx): r, n = 0, 1, 

2.....} < For some particular X in X. Then S 

and T have a unique common fixed point Z. 

Further Z is the unique fixed point of S and 

T. 

 We know that from (16) an iteration 

involving two mapping S and T which 

satisfy (17) converges to their common 

fixed point. This result reduces to Theorem-

1 in the case S and T. 

Theorem - 2 
 Let E be a copact and convex subset 

of a Hilbert space H. Let S and T be a pair 

of commuting self mapping S on E 

satisfying the inequality (9) for all x, y  E 

and 0 k <1. Let the sequence (Xn) be 

defined on E by the iteration X1 E, Xn+1 

= (1-cn) Xn + CnT [(1-dn) Xn + dnSxn], n

1........ (18). Where (Cn) and (dn) are real 

sequences satisfying conditions (1), (11) of 

theorem 1. Then (Xn) convergence to the 

common fixed point of S and T. 

Proof 
 Since E is compact and S and T are 

commuting mappings satisfying (17), the 

conditions of Theorem A of Fisher are 

satisfied where there exists a unique 

common fixed point P. Say of S and T. The 

proof of convergence of (Xn) to P is similar 

to the proof of Theorem 1 and hence 

omitted. 

 

1.4 CONCLUSION 
 Iteration (18) of theorem 2 above 

shows that Ishikawa iteration scheme I 

(X1,Cn,Dn,T) can be generalized by 

introducing more number of mapping which 

can be used to yield common fixed point (s) 

of the mappings Investigation in this 

direction has been carried out in Chapter III 

and Chapter IV. 
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