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1. Introduction

   Several components derivied from natural origins with antioxidant 
capability have been determined as free radical or active oxygen 
and nitrogen fixatives. In the last decennium, a growing advantage 
may greatly be spotted for discovering antioxidants of natural 
origin, to be used in medicinal materials or foods, and the principal 
goal is to substitute synthetical antioxidants with those of natural 
ones. Natural antioxidants may delay the aging procedure in human 
corps and improve chronic illness like cardiovascular ailment, 
diabetes, obesity, arthritis, and cancer[1,2]. Diabetes mellitus is a 
multifactorial endocrine trouble implying disorders of protein, 
carbohydrate, and fat metabolism[3]. This sickness has attained 
epidemic level overall and about 346 million people in the whole 

world suffer from it and this number is assessed to double by the 
year 2030[4]. Of all of determined cases of diabetes, type 2 diabetes 
(T2D) occupied approximately 90%–95%, affecting more than 
170 million people all over the world[5,6]. T2D is characterised by 
postprandial hyperglycemia due to resistance of cells (hepatocyte 
and myocyte) to the function of insulin. A long time exposure 
to hyperglycemic state is considered to produce reactive oxygen 
species continually[7]. That could modify the enzymatic activities 
and reduce in vivo antioxidant levels, apparently resulting in 
diabetes[8]. Therefore, plant-based compounds which are wealthy 
in antioxidants comprising a lot of bioactive molecules with various 
structures can play a key role in the remedy of diabetes.
   Phenolic compounds comprising flavonoids, tocopherols, and 
polyphenolic components are typical natural antioxidants that may 
potentially afford protection versus the growth of certain oxidation-
linked chronic illness[9,10]. On the other hand, phenolic components 
had been mentioned as glucosidase inhibitors used to decrease 
postprandial hyperglycemia provoked by the digestion of starch in 
the small intestine[11-13].
   Previous researches indicated that a series of phenolic compounds 
were obtained from Scabiosa arenaria Forssk. (Dipsacaceae) (S. 
arenaria)[14-17]. Thus, the main objective of this paper was to 
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evaluate the antioxidant and α-glucosidase inhibitory activities of 
luteolin and luteolin 7-O-glucoside isolated from S. arenaria.

2. Materials and methods 

2.1. Reagents and standards

   α-Glucosidase (isolated from Aspergillus niger), p-nitrophenyl-α-
D-glucopyranoside (pNPG), acarbose, 2,2-diphenyl-1-picrylhydrazyl 
(DPPH), and butylated hydroxytoluene (BHT) were purchased from 
Sigma–Aldrich (Germany).

2.2. Samples

   The luteolin and the luteolin 7-O-glucoside used in this work 
were isolated from S. arenaria EtOAc extract and butanolic extract, 
respectively in our previous works.

2.3. Antioxidant activity evaluation

   This activity refers to the samples capability to trap the stable 
radical 2,2-diphenyl-1-picryl hydrazil (DPPH) created in solution by 
donation of a hydrogen atom or an electron[18]. If the component 
has the capability to ensnare the DPPH free radical, the original blue/
purple solution will be modified to yellow due to diphenyl picryl 
hydrazine formation. This reaction is utilized as a measurement of 
the samples capacity to scavenge whatever free radical. A quantity 
of 500 µL of every product concentration was blended by employing 
the similar volume of DPPH• ethanolic solution. Later, an incubation 
period of 30 min in away from light and at a temperature of 25 °C, 
absorption was read at 517 nm wave length. A concoction of 500 µL 
of DPPH• solution and 500 µL of ethanol was taken as a blank[19]. 
The reduce in absorption induced by the evaluated products was 
compared to that of the positive control BHT. The calculated IC50 

values give the concentration required to snare 50% of DPPH• 
radicals. Results were expressed in inhibition percentage at various 
compounds concentrations (mg/mL). The inhibition of free radical 
DPPH in percentage (I%) was calculated as follows:
I% = [(A blank – A compound)/A blank] × 100
where A blank is the absorption of the control reaction (including all 
reagents with the exception of the test product), and A compound is 
the absorption of the test product.

2.4. α-Glucosidase inhibition assay  

   This activity was defined as before qualified by Tao et 
al.[20] with a few change as decrived by Rengasamy et al.[21]. 
The α-glucosidase reaction mixing comprising 2.5 mmol/L 
p-nitrophenyl-α-D-glucopyranoside (pNPG), 250 µL of compound 
(different concentrations) in dimethyl sulfoxide and 0.3 IU/mL of 
α-glucosidase in phosphate buffer, pH 6.9. Control trials comprising 
only dimethyl sulfoxide, substrate and enzyme, whereas in positive 
controls, acarbose substituted the pure product. Absorbance of 
the resulting p-nitrophenol (pNP) was determined at 405 nm 
and was considered proportional to the activity of the enzyme. 
The compounds of S. arenaria were evaluated for α-glucosidase 
inhibitory activity at various concentrations (1–0.0039 mg/mL). 
Every component was performed in triplicate. Inhibition percentages 

by compounds and acarbose were calculated using the following 
equation: 
Inhibition percentage (%) = (1 – ΔDO sample/ΔDO control) × 100
whereΔΔDO sample = DO sample (t = 15 min) – DO sample (t = 0 min);ΔΔDO 
control = DO control (t = 15 min) – DO control (t = 0 min).
   The IC50, which is the concentration of the compound required 
to inhibit 50% of the enzyme determined for every compound. The 
luteolin and the luteolin 7-O-glucoside were compared on the basis 
of their IC50 values assessed from the dose response curves.

2.5. Kinetics essay of α-glucosidase

   The luteolin and the luteolin 7-O-glucoside were evaluated to get 
the type of inhibition exerted on α-glucosidase. The reaction mixing 
was detailed up, with the exception, that the substrate concentration 
varied from 0.3 to 5.0 mmol/L, and that of the compound was 
preserved constant at 0.015 mg/mL. The reaction was started by the 
addition of enzyme, and monitored at 405 nm, at 5 min intervals 
in the course of 30 min. The original reaction rates were given 
using calibration curves constructed using different p-nitrophenol 
concentrations. The results were utilized to construct Lineweaver–
Burk plots to establish the type of inhibition, Michaelis–Menten 
constant (KM) and maximum velocity (Vmax) valours.

3. Results 

3.1. Antioxidant activity evaluation

   DPPH radical scavenging activities of the components are shown 
in Table 1. DPPH radical has adsorption maxima at 517 nm and a 
reduction in adsorption occurs when it receives an electron or a free 
radical species. The color of DPPH solution changes from purple 
to yellow depending on the radical scavenging capability of the 
component[22]. High activity was obtained from luteolin (IC50 = 0.02 
mg/mL). The activity was higher compared to that of luteolin 7-O-
glucoside (IC50 = 0.045 mg/mL). These two products are slightly less 
active than positive control BHT (IC50 = 0.018 mg/mL), therefore, 
we can deduce that the glucose takes part in the second molecule 
decreased the antioxidant activity.
Table 1 
Antioxidant and α-glucosidase inhibition activities by luteolin and luteolin 
7-O-glucoside.

Compounds DPPH IC50 (mg/mL) α-Glucosidase inhibition
Luteolin 0.020 0.009 2
Luteolin 7-O-glucoside 0.045 0.014 0
BHT 0.018 -
Acarbose                     - 0.280 0

3.2. α-Glucosidase inhibition assay  

   According to Table 1, luteolin and luteolin 7-O-glucoside are 
more active than the reference product, acarbose (IC50 = 0.280 0 
mg/mL). Luteolin has a very potent α-glucosidase inhibitory 
effect with an IC50 value of the order of 0.009 2 mg/mL. This 
product is more active than luteolin 7-O-glucoside (IC50 = 0.014 0 
mg/mL), which allows us to deduce that the glycosylation of the 
molecule reduces the inhibitory activity of α-glucosidase. The 
addition of luteolin and luteolin 7-O-glucoside to the reaction 
medium resulted in a change in the Vmax velocity of hydrolysis 
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of α-glucosidase, keeping the same Michaelinne constant (KM). 
This is a noncompetitive inhibition in both cases. According 
to this type of inhibition, it can be suggested that these two 
active molecules act on the α-glucosidase without competing 
with its substrate which will reach the active site. The values of 
the kinetic parameters of α-glucosidase deduced from Figure 
1 A and B in the absence and presence of these two products 
are summarized in Table 2. The two values of the Michaelinne 
(KM) constants are comparable and range from 2.17 mmol/L 
for luteolin 7-O-glucoside to 3.33 mmol/L for luteolin. For the 
maximum rate of hydrolysis of α-glucosidase in the absence of 
inhibitor was 0.333 (ΔDO/min). This maximal velocity decreases 
in the presence of luteolin (Vmax appar = 0.10 ΔDO/min) and 
in the presence of luteolin 7-O-glucoside (Vmax appar = 0.15 
ΔDO/min).
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Figure 1. Double-reciprocal plot of the initial velocity (Vmax) of the hydrolysis 
reactions catalyzed by α-glucosidase at different substrate concentrations [S] in 
the presence and absence of the luteolin (A) and luteolin-7-O-glucoside (B).

The findings indicate the average of three independent triplicate 
experiments.

4. Discussion

   This  resul t  is  confirmed by several  authors  such as 
Kumpulainen and Salonen[23] and Rice-Evans et al.[24] who have 
shown that luteolin is twice as active as the reference product, 
vitamin E. Igile et al.[25] also showed that luteolin is more active 
than synthetic antioxidant, BHT.
   Cotelle et al.[26] and Cai et al.[27] showed that luteolin 
possesses very important properties in the trapping of superoxide 
radicals. Luteolin is also a powerful singlet oxygen sensor 
causing DNA alterations and chromosomal aberrations that 
are the main causes of cancer[28]. Luteolin inhibits in vitro 
and in vivo lipid peroxidation, which leads to the oxidation 

of polyunsaturated fatty acids and subsequent formation of 
free radicals causing several diseases[29-31]. This difference 
in previous results can be explained by the differences in the 
conditions of the experiment and the methods used.
   At the same time, Kim et al.[32] have confirmed that luteolin is 
more active than luteolin 7-O-glucoside and is more active than 
polyglucoside (lonicerin). The IC50 values in the two studies are 
different; this may be explained by the different experimental 
conditions and the different enzyme sources used.
   Several other researchers have demonstrated the potent 
inhibitory effect of aglyconic flavonoids relative to their 
glycosylated forms[33-39]. Thus, the decrease in enzymatic 
activity after glycosylation may be due to the increase in 
molecular size, polarity and non-planar structure of the molecule. 
When a hydroxyl group is substituted with a glycoside, the steric 
hindrance can occur, which weakens the binding interaction 
between flavonoids and α-glucosidase[40]. Yan et al.[41] also 
found that the type of inhibition of α-glucosidase by luteolin 
is uncompetitive. According to our knowledge, the type of 
inhibition of α-glucosidase by luteolin 7-O-glucoside is studied 
for the first time in our study.
   This paper demonstrated that the two flavonoids, namely 
luteolin and luteolin 7-O-glucoside had important biological 
activities with interesting uses.
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