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1. Introduction

   Apart from measuring metal concentrations in water and 
sediment, a series of methods and biomarkers have been proposed 
and extensively tested[1], to evaluate, assess and monitor pollution 
in the environment. The use of toxicity tests and/or biomarkers 
have been suggested as useful tools to link biological responses 
with contaminants in the environment[2,3], especially those 
from sediments. The examination of the dynamics of metal 
accumulation as well as the quantification of changes in the sub-
cellular partitioning of metals over time could afford insight into 
potential mechanisms of toxicity and detoxification at the cellular 

level[4]. The potential utility of biomarkers for monitoring both 
environmental quality and the health of organisms inhabiting 
polluted ecosystems has received increasing attention during 
recent years[5-7]. Nowadays, biomarker, such as metallothioneins 
(MTs), has been commonly employed in studies of ecotoxicology 
and environmental monitoring on heavy metals and was proven to 
be an invaluable tool for monitoring the effects of metal influxes 
into the environment. MTs are ubiquitous low molecular weight 
cysteine-rich proteins characterized by high affinity for d10 electron 
configuration metals, including essential (Zn and Cu) and non-
essential (Cd and Hg) trace elements[8]. They are inducible and 
their constitutive thiol (-SH) group possesses high capacity to 
bind divalent cations[9]. They are promising biomarkers for 
metal-specific stress in fish[10-12] and their synthesis is one of the 
best known biochemical responses to metal exposure. MTs are 
involved in the regulation of the essential metals copper and zinc 
and in the detoxification of non-essential metals[13], antioxidant 
activity[14,15] and radical scavenging[16] and helps in metal ion 
homeostasis in a cell[17]. The exposure of aquatic organisms to 
excess essential and non-essential metals induces MT expression 
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in different species and tissues. MT gene expression has often been 
proposed as a sensitive and efficient biomarker for evaluating the 
cumulative biological effects of metal exposure[18-20]. MT protein 
concentrations have been demonstrated to increase significantly 
as a result of metal exposure in tissues of a wide range of aquatic 
species, both in laboratory studies and in field surveys[21]. MT 
determinations in experimental aquatic organisms exposed to 
heavy metal and organisms in natural condition have demonstrated 
its expression, which supports its use as a biomarker, however in 
natural environments, is not always possible to establish associations 
between this protein and levels of metals in tissues[22]. MT mRNA 
levels were highly sensitive indicator of laboratory cadmium 
exposures in coho salmon[23]. Montaser et al.[24] denoted to an 
increase in MT-gene expression in the level of mRNA synthesis due 
to metal pollution in Naso hexacanthus fish at Jeddah Coast. MTs 
have been isolated and characterized in several aquatic organisms 
including fish[25]. Fish are commonly used as indicators of 
environmental chemical pollution, and MT induction is considered 
a useful biomarker of exposure to trace metals[8]. Study of MTs in 
fish is an interesting and ever-expanding area of research as fish live 
in challenging environments and MT induction is recognized as one 
of the robust adaptive and stress responses to such challenges[26]. 
Although MT has been found in a wide range of animal species, 
to our knowledge, no available information is on MT induction 
in Periophthalmodon species from the west coast of Peninsular 
Malaysia or elsewhere. The objectives of the present study were 
to determine the concentrations of Cu, Zn and Cd, and MT 
content in liver, gills and muscle of Periophthalmodon schlosseri 
(P. schlosseri) and to evaluate the use of MT as a biomarker of 
environmental metal pollution in the coastal environment.

2. Materials and methods

2.1. Description of sampling sites

   Samplings of P. schlosseri were conducted in the west coast of 
Peninsular Malaysia (Figure 1), in September 2010 at Sungai Tiga 
(Sg.Tiga), Johor (01°25.841' N, 104°00.281' E) and Sungai Puluh 
(Sg. Puluh), Klang (03°04.786' N, 101° 23.903' E) and in March 
and June 2010 at BaganLalang (Bg. Lalang), Selangor (02°36.669' 
N, 101°41.100' E) and Kuala Juru (K. Juru), Penang (05°19.683' N, 
100°22.949' E) respectively. The coordinates of the sampling sites 
were recorded with Global Positioning System (GPS) (Garmin 
OREGON 45OT 850 MB water proof GPS).

2.2. Sample collection

   Fish were collected from the four sampling sites using trap net 
and brought to Ecotoxicology Laboratory, Department of Biological 
Sciences, Universiti Putra Malaysia in a plastic aquarium containing 
some sediment and water. Stomach and intestines of the fish were 
emptied and dissected immediately or put in labelled plastic bags 
and kept in deep freeze at –20 °C until further analysis. In the 
laboratory, the fish samples were removed from the refrigerator and 
plastic bags, rinsed with double distilled water then thawed at room 
temperature. Their length and weight were recorded to the nearest 
centimeter and gram respectively before dissection. The tissues of P. 
schlosseri including liver, gills and muscle were then dissected out 
from the samples and immediately frozen in liquid nitrogen and later 
stored at –80 °C until further processing for MT and metal analyses. 
The authors declare that this experiment followed the ethical 
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guidance for animal research.

2.3. Metal analysis

   About 4 P. schlosseri from each sampling sites with body length 
(mm) and weight (g) that ranged from (192.50 ± 4.01) mm to 
(271.00 ± 2.40) mm and (68.02 ± 2.33) g to (227.30 ± 14.87) 
g, respectively, were dissected on clean plastic material using 
stainless steel kits and glass equipment. The dissected parts were 
pooled into three different parts, namely, livers, gills and muscle. 
These tissues were chosen because they play a role in metals 
uptake, bioaccumulation, formation of metal-complexes, storage 
and detoxification processes. Sample of each wet weight part was 
weighed separately (0.5–1.0 g) in triplicate and placed in digestion 
tubes. To each digestion tube 10 mL concentrated nitric acid (AnalaR 
grade, BDH 69%) was added and placed in a hot block digester unit 
at 40 °C for 1 h. The temperature was then increased to 140 °C for 
at least 3 h[27]. The digested samples were diluted to 40 mL with 
double distilled water. The samples were then filtered (diameter: 110 
mm) through filter papers into pill box and the filtrate was stored 
until metal determination.
   The procedures of quality assurance and quality control (QA and 
QC) were employed to ensure the validity of the analytical data[28]. 
To avoid contamination, all reagents were handled carefully; all 
plastics and glassware used were washed with detergent, Deacon 
90, rinsed with double-distilled water and soaked in 10% HNO3 for 
at least 24 h, then rinsed with double-distilled water and allowed 
to dry at room temperature. The QA and QC were controlled by 
procedural blanks, sample replicates and dogfish liver DOLT–3 
from National Research Council Canada (NRCC). During the period 
of atomic absorption spectrophotometer (AAS) metal analysis, a 
quality control sample was routinely included every 5–10 samples. 
Procedural blanks and quality control samples made from standard 
solutions for Cu, Zn and Cd were analyzed after every 5–10 samples 
to ensure the sensitivity and recovery of the instrument used. All 
metal concentrations in the tissues are expressed in μg/g on a wet 
weight basis. Multilevel calibration standards were analyzed to 
generate calibration curves against which sample concentrations 
were calculated. Standard solutions were prepared from 1 281 000 mg/
L stock solutions of each metal (BDH Spectrosol®). The quality of 
the method was checked with a Dogfish liver DOLT-3 from NRCC. 
These were checked to accuracy of the digestion method with the 
certified values supplied by the NRCC. The results of similarly 
digested samples analyzed for Cu, Zn and Cd, by the flame AAS 
Perkin Elmer AAnalyst 800 showed acceptable recoveries of the 
metals. About 95.5%–105.6% for dogfish liver of recoveries of these 
metals had been observed in Table 1. The percentage recoveries (n 
= 3) for each metal, for the certified and measured concentration 
ranged from 95.5%, 96.7% and 105.6% for Cu, Zn and Cd, 
respectively.

Table 1
Comparison of analytical result of DOLT-3 with certified concentrations 
using AAS Perkin Elmer AAnalyst 800 (n = 3).

Heavy metal CRM Certified value 
(µg/g)

Measured 
value (µg/g)

Recovery (%)

Cu DOLT-3 31.2 ± 1.0 29.8 ± 2.7   95.5
Zn DOLT-3 86.6 ± 2.4 83.8 ± 3.5   96.7
Cd DOLT-3 19.4 ± 0.6 20.5 ± 0.4 105.6

2.4. MT assay

   MT content was analyzed in livers, gills and muscle by the assay 
of Viarengo et al.[29]. Pooled tissue of 4 P. schlosseri (1.0 g) was 
homogenized in 3 mL of 20 mmol/L Tris-HCl buffer (pH 8.6) 
containing 0.5 mol/L sucrose, 0.006 mmol/L leupeptin, 0.5 mmol/
L phenylmethylsulfonyl fluoride and 0.01% β-mercaptoethanol and 
centrifuged for 20 min at 30 000 r/min at 4 °C. The supernatant (1 
mL) of the sample was purified with 1.05 mL of cold ethanol (–20 
°C) and 80 μL chloroform and centrifuged for 10 min at 6 000 r/min 
at –4 °C. To the supernatant 40 μL 37%concentrated HCl and 6 mL 
of cold ethanol were added and allowed the protein to denature at 1 h 
at –20 °C. The mixture was centrifuged for 10 min at 6 000 r/min  at 
–4 °C and the pellet was saved. The supernatant was discarded and 1 
mL of previously described homogenizing buffer solution, 6 mL cold 
ethanol and 80 μL chloroform were added before centrifuging and 
then centrifuged for 10 min at 6 000 r/min at –4 °C. The supernatant 
was discarded and dried the pellet with N2 gas. The pellet was re-
suspended in 150 μL 0.25 mol/L NaCl and 150 μL 1 mol/L HCl with 
4 mmol/L ethylene diamine tetraacetic acid. To assess MT content of a 
sample, 4.2 mL of a solution containing 2 mol/L NaCl and 0.43 mmol/
L 5.5’-dithio-bis-2-nitrobenzoic acid adjusted pH 8 with 0.2 mol/
L Na-phosphate (NaH2PO4) were added at room temperature. After 
centrifugation at 3 000 r/min for 5 min, supernatant absorbance was 
measured at 412 nm in a UV-Visible Recording Spectrophotometer 
Shimadzu UV-160 A Model. The MT concentration was estimated 
using GSH as a reference standard[29]. GSH contains one cysteine 
per molecule; thus, it is a standard for quantifying cysteine in protein 
analyses. The amount of MT in the samples was estimated using 
the GSH standard, assuming that 1 mol of MT contains 20 mol of 
cysteine[30].

2.5. Statistical analysis

   All statistical analyses of data were carried out using SPSS 
statistical package programs version 17 and graphs were plotted with 
Microsoft Excel 2007. Data were tested for the basic assumptions of 
normality and homogeneity of variance in exploratory data analysis 
in SPSS 17. One-way analysis of variance (ANOVA) was calculated, 
and post host comparison was made using Duncan’s multiple 
range test at 0.05 confidence level. Correlations in Cu, Zn and Cd 
concentrations in liver, gills and muscle with Cu–MT, Zn–MT and 
Cd–MT concentrations respectively were determined for all samples 
examined using Pearson’s correlation coefficients (r); P < 0.05 was 
established as the limit of a statistically significant correlation.

3. Results

   The concentration of heavy metals (Zn, Cu and Cd) in the tissues 
of P. schlosseri were presented in Figure 2. Metals concentration 
in the examined tissues of P. schlosseri ranged from 0.56 to 6.48, 
3.43 to 23.22 and 0.04 to 0.85 μg/g wet weight for Cu, Zn and Cd 
respectively. One-way ANOVA with Duncan’s multiple comparison 
analysis shows that most of the measured metals in the liver, gills 
and muscle of P. schlosseri were statistically significant (P < 0.05) 
between the sampling sites. The concentration of Cu was recorded 
highest in liver as 6.48 μg/g wet weight and no significant different 
(P > 0.05) was observed between Cu concentrations in gills at all the 
four sampling sites. Zn and Cd concentrations were highest in gills 
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as 23.22 and 0.85 μg/g wet weight, respectively. Zn concentration 
in the tissues was significantly different (P < 0.05) between the 
sampling sites. Non-significant difference (P > 0.05) was observed 
between Cd concentration in the liver, gills and muscle and between 
the sampling sites. The lowest concentrations of the three examined 
metals were recorded in muscle.
   The MT level in tissues of P. schlosseri was presented in Figure 
3, where statistical significant difference was observed among the 
sampling sites. Liver recorded the highest MT value as 241.59 μg/g 
wet weight while the lowest value was found in muscle as 4.99 μg/g 
wet weight. The order of MT content was in the decreasing order of 
liver > gills > muscle.
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Figure 2. Metal concentrations (μg/g w/w) in liver, gills and muscle of P. 
schlosseri (n = 4). 
Data are expressed as mean ± SE. Different alphabets indicate a significant 
difference between (P < 0.05) the sampling sites.
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   The relationships between MT and metals concentrations in the 
liver, gills and muscle of P. schlosseri were shown in Figures 4–6 for 
Cu, Zn and Cd, respectively. Non-significant (P > 0.05) correlations 
were observed between MT concentrations in liver and gills with Cu 
concentrations in the same tissues. A significant (P < 0.05) positive 
correlation was found between MT concentration in muscle (r = 
0.583) with Cu concentration in muscle. Correlations between MT 

concentrations in tissues and Zn concentration in the liver, gills 
and muscle of P. schlosseri were presented in Figure 5. A non-
significant (P > 0.05) correlation was observed between MT and 
Zn concentrations in liver, and a non-significant (P > 0.05) negative 
correlation was observed between MT and Zn concentrations in 
gills (r = –0.218). Zn concentration in muscle showed a significant 
(P < 0.05) negative correlation with MT concentration in muscle (r 
= –0.631). A non-significant correlation (P > 0.05) was observed 
between MT and Cd concentrations in liver, gills and muscle.

Figure 4. Correlations between MT concentrations in tissues and Cu 
concentrations in the liver, gills and muscle of P. schlosseri. 
A significant difference was observed at (P < 0.05) between MT and Cu 
concentrations in the tissues.
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Figure 5. Correlations between MT concentrations in tissues and Zn 
concentrations in the liver, gills and muscle of P. schlosseri. 
A significant difference was observed at (P < 0.05) between MT and Zn 
concentrations in the tissues.
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Figure 6. Correlations between MT concentrations in tissues and Cd 
concentrations in the liver, gills and muscle of P. schlosseri.
A non-significant difference was observed at (P > 0.05) between MT and 
Cd concentrations in the tissues.
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4. Discussion

4.1. Metals concentrations in the tissues of mudskipper P. 
schlosseri

   Metals concentrations in the examined tissues were highest at 
sampling sites with high anthropogenic activities. The lowest 
concentrations of the three examined metals were recorded in 
muscle. The highest concentration of metals in liver and gills is 
probably due to their physiological roles in fish metabolism. Gills 
are the primary site of metal uptake from water[31], especially if 
metals are bound to particulate matters[32,33], while the liver as 
metabolically active tissue is the accumulation place of metals[34]. 
Result of this study is in agreement with many studies conducted 
in different areas which show many species of fish having tendency 
to accumulate heavy metals in high values in their target organs, 
such as liver and gill[35,36]. Ambedkar and Muniyan[37], Shahat et 
al.[38], Lemus et al.[39] and Ekpo et al.[40] have reported high metals 
accumulation in fish liver tissues and least in muscles tissues.Metals 
accumulation in the tissues of Gudgeon fish (Gobio gobio) was 
reported by Van Campenhout et al.[41]; gill and kidney accumulated 
most of the Cd and Zn, whereas liver preferentially accumulated 
Cu. The gills of aquatic organisms constitute a key interface for 
the uptake of dissolved metals ions from water. Fish gills are 
highly sensitive to metal exposure, since the absorption takes place 
primarily through this organ[42-44], high metals content in gills could 
be attributed to the direct contact of this tissue with water and also 
as one of the major route of dissolved metals uptake in fish. The 
concentration of metals in the gill reflects the level of the metals in 
the waters where the fish live, whereas the concentration in liver 
represents storage of metals[45,46].
   The high accumulation of Cu more than Zn in the liver could 
be explained by the findings of Roch et al.[47] that showed Cu has 

greater affinity for protein and is able to displace Zn. Furthermore, 
liver is usually not an important storage site for Zn[48]. The gills are 
in contact with the external medium and are considered to be central 
in the uptake of dissolved substances from the water being the prime 
target for the toxic action of waterborne metals such as Cd, Cu and 
Zn[49]. The constant contact of gills with water and resuspended 
sediment particle might explain the high metal concentration in this 
organ. Gills are also involved in Zn regulation, either reducing influx 
or increasing efflux rates, reaching a steady state[50] and probably site 
of transient metal accumulation from where the absorbed metals are 
distributed throughout the whole body and accumulated in specific 
organs[51]. Cd concentration in gills was higher than in liver, which 
is in agreement with reported values of Cd levels in gills[52] that Cd 
level in gills was higher than or comparable with that in the liver of 
Cyprinus carpio and some other fish species. This could be due to 
the natural environmental waterborne exposure to the metal. Cd ions 
(Cd2+) that are in direct contact with gills could bind in a non-specific 
manner to the mucopolysaccharides (constituents of mucoproteins, 
glycoproteins) present on the outside of the gills[53].
   Zn and Cd concentrations in gills probably reflected uptake of these 
metals from water since gills generally accumulate higher metals 
concentrations during waterborne exposure. High concentrations 
of heavy metals in liver and gill tissues are attributed to the affinity 
or strong coordination of MT with metals. These proteins are 
synthesized in the liver and gill tissues when fishes are exposed to 
heavy metals and help the fish to detoxify metals[54], while the low 
concentrations of metals in muscle are due to the fact that, muscle is 
not an active tissue in heavy metals accumulation[55-57].
   The lower rate of bioaccumulation of metals in muscle may be 
attributed to the lack of direct contact of muscle with water medium 
and for not being an active site for detoxification, therefore transport 
of metals from other tissues to muscle does not seem to arise[58]. The 
metals concentrations in the tissues of P. schlosseri were in the order 
of Zn > Cu > Cd.

4.2. MT levels in the tissues of mudskipper P. schlosseri

   Metal regulation in teleost fish occurs mainly via MT induction, 
although the inductive response in different species and tissues 
varies significantly[9]. Currently, no evidence exists for the presence 
of metal binding proteins with a higher affinity for Cd than MT 
in teleost[59]. The results of MT induction in the tissues of giant 
mudskipper P. schlosseri shows a significant difference between 
the sampling sites. The highest MT was recorded in liver while the 
lowest MT was found in muscle. The pattern of MT content in the 
tissues was in the decreasing order of: liver > gills > muscle.This 
result confirms earlier studies. The highest concentration of MT 
seen in the liver, is in accordance with the findings of some authors 
such as Tom et al.[22] and Sinaie et al.[60] who reported highest 
concentrations of MT in liver while lowest average MT was reported 
in muscle of Colossoma macropomum by Lemus et al.[39]. High 
levels of copper in the liver was ascribed to copper binding to MT, 
which serves as a detoxification mechanism[61].
   Liver is a highly specialized metabolic organ which can induce 
MT biosynthesis much higher than the gills. Paulino et al.[62] 

has reported higher concentrations of contaminants in the liver of 
Astyanax fasciatus and Pimelodus maculatus when compared to the 
gills. Many researches have shown that liver has higher MT content 
than gills; the result of the present study is in agreement with the 
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results observed by other workers and reported in the literature[63,64]. 
It has been reported by Kovarova et al.[65] that MT total values were 
elevated in fish liver in correlation to physiologically occurred levels. 
The low MT content in gills could be attributed to low binding 
capacity of gills to metals, particularly Cu which induced MT 
production as compared to liver. Synthesis of metal-binding thionein 
ligands has been reported in fish gill[66,67], but the amount is likely 
low because this synthesis occurs primarily in chloride cells of the 
gills and much less in the other cell types[68,69] which comprise a 
minority (< 10%) of the branchial epithelial surface area.
   In the present study the values of MT in gills were found lower 
compared to liver but higher than muscle. MT concentration in 
aquatic animals has been associated with increased levels of metals 
in the aquatic environment and with the length of exposure time[70]. 
But in the present study, the highest MT contents do not correspond 
with highest heavy metals concentrations in tissues i.e. highest 
MT contents were found at sampling sites that mostly showed low 
metals concentrations in tissues. A similar finding by Tiwari et 
al.[59] has showed a 2 fold decrease in MT mRNA level with the 
increasing metal concentration. Study by Sevcikova et al.[71], on 
the effect of metals on MT content in fish from Skalka and Želivka 
reservoirs, indicated that MT did not seem to be induced by high 
metal contamination. Low MT levels was also observed in polluted 
sites characterized by metals contamination, petroleum/crude 
hydrocarbon inputs and combustion PAH sources as reported by 
Fonseca et al.[72].
   Nevertheless, literatures present many contraindications and 
inconsistencies in MT induction. Many researchers had reported 
that some species do not show increased MT concentrations, at least 
in some organs at sites where metals are present and bio available 
at high concentrations[41,73-75]. However, despite the high levels 
of Cu detected at Sg. Puluh and K. Juru, the MT concentrations at 
these sites were low as compared to Bg. Lalang. This might be due 
to the continued exposure of fish to high levels of heavy metals in 
the sediment at these sites and has selected for resistant strains of 
mudskipper in which the expression of MT was attenuated. This 
finding is similar to the results reported by Rotchell et al.[76] and 
Wall et al.[77] that once maximum induction has occurred, MT levels 
will no longer reflect the degree of metal exposure. Because over 
time tissues metal concentrations increase and then stabilize[78] and 
ultimately, the internal physiology of the animal either returns to the 
pre-exposure condition or new equilibrium is established. Intensity 
of MTs synthesis is, thus, tissue-specific, concentration and time-
dependent[65]. Generally, the MT expression level is dose-dependent 
on heavy metals. However, the response of MT to metals is not 
positively correlated when the amount of metals overdoses[79]. In 
addition, many studies have illustrated that MT mRNA and the MT 
protein are highly correlated with heavy metal levels at low doses, 
but the expression is reduced at high doses[80-82]; during exposure to 
low pollution protein synthesis is known to increase due to induction 
of proteins involved in the protection of the cell against harmful 
conditions, such as stress proteins, MTs, antioxidant enzymes and 
biotransformation enzymes, which is expected to reflect in elevated 
transcriptional activity and thus higher RNA: DNA ratios[83]. At 
high pollution stress however, protein synthesis can be suppressed 
indicating disturbance of normal metabolic processes[84]. Therefore 
increase or decrease in protein synthesis and thus RNA: DNA ratios 
can be expected as a result of pollutant exposure depending on the 
stress level.

   Metals uptake depends not only on bioavailability, but on 
ecological needs and metabolic activity of species. Therefore, the 
low copper accumulation and higher MT concentration in the liver 
of fish from Bg. Lalang might suggest an imbalance between copper 
uptake and detoxification/excretion rate. 

4.3. Relationships between MT levels and heavy metals 
concentrations in the tissues of P. schlosseri

   The significant positive correlation observed between MT in 
muscle and Cu concentration in muscle suggest Cu and MT 
concentrations increases simultaneously in muscle tissue. Several 
authors have interpreted the positive correlations between metal and 
MT content in fish tissue as the metal sequestration by MT and the 
poor correlation as metals exceeding the binding capacity of MT or 
the involvement of non-MT proteins[76,85,86].
   Copper is a redox-active transition metal, an essential requirement 
as a cofactor for biochemical activity and a potential to catalyze toxic 
reactions when accumulated in excess of cellular requirement[87-

89]. Copper may become toxic and can be bound to MT for 
detoxification[90]. Long and Wang[91] have reported an increase of 
MT in all tissues and muscle of marine fish Terapon jarbua with 
increasing waterborne or dietary Cu concentration. They showed 
that the positive correlation between MT and Cu concentration in 
muscle implied that the accumulated Cu was sequestered by MT. Cu 
accumulation is stimulated in muscle when the storage limits of liver 
are reached. Sorensen[92] has reported that fish tend to store excess 
copper in the liver and regulate accumulation in the muscle tissue.
   The negative correlations between Zn and MT concentrations 
in gills and muscle might suggest metabolic regulation[85] in 
these tissues. Biochemical mechanisms within organisms tend to 
regulate essential trace elements at constant concentrations[93]. It is 
well established that MT has a role in Zn homeostasis and Zn is a 
constituent element of MT[94]. Zn toxicity effects will occur during 
exposure to elevated concentrations[95], although Zn toxicity is 
rather uncommon in fish[48], the free Zn2+ is indeed, extremely toxic 
to the cell. Therefore, Zn has the ability to induce the synthesis of 
MT, which is a factor in regulating the metabolism of Zn, including 
absorption and storage[96].
   Cd was the only metal that did not show significant correlation 
with MT level in any examined tissue, which could be attributed to 
low level of Cd bioaccumulation which may alter the correlations 
coefficients[97]. Similar results from different field studies have 
reported no significant correlations between fish tissues and heavy 
metals concentrations. Kavarova et al.[98] have reported no significant 
correlations between Cd liver content and MT while Mieiro et al.[22] 

observed no significant correlations between total mercury content 
and MT levels in different fish tissues from a mercury-contaminated 
area. The non-significant correlations observed between Cd and MT 
concentrations might further be explained by one of the functions 
of MT in the homeostatic regulation of zinc and copper, and the 
concentration of these essential elements in organs will decrease the 
ability of cadmium to be bound to this protein, however, proteins 
with a lower affinity for the metal may also bind Cd because of their 
relative high concentrations in the cell compared to MT[59].
   Furthermore, the non-significant correlation observed between 
MT and metals concentrations in the tissues of P. schlosseri suggest 
the possible involvement of other MT-binding metals[76]. Among 
the metals analyzed, only Zn showed a strong and constant negative 
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relationship with MT levels in both gills and muscle, whereas Cu 
and Cd did not show this trend. Therefore, there is a need for further 
research on MT induction in P. schlosseri to explore its use as a 
valuable biomarker of environmental metal exposure.
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