STUDIA UNIVERSITATIS MOLDAVIAE, 2017, nr.6(106)Seria "Științe reale și ale naturii"ISSN 1814-3237ISSN online 1857-498X

CZU: 547.4:541.6

SCHIMBĂRILE STRUCTURALE ÎN MOLECULELE DE TIP AH₃ ÎN PROCESELE REDOX INDUSE DE PSEUDOEFECTUL JAHN-TELLER

Iolanta BALAN

Institutul de Chimie al AȘM

Pseudoefectul Jahn-Teller (PEJT) este folosit pentru raționalizarea modificărilor structurale ale moleculelor de amoniac NH₃ și de metil CH₃ în procesele redox prin analizarea modificărilor în simetria și decalajul energetic dintre stările electronice fundamentale și excitate care controlează cuplarea lor PEJT de-a lungul coordonatei de deformare. Valorile numerice ale constantelor de cuplare vibronică au fost estimate prin intermediul adaptării soluțiilor ecuațiilor seculare la profilurile energetice calculate *ab initio*. Se arată că oxidarea moleculei NH₃ prin îndepărtarea unui electron de pe ultimul orbital molecular ocupat (HOMO) duce la suprimarea PEJT și la restabilirea configurației nucleare planare. Reducerea moleculei CH₃ mărește PEJT, ducând la piramidalizarea sa.

Cuvinte-cheie: pseudoefectul Jahn-Teller, procese redox, distorsuini structurale, parametrii vibronici de cuplaj, stări excitate, amoniac, metil.

STRUCTURAL CHANGES IN AH₃ TYPE MOLECULES IN THE REDOX PROCESS INDUSED BY PSEUDO JAHN-TELLER EFFECT

The Pseudo Jahn-Teller Effect (PJTE) is used to rationalize structural changes in the redox processes of NH_3 and CH_3 molecules by means of analyzing the changes in their symmetry and energy gaps between the ground and lowest excited electronic states that control their PJTE coupling along the distortion coordinates. The numerical values of the vibronic coupling constants were estimated by means of fitting the solutions of the secular equations to the ab initio calculated energy profiles. It is shown that oxidation of NH_3 molecule by removing an electron from the high occupied molecular orbital (HOMO) leads to the suppression of the PJTE and to restoration of planar nuclear configuration. Reduction of CH_3 molecule enhances the PJTE, leading to its pyramidalization.

Keywords: pseudo Jahn-Teller effect, redox processes, distortion, vibronic coupling parameters, excited states, ammonia, carbonyl.

Introducere

Orice perturbare a sistemului molecular (excitație, ionizare, coordonare la complecșii metalelor de tranziție, schimbarea sarcinii moleculei în procesele redox etc.) modifică starea electronică a sistemului și, în consecință, poate duce la distorsionarea configurației sale nucleare. Cunoașterea originii deformării prezintă nu doar interes teoretic, deoarece multe dintre proprietățile sistemelor moleculare sunt direct legate de structura lor și poate servi drept instrument pentru crearea compușilor cu proprietăți dorite.

Pe de altă parte, este bine cunoscut faptul că pseudoefectul Jahn-Teller (PEJT) este singura sursă de instabilitate a configurațiilor nucleare de simetrie înaltă și de distorsiuni structurale ale oricărui sistem molecular în stări electronice nedegenerate [1-8]. Prin urmare, instabilitatea sistemului molecular ar trebui căutată în stările electronice care se amestecă puternic la deplasările nucleare, și invers. Dacă există instabilitate, ar trebui să existe stări excitate corespunzătoare care cauzează instabilitatea configurației de referință.

În lucrarea de față PEJT a fost folosit pentru explicarea și raționalizarea schimbărilor structurale ale moleculelor de amoniac și de metil în procesele redox. Este bine cunoscut faptul că molecula de amoniac NH₃ are structură piramidală, iar radicalul de metil CH₃ este planar [9-11]. În cazul formelor lor redox (cationul NH₃⁺ și anionul de metil CH₃⁻), odată cu schimbarea structurii electronice are loc și modificarea configurației nucleare. Reieșind din aceasta se va arăta că modificarea configurației nucleare a formelor redox are loc din cauza supresiei (în cazul cationului NH₃⁺) sau amplificării (în cazul anionului de metil CH₃⁻) a PEJT. Pentru a demonstra acest lucru, a fost calculată *ab initio* structura electronică în starea fundamentală în configurația planară de simetrie înaltă. Au fost analizate frecvențele vibraționale imaginare și a fost găsită direcția instabilității lor. Apoi au fost calculate mai multe stări electronice excitate și profilurile lor energetice de-a lungul coordonatelor normale de instabilitate; se stabilește, prin simetrie, acele stări excitate care produc instabilitatea stării fundamentale prin intermediul interacțiunilor PEJT. A fost estimată energia de stabilizare PEJT și au fost calculate matematic constantele vibronice care controlează procesul de instabilitate.

p.86-92

Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.86-92

Metode generale și detalii de calcul

În abordarea PEJT [1-3] problema stabilității sau instabilității configurației nucleare a sistemului molecular este redusă la estimarea curburii K_{Γ}^{Γ} a suprafeței energetice a potențialului adiabatic (SEPA) al sistemului molecular în direcția coordonatei de deformare Q_{Γ} a configurației înalt simetrice Q_0 . Expresia exactă pentru K a oricărui sistem molecular în starea $|\Gamma\rangle$ fundamentală sau excitată cu privire la deplasările nucleare Q_{Γ} poate fi obținută din teoria perturbațiilor:

$$K_{\Gamma}^{\Gamma} = K_{0\Gamma}^{\Gamma} + K_{\nu\Gamma}^{\Gamma}.$$
 (1)

Primul termen al ecuației (1), $K_{0\Gamma}^{\Gamma}$, se numește constanta primară de forță:

$$K_{0\Gamma}^{\Gamma} = \left\langle \Gamma \left| \left(\partial^2 H / \partial Q_{\Gamma}^2 \right)_0 \right| \Gamma \right\rangle, \tag{2}$$

unde H – Hamiltonianul sistemului. S-a demonstrat analitic și s-a confirmat printr-o serie de calcule numerice că pentru orice sistem molecular $K_{0\Gamma}^{\Gamma} \ge 0$.

Al doilea termen al ecuației (1), $K_{\nu\Gamma}^{\Gamma}$, care este întotdeauna negativ:

$$K_{\nu\Gamma}^{\Gamma} = 2\sum_{\Gamma'} \left| F_{\Gamma}^{\Gamma\Gamma'} \right|^2 / (E_{\Gamma'} - E_{\Gamma})$$
(3)

prezintă contribuția vibronică în SEPA și ia în considerare reducerea lui K_{Γ}^{Γ} datorită relaxării electronilor. Termenul $F_{\Gamma}^{\Gamma\Gamma'}$ din ecuația (3) este constanta cuplajului vibronic între stările $|\Gamma\rangle$ și $|\Gamma'\rangle$:

$$F_{\Gamma}^{\Gamma\Gamma'} = \left\langle \Gamma \middle| (\partial H / \partial Q_{\Gamma})_0 \middle| \Gamma' \right\rangle, \tag{4}$$

unde E_{Γ} și $E_{\Gamma'}$ sunt energiile stărilor multielectronice respective.

Notăm că constanta cuplajului vibronic $F_{\Gamma}^{\Gamma\Gamma'}$ și contribuția vibronică la curbura SEPA $K_{\nu\Gamma}^{\Gamma}$ sunt nenule numai dacă stările $|\Gamma\rangle$ și $|\Gamma'\rangle$ se supun restricției de simetrie: $\Gamma \otimes \Gamma'$ conține Γ .

Instabilitatea configurației nucleare a sistemului molecular (curbura negativă a SEPA) are loc când:

$$\left|K_{\nu\Gamma}^{\Gamma}\right| \ge K_{0\Gamma}^{\Gamma} . \tag{5}$$

Aceasta înseamnă că instabilitatea structurală și distrosiunea (deformarea) configurației nucleare înalt simetrice a oricărui sistem poliatomic în stare nedegenerată se datorează numai PEJT, adică interacțiunii vibronice a stărilor electronice la deplasările nucleare în direcția distorsiunii.

Calculul direct al elementelor de matrice ale cuplajului vibronic implicate în modelul PEJT este destul de dificil matematic. În lucrarea de față valorile numerice ale parametrilor vibronici ($K_{0\Gamma}^{\Gamma}$ și $F_{\Gamma}^{\Gamma\Gamma'}$) au fost estimate prin fitarea datelor *ab initio* a SEPA moleculelor la formulele generale obținute din teoria vibronică:

$$\varepsilon_0(q_{\Gamma}) = \frac{1}{2} K_{0\Gamma}^{\Gamma} q_{\Gamma}^2 + \frac{\Delta_{\Gamma}}{2} \pm \frac{1}{2} \sqrt{\Delta_{\Gamma}^2 + 4F_{\Gamma}^2 q_{\Gamma}^2} \,. \tag{6}$$

Toate calculele au fost efectuate folosind pachetul de programe GAMESS [12]. Pentru toate moleculele considerate, optimizarea geometriei și analiza frecvenței vibraționale în configurațiile plane de simetrie înaltă și de echilibru au fost efectuate prin metoda *ab initio* SCF. Funcțiile de undă ale stărilor electronice fundamentale și excitate în simetria D_{3h} , precum și curbele potențiale de energie de-a lungul coordonatelor a_2 " au fost calculate prin metoda RHF-CI (Configuration Interaction – CI), folosind setul de bază 6-31+G(d,p) [13] augmentat cu funcții difuze 3s pe atomii de azot și de carbon. Spațiul activ în metoda CI pentru sistemele moleculare AH₃ a inclus șase orbitali moleculari ocupați și cinci orbitali moleculari neocupați.

Coordonata de instabilitate PEJT

Studiul efectelor vibronice ale oricărui sistem molecular începe de la configurația nucleară de referință a celei mai înalte simetrii posibile. Pentru molecula de amoniac este simetrie D_{3h} pentru configurația nucleară. În cazul moleculelor AH₃, configurația nucleară plan-trigonală a simetriei D_{3h} este cea inițială. Sistemele AH₃

STUDIA UNIVERSITATIS MOLDAVIAE, 2017, nr.6(106) Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.86-92

cu patru atomi au șase grade de libertate vibraționale, care se transformă conform reprezentărilor ireductibile $1A_1 + 1A_2 + 2E'$. Termenul a_1' corespunde deplasării total simetrice și este doar variația lungimii legăturii, păstrându-se simetria D_{3h} . Două deplasări de tip *e*' reduc simetria de la D_{3h} la C_{2v} , adică transformă triunghiul echilateral într-un triunghi isoscel.

Deplasarea simetrizată a_2''

$$Q_{a_2''} = \sqrt{\frac{3m}{M+3m}} z_0 - \sqrt{\frac{M}{3(M+3m)}} (z_1 + z_2 + z_3), \tag{7}$$

corespunde ieșirii din plan a atomului central care transformă configurația nucleară planară inițială D_{3h} în structură piramidală de simetrie C_{3v} (Fig.1). În ecuația (7) *M* și z_0 – masa și coordonata z a atomului central, *m* și z_1 , $z_2 z_3$ – masa și coordonatele atomilor de hidrogen.

Fig.1. Distrosiunea de tip a_2'' (deplasările atomilor sunt indicate prin săgeți) pentru moleculele AH₃ plane.

Rezultate și discuții

Parametrii geometrici optimizați (lungimea legăturii și unghiul de valență) pentru sistemele NH₃ și CH₃⁻ în configurațiile planare D_{3h} și de echilibru C_{3v}, precum și frecvența imaginară ($\omega_{imaginară}$) sunt prezentate în Tabelul 1. Pentru comparație sunt prezentate date experimentale sau calculate extrase din sursa de referință respectivă.

Tabelul 1

Parametrii geometrici optimizați și frecvența imaginară pentru sistemele AH₃ (A=N, C) în configurațiile D_{3h} și C_{3v}

	NH ₃			CH ₃		
	D_{3h}	C_{3v}		D_{3h}	C_{3v}	
	calc.	calc.	exp. [14]	calc.	calc.	calc. [15]
R_{A-H} (Å)	0,987	1,001	1,012	1,070	1,117	1,105
∠HAH (°)	120	107,6	106,7	120	103,114	108,7
$d(Å)^{a}$	-	0,364	0,38	-	0,477	0,52
$\omega_{\text{imaginarǎ}}$ (cm ⁻¹)	906,97	_	-	871,02	-	-

^a d – ieșirea atomului A din planul atomilor de hidrogen.

Reeşind din datele prezentate în Tabelul 1, valorile parametrilor geometrici pentru molecula NH₃ sunt în bun acord cu datele experimentale; de asemenea, pentru NH₃ comparabile cu valorile experimentale sunt bariera de inversie 5,48 kcal/mol (valoarea experimentală este 5,8 kcal/mol [14]) și momentul dipol 1,859 Debye (valoarea experimentală este 1,482 Debye [14]). Pentru anionul CH₃⁻ bariera de inversie calculată este de 5,03 kcal/mol. În cazul cationului NH₃⁺ în simetria D_{3h} lungimea legăturii N-H este 1,082 Å, fiind cu aproximativ 0,1 Å mai lungă, iar valoarea energiei totale este cu 8,35 eV sau (192,55 kcal/mol) mai înaltă comparativ cu molecula neutră. Date experimentale pentru anionul CH₃⁻ lipsesc, de aceea pentru comparare au fost folosite datele calculelor efectuate de alți cercetători [15] în configurația neplanară cu simetria C_{3v}. Pentru radicalul CH₃ lungimea legăturii C-H în configurația planară este 1,011 Å (valoarea experimantală este 1,079 Å [15]), fiind cu 0,06 Å mai scurtă decât lungimea C-H în anion.

STUDIA UNIVERSITATIS MOLDAVIAE, 2017, nr.6(106) Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.86-92

Studiul structurii electronice în configurația nucleară planară D_{3h} arată că starea fundamentală pentru aceste molecule este nedegenerată: ${}^{1}A_{1}$ – moleculele NH₃ și CH₃ și ${}^{2}A_{2}$ " – moleculele NH₃⁺ și CH₃ (*a se vedea* Figura 2). Conform teoriei PEJT, moda distorsiunii anumite a configurației nucleare trebuie să se conțină în produsul stărilor multielectronice implicate în PEJT. În cazul sistemelor AH₃ distorsiunea de tip $a_{2}^{"}$ este determinată de interacțiunea vibronică a stărilor A₁' și A₂". Astfel, în cazul când starea fundamentală este ^{*M*}A₁' se va lua în considerare starea excitată ^{*M*}A₂", și invers: când starea fundamentală este ^{*M*}A₂" se va lua în considerare starea excitată ^{*M*}A₁" (unde *M* este multiplicitatea). În Figura 2 este reprezentată diagrama stărilor multielectronice fundamentale și excitate pentru moleculele NH₃, NH₃⁺, CH₃ și CH₃. Stările multielectronice excitate respective se obțin prin excitațiile monoelectronice în spațiul OM de valență activi. Prima stare excitată ${}^{1}A_{2}$ " a moleculei de amoniac, formată prin excitarea monoelectronică de pe HOMO a₂" pe orbitalul Rydberg 3s, dă o contribuție K_{v} negativă mică la curba SEPA [16]. Astfel, se va lua în considerare a doua stare excitată ${}^{1}A_{2}$ " formată prin excitarea monoelectronică de pe totalul 4a₁', care este un OM de antilegătură N-H (*a se vedea* Figura 3).

Fig.2. Diagrama stărilor multielectronice fundamentale și excitate pentru moleculele NH₃, NH₃⁺, CH₃ și CH₃⁻.

Din diagrama OM (Figura 3) se observă că ultimul orbital populat (orbitalul HOMO) al moleculei NH_3 este de tip a_2 " ocupat de doi electroni, ceea ce determină starea fundamentală ${}^{1}A_1$. Același orbital HOMO de simetria a_2 " al cationului NH_3^+ este populat de un singur electron, iar starea fundamentală va fi ${}^{2}A_2^{"}$. În cazul moleculelor CH_3 și CH_3^- situațiile sunt similare cu cele ale moleculelor NH_3^+ și NH_3 , respectiv.

Fig.3. Diagrama energetică a OM pentru moleculele NH₃, NH₃⁺, CH₃ și CH₃⁻. Prin săgeți sunt indicate excitațiile monoelectronice ce produc stările excitate de simetriile respective A₁' și A₂⁻.

STUDIA UNIVERSITATIS MOLDAVIAE, 2017, nr.6(106) Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.86-92

Orbitalul HOMO de tip a_2 " în molecula CH₃ este populat de un singur electron, starea fundamentală fiind ²A₂", iar în cazul anionului CH₃" același orbital este dublu populat, starea fundamentală fiind ¹A₁". Astfel, transferul de sarcină de la sau la molecula respectivă schimbă popularea OM, nu și funcțiile OM. În toate cazurile, orbitalul HOMO de tip a_2 " este în totalmente orbitalul $2p_z$ al atomului central de azot sau de carbon. Orbitalul LUMO de tip a_1 " este orbitalul Ridberg 3s al azotului sau carbonului, iar orbitalul LUMO+2 de tip a_1 " este un OM de antilegătură cu componența $\{2s^{N} - (1s^{H1} + 1s^{H2} + 1s^{H3})\}$.

Secțiunea transversală a SEPA pentru stările multielectronice fundamentală ${}^{1}A_{1}$ și excitată ${}^{1}A_{2}$ " pentru molecula NH₃ și a secțiunii transversale pentru starea fundamentală ${}^{2}A_{1}$ pentru cationul NH₃⁺ de-a lungul coordonatei de instabilitate este reprezentată în Figura 4.

Fig.4. Secțiunea transversală a SEPA a moleculelor NH_3 și NH_3^+ de-a lungul coordonatei de deformare $Q_{a_3^*}$.

Prin fitarea curbelor la formulele analice din teoria PEJT (ecuația (6)) se obțin valorile parametrilor vibronici (*a se vedea* Tabelul 2), care cantitativ descriu instabilitatea sistemelor moleculare respective.

Tabelul 2

	\mathbf{NH}_3	$\mathbf{NH_{3}^{+}}$	CH3	CH ₃
$K_{ heta}$	4,92	7,39	4,70	6,40
F	8,93	8,93	6,86	6,86
Δ	12,01	12,40	8,11	11,00
K_{ν}	-11,88	-5,94	-11,62	-5,81
K	-6,96	1,45	-6,92	0,59

Parametrii vibronici calculați pentru sistemele moleculare NH₃, NH₃⁺, CH₃ și CH₃⁻

Observăm că pentru molecula NH₃ neutră K<0, adică ea este instabilă cu privire la piramidalizare. Când molecula NH₃ se oxidează, are loc îndepărtarea unui electron de pe orbitalul HOMO de tip a₂" (orbitalul 2 p_z al atomului N), ceea ce reduce de două ori contribuția negativă a PEJT la curbura SEPA produsă de stările excitate A₂". Într-adevăr, deoarece stările excitate sunt formate prin excitația unui electron, în aproximația OM F= $\sqrt{2}f$, unde *f* este constanta de cuplare vibronică orbitală [1]:

STUDIA UNIVERSITATIS MOLDAVIAE, 2017, nr.6(106)

Seria "Științe reale și ale naturii" — ISSN 1814-3237 — ISSN online 1857-498X — p.86-92

$$f_2 = \langle a_2^{"} | (\partial H / \partial Q_{a2"})_0 | 4a_1' \rangle \tag{8}$$

Pentru molecula NH₃ neutră avem K_{ν} (NH₃) $\approx -4f^2/\Delta$. Pentru cationul NH₃⁺ aceste valori devin egale cu K_{ν} (NH₃⁺) $\approx -2f^2/\Delta$. Adică, pentru NH₃⁺ contribuția vibronică K_{ν} (NH₃⁺) la curbura SEPA devine egală cu -5,94 eV/Å².

În plus, oxidarea mărește și valoarea lui K_0 . Aceasta rezultă din faptul că în aproximația monoelectronică constanta de forță K_0 este egală cu suma elementelor de matrice monoelectronice K_0^{en} și a interacțiunii nucleu-nucleu K_0^{nn} :

$$K_0 = K_0^{en} + K_0^{nn} \tag{9}$$

Componentele electron-nucleu și nucleu-nucleu ale K_0 sunt, respectiv:

$$K_{0}^{en} = \sum_{l}^{occ} n_{l} k_{0}(l) = \sum_{l}^{occ} n_{l} \left\langle l \left| \sum_{\alpha} \left(\partial^{2} h(l) / \partial Q^{2} \right)_{0} \right| l \right\rangle,$$

$$K_{0}^{nn} = \sum_{l}^{occ} \frac{\partial^{2}}{\partial Q^{2}} \left(\sum_{\alpha > \beta} \frac{Z_{\alpha} Z_{\beta}}{R_{\alpha\beta}} \right)_{0},$$
(10)

unde: $k_0(l)$ sunt contribuțiile orbitale ale OM ocupați la K_0 , n_l – numărul de ocupație al *l*-lea OM, h(l) – operatorul Coulomb monoelectronic, Z_{α} și Z_{β} – sarcinile nucleelor.

Pentru molecula NH₃ neutră contribuția orbitală a HOMO $k_0(a2^{"})$ este negativă și este egală cu -4/15 $q_p\xi_p^3$, dacă nucleul este deplasat de-a lungul axei orbitalului p corespunzător [16]. Aici ξ_p este exponentul Slater al OA p și q_p este popularea OA p. Valoarea calculată pentru OA $2p_z$ a atomului de azot este egală cu -2,47 eV/Å². Astfel, în comparație cu molecula neutră NH₃, valoarea lui K_0 pentru cation crește și devine egală cu $K_0(NH_3^+)=7,39 \text{ eV/Å}^2$. Sumând K_0 și K_v a cationului obținem valoarea rezultată a curburii SEPA pentru NH₃⁺, care este pozitivă și egală cu $K=1,45 \text{ eV/Å}^2$. Aceasta înseamnă că cationul NH₃⁺ este stabil în configurația nucleară cu simetrie înaltă D_{3h}. Calculele numerice și analiza frecvenței vibrațiilor nu indică nicio frecvență imaginară în acest sistem. Prin urmare, oxidarea moleculei NH₃ conduce la slăbirea PEJT și la refacerea configurației nucleare planare. Același efect de supresie a PEJT și de restabilire a configurației planare se observă și în cazul stărilor excitate ale moleculei NH₃ care sunt planare [17].

În cazul radicalului CH₃ și al anionului CH₃⁻ situația este inversă: forma neutră este stabilă în configurația planară, iar în procesul de reducere odată cu anexarea unui electron configurația planară devine instabilă și devine piramidală. Acest fapt este demonstrat, ca și în cazul amoniului, calitativ – prin forma curbelor dependenței stărilor fundamentale de coordonata de deformare $a_2^{"}$ și cantitativ – prin valoarea calculată a constantei *K*: $K(CH_3) = 0,59 \text{ eV/Å}^2$ și $K(CH_3^-) = -6,92 \text{ eV/Å}^2$. Grupa metil în oarecare compus are configurația piramidală datorită transferului de sarcină orbitală pe *p*-OA perpendicular planului moleculei, situația devenind similară cu a anionului de metil.

Concluzii

S-a aratat că forța motrice a distorsiunii de tip a_2'' a moleculelor AH₃ și a formelor lor oxidate sau reduse este PEJT. Principala contribuție negativă la curbura SEPA a stărilor fundamentale provine din starea excitată, care este formată prin excitarea unui electron de pe orbitalul HOMO de tip a_2'' către OM neocupat de simetrie corespunzătoare.

A fost analizat modul în care oxidarea și reducerea influențează PEJT rezultând fie distorsiuni suplimentare (CH_3^{-}), fie restabilirea configurației planare (NH_3^{+}). S-a aratat că oxidarea moleculei de amoniac conduce la suprimarea PEJT și la restaurarea configurației nucleare planare. Reducerea radicalului de metil are ca rezultat mărirea PEJT, conducând la distorsionarea configurației nucleare planare a carboanionului obținut.

Referințe:

- 1. BERSUKER, I.B. The Jahn-Teller Efect. Cambridge University Press, 2006, p.616.
- BERSUKER, I.B. Electronic structure and properties of transition metal compounds. John Wiley & Sons, USA, 2010. 759 p.
- 3. GORINCHOY, N.N., BALAN, I., BERSUKER, I.B. Jahn-Teller, pseudo Jahn-Teller, and Renner-Teller effects in systems with fractional charges. In: *Computational and Theoretical Chemistry*, 2011, vol.976, p.113-119. DOI:10.1016/j.comptc.2011.08.013.

STUDIA UNIVERSITATIS MOLDAVIAE, 2017, nr.6(106)

Seria "Științe reale și ale naturii" ISSN 1814-3237 ISSN online 1857-498X p.86-92

- 4. GORINCHOY, N.N., BERSUKER, I.B. Pseudo Jahn-Teller effect in control and rationalization of chemical transformations in two-dimensional compounds. In: *Journal of Physics: Conf. Series*, 2017, vol.833(1), p.1-11. DOI:10.1088/1742-6596/833/1/012010.
- ILKHANI, A.R., GORINCHOY, N.N., BERSUKER, I.B. Pseudo Jahn–Teller effect in distortion and restoration of planar configurations of tetra-heterocyclic 1,2-diazetes C₂N₂E₄, E = H, F, Cl, Br. In: *Chemical Physics*, 2015, vol.460, p.106-110. http://dx.doi.org/10.1016/j.chemphys.2015.07.015.
- 6. GERU, I., GORINCHOY, N., BALAN, I. Pseudo Jahn-Teller origin of the proton tunneling in Zundel cation containing water cluster. In: *Ukr. J. Phys.*, 2012, vol.57, no.11, p.1149-1155.
- OGURTSOV, I., GORINCHOY, N., BALAN, I. Vibronic origin of the H₃O metastability. In: J. Mol. Struc., 2007, vol.838, p.107-111.
- 8. OGURTSOV, I.Ya., BALAN, I., GORINCHOY, N.N., MUNTEANU, G. The D_{2h} versus D_{2d} nuclear symmetry competition in the C_nH₄ molecules (n=2,3,4,5). Pseudo Jahn-Teller approach. In: *Annals of West Univ. of Timisoara, Series of Chemistry*, 2003, vol.12, no.3, p. 1233-1242 (RomPhysChem 11, 2-5 september 2003).
- 9. HERZBERG, G. Electronic spectra of polyatomic molecules. D.Van Nostrand Company, Canada, 1966. 745 p.
- 10. SCHAEFER, H.F. Applications of electronic structure theory. New York: Plenium Press, 1977. 453 p.
- 11. HATANO, Z., NOMURA, T., TANAKA, K. Calculation of Excited states of H₂O and NH₃ by the one-center expansion approximation. In: *International Journal of Quantum Chemistry*, 1978, vol.13, p.207-220.
- GRANOVSKY, A. http://classic.chem.msu.su/gran/gamess/index.html; SCHMIDT, M.W. et.al. General Atomic and Molecular Electronic Structure System. In: J. Comput. Chem., 1993, vol.14(11), p.1347-1363; DOI: 10.1002/ jcc.540141112.
- 13. HEHRE, W.J., DITCHFIELD, R., POPLE, J.A. Self-Consistent Molecular Orbital Methods. In: J. Chem. Phys., 1972, vol.56, p.2257-2261.
- 14. RAUK, A., ALLEN, L.C., CLEMENTI, E. Electronic Structure and Inversion Barrier of Ammonia. In: *The Journal of Chemical Physics*, 1970, vol.52, p.4133-4144. DOI: 10.1063/1.1673621.
- 15. DIXON, D.A., FELLER, D., PETERSON, K.A. Accurate Calculations of the Electron Affinity and Ionization Potential of the Methyl Radical. In: *J. Phys. Chem. A*, 1997, vol.101, p.9405-9409.
- 16. BERSUKER, I.B., GORINCIOI, N.N., POLINGER, V.Z. On the origin of dynamic instability of molecular systems. In: *Theoret. Chim. Acta*, 1984, vol.66, p.161-172.
- 17. HOFFMANN, R. Geometry Changes in Excited States. In: Pure and Appl. Chem., 1970, vol. 24(3), p.567-584.

Prezentat la 23.06.2017