
International Journal of Engineering and Techniques -Volume 4 Issue 3 , May - 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 461

Implementation of The Ieee Standard Binary Floating-Point

Arithmetic Unit
Dr. R. Prakash Rao

Associate Professor, Electronics and Communication Engineering,

Matrusri Engineering College, #16-1-486, Saidabad, Hyderabad-500059, India.

I. INTRODUCTION
The IEEE Standard for Binary Floating-Point

Arithmetic (IEEE 754) is the most widely- used

standard for floating-point computation and is

followed by many CPU and FPU

implementations. The result of multiplying two

FP numbers can be described as multiplying their

significands and adding their exponents. The

resultant sign S is S1+S2, the resultant significand

p is the adjusted product of p1.p2 and the resultant

exponent E is the adjusted E1+E2+bias. In order

to perform floating-point multiplication, a simple

algorithm is realized as-
• Add the exponents and subtract 127.

• Multiply the mantissas and determine

• the sign of the result. Normalize the

• resulting value, if necessary.

II. ALGORITHMS AND DESIGN OF

FLOATING POINT MULTIPLICATION

Figure.1 shows how the floating point

multiplication is performed. Floating-point

multiplication is inherently easier to design than

floating-point addition or subtraction.

Multiplication requires integer addition of

operand exponents and integer multiplication of

significands that facilitate normalization when

multiplying normalized significands.

 Figure.1: Basic design of Floating Point Multiplier

These independent operations

within a multiplier make it ideal for pipelining. In

RESEARCH ARTICLE OPEN ACCESS

Abstract:

A floating-point system can be used to represent, with a fixed number of digits, numbers of different orders of magnitude: e.g.

the distance between galaxies can be expressed with the same unit of length. The result of this dynamic range is that the numbers

that can be represented are not uniformly spaced; the difference between two consecutive representable numbers grows with the

chosen scale. Over the years, a variety of floating-point representations have been used in computers. However, since the 1990s,

the most commonly encountered representation is that defined by the IEEE 754 Standard. The speed of floating-point operations,

commonly measured in terms of FLOPS, is an important characteristic of a computer system. Hence, in this work the IEEE

standard binary floating-point arithmetic is implemented.

 KEYWORDS: Fixed Number of Digits, Ieee 754 Standard, Flops, Floating-Point System.

International Journal of Engineering and Techniques -Volume 4 Issue 3 , May - 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 462

floating point multiplication the following three

steps can be done:
• Unpack the operands, re-insert the hidden bit, and

check for any exceptions on the operands (such as

zeros or NaNs).

• Multiplication of the significands, calculation of

the sign of the two significands, and addition of

the exponents take place.

• The final result needs to be normalized and the

exponent adjusted before packing and removing

the hidden bit.

Multiplication does not require shifting of the

significands or adjustment of the exponents as in

the adder unit until the final stage for

normalization purposes. For the basic summation

of partial products in a floating-point

multiplication represented in scientific notation

(significant multiplied by the radix to some

power), one multiplies the two significands and

adds the two radix powers. Normalization of the

significant ensures the decimal point of the

significant has an exactly one significant digit to

the left of it which may or may not need to be

done [1].

III. 24-BIT PIPELINED INTEGER

MULTIPLIER

The floating-point multiplier block diagram can

be seen in Figure 2.

Figure 2: Pipelined Multiplier Block

Diagram

The pipelined floating-point multiplier generates a

product every clock when the pipeline has

completely filled, and has a latency of 13 cycles.

The pipeline stages for the multiplier are much

simpler in comparison to the adder stages. Twelve

of the 13 stages are used for the computation of

the integer multiply. By simply relying upon

VHDL, synthesis tools for the creation of the

multiplication produced a design which was

deemed unacceptable considering the planned

resource budget. An alternative integer multiplier

was created using a parameterized multiplier

generation program. The generated 24X24 integer

multiplier utilizes Booth recoding and pipeline

stages to preserve routing, timing, and size of the

multiplier. Two bits of the multiplier are issued at

a time for twelve consecutive clock cycles,

starting with the lowest two bits.

Figure 2 illustrates the pipeline multiplier stages

for the floating-point multiplier. The exponent and

mantissa operations can be performed

concurrently until the final stage where

normalization takes place. In floating-point

multiplication, the exponents must be added

together as they are in this implementation during

the first stages. The result from the exponent

addition continues through a pipeline delay until

the mantissa result completes. Carry-out logic

from the mantissa multiplication informs the

control logic not to perform a 1-bit shift since the

implied one exists. Note that the exponent must

continue through several pipeline delays that

require registered logic [2].

IV. IMPLEMENTATION IN VHDL
The multiplier VHDL consists of several different

components that rely on a clocked process and

registered signals. The components consist of a

pipeline delay element, a 9- bit adder and a 24X24

pipelined integer multiplier. The VHDL clocked

process provides much of the glue logic for the

components used in order to ensure signals to

each component are registered properly and to

avoid timing hazards. The pipelined integer

multiplier, for instance, requires that the inputs be

registered for expected results. The inputs to the

floating-point multiplier need to be checked for a

possible zero outcome and assert a flag through

the pipeline to indicate a zero value be given as

the result during the last stage in the pipeline. The

VHDL code provides concurrent operations for

some of the initial stages. As the mantissa

undergoes integer multiplication, calculations on

International Journal of Engineering and Techniques -Volume 4 Issue 3 , May - 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 463

the exponent are done and passed through a

pipeline delay to remain synchronized with the

integer multiplier data. The VHDL used in the

multiplier differs from the 32-bit floating- point

pipelined adder in that no state machines are

required for the multiplier. Instead, the VHDL

provides minimal control logic to ensure the

components are given data on the correct cycles.

4.1 Mantissa Multiplication

 and Exponent Addition
The multiplier undergoes two separate, parallel

operations during the first 12 stages. One of the

operations includes multiplying the two 24-bit

mantissa values using the 24X24 pipelined integer

multiplier. The multiplier generates the result on

the thirteenth clock cycle. During the mantissa

calculation, the exponent addition takes place

using the 9-bit integer adder component. Nine

bits, instead of eight, are used to handle carry-out

situations. The carry-out bit provides important

information used in the final stage of the floating-

point multiplier to handle exponent biasing

adjustments. Since the exponent calculation does

not require more than a clock cycle, a pipeline

delay component delays the calculated exponent

result until the last stage when the bias

adjustments are ready to be done. In addition, two

smaller logic operations take place. The first

determines if either of the input operands are zero.

If so, a special zero-flag needs to be set. The

second uses XOR logic to determine the resulting

sign bit of the two input operands [3]. The zero-

flag and sign bit need to be delayed as well until

the last stage in the floating-point multiplier. All

data going through the pipelined delay must

continue to be synchronized with operand B going

through the pipelined integer multiplier.

 4.2 Exponent Adjustment

 and Product Assembly

 Stage
The last stage receives the data from the pipelined

integer multiplier and the other pipeline delay

elements. The stage logic checks the zero-flag bit

to see if the output is simply a zero. Otherwise, a

one in the most significant bit of the mantissa

indicates the resulting mantissa value has already

been normalized. If not, one and the mantissa

output shifted by one must adjust the exponent.

The exponent undergoes subtraction to remove an

extra biasing factor from the addition of an earlier

stage in the pipeline. Depending on the most

significant bit of the mantissa, different values are

subtracted from the exponent. The final stage

assigns the resulting values to the output signals

of the floating-point multiplier.

4.3 Stages in Single Precision

 Floating Point Multiplier
The standard floating point multiplier has several

stages:

• Prenormalizing,

• Multiplying,

• Postnormalizing,

• Shifting

• Rounding

All of the stages involve multiple steps, but some

stages are more complex than others. Each is

described in its own section [3].

Prenormalizing
Recall that, in IEEE 754 format, normalized

numbers have an implicit leading 1, and that

denormalized numbers do not. Additionally, recall

that denormalized numbers use leading zeros to

increase the range of the exponent. To keep the

multiplication stage simple, both inputs are

converted into the same form.

Multiplying
The multiplication stage involves three parts:

multiplying mc and md, adding ec and ed, and

detecting tininess. Multiplying the mantissas ñ

The two mantissas are already in a standard form

due to the prenormalization stage.

Postnormalizing
In the postnormalization stage, the multiplier

normalizes the product and returns MN

International Journal of Engineering and Techniques -Volume 4 Issue 3 , May - 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 464

Shifting
If the product is a denormalized number, then it

might need to be shifted to the right to provide the

appropriate number of leading zeros to indicate

the correct exponent.

Rounding
The product of two n-bit numbers has the

potential of being 2(n+1) bits wide. The result of

floating point multiplication, however, must fit

into the same n bits as the multiplier and the

multiplicand. This, of course, often leads to loss

of precision. The IEEE standard attempted to keep

this loss as minimal as possible with the

introduction of standard rounding modes. [16]

When all are enabled, the multiplier

supports all IEEE rounding modes: round to

nearest even, round to zero, round to positive

infinity, and round to negative infinity [4].

3.2.1Special Case Path

The multiplier cannot always determine a result

by simply doing a multiplication. There are

certain inputs that require the multiplier to take

special action. The multiplier performs this action

in parallel with the regular multiplication, and

chooses this special result in cases in which it is

required.
Not a number (NaN) - The IEEE 754 Standard

specifies that an implementation will return a NaN

that is given to it as input, or either one if both

inputs are NaN's. The multiplier can be

configured to return either the first NaN or the

higher of the two. The Intel Pentium series returns

the higher of the two NaNís and, as this multiplier

was tested using a processor from that series, the

multiplier is by default set to do the same.

Infinity - Nearly anything multiplied by infinity is

properly signed infinity, with the exception of

NaN, described above, and zero, described below.

Infinity and zero - The result of the multiplication

of infinity and zero is undefined. The multiplier

will therefore return a predefined NaN. If none of

these cases apply, the special case path signals

that the result of the standard path should be

chosen.

V. RESULTS

This design has been implemented, simulated on

ModelSim and synthesized for VHDL. Simulation

based verification is one of the methods for

functional verification of a design. In this method,

test inputs are provided using standard test

benches. The test bench forms the top module that

instantiates other modules. Simulation based

verification ensures that the design is functionally

correct when tested with a given set of inputs.

Though it is not fully complete, by picking a

random set of inputs as well as corner cases,

simulation based verification yield reasonably

good results.

The following snapshots are taken from

ModelSim after the timing simulation of the

floating point multiplier core.

Figure 3: Output of Single Precision

Floating Point Multiplier when above

inputs aregiven

VI. Conclusion
Single precision floating point multiplier is

designed and implemented using ModelSim in

this thesis. The designed multiplier conforms to

IEEE 754 single precision floating point standard.

In this implementation exceptions (like invalid,

inexact, infinity, etc) are considered. In this

implementation rounding modes like round to

positive infinity, round to negative infinity, round

to zero and round to even. The designed is

International Journal of Engineering and Techniques -Volume 4 Issue 3 , May - 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 465

verified using FPU test bench. The design is also

verified for overflow and underflow cases.

References
1. John L Hennesy & David A. Patterson

Computer Architecture A Quantitative Approach

Second edition; A Harcourt Publishers

International Company

2. J. Bhasker, A VHDL Primer, Third Edition,

Pearson, 1999.

3. M. Ercegovac and T. Lang, Digital Arithmetic,

Morgan Kaufmann Publishers, 2004

4. John. P. Hayes, ìComputer Architecture and

Organizationî, McGraw Hill, 1998.

5. Peter J. Ashenden, The Designerís Guide to

VHDL, Morgan Kaufmann Publishers, 95 Inc.,

1996.

6. Behrooz Parhami, Computer Arithmetic,

Algorithms and Hardware Design Oxford

University Press.2000.

