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I.     INTRODUCTION 
The IEEE Standard for Binary Floating-Point 

Arithmetic (IEEE 754) is the most widely- used 

standard for floating-point computation and is 

followed by many CPU and FPU 

implementations. The result of multiplying two 

FP numbers can be described as multiplying their 

significands and adding their exponents. The 

resultant sign S is S1+S2, the resultant significand 

p is the adjusted product of p1.p2 and the resultant 

exponent E is the   adjusted E1+E2+bias. In order 

to perform floating-point multiplication, a simple 

algorithm is realized as- 
• Add the exponents and subtract 127. 

• Multiply the mantissas and determine  

• the sign of the result. Normalize the  

• resulting value, if necessary. 

 

 

 

II.  ALGORITHMS AND DESIGN OF  

FLOATING POINT MULTIPLICATION 

  

Figure.1 shows how the floating point  

 

 

multiplication is performed. Floating-point 

multiplication is inherently easier to design than 

floating-point addition or subtraction. 

Multiplication requires integer addition of 

operand exponents and integer multiplication of 

significands that facilitate normalization when 

multiplying normalized significands. 

 
 Figure.1: Basic design of Floating Point Multiplier 

 

 

These independent operations  

within a multiplier make it ideal for pipelining. In 
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Abstract: 
 

A floating-point system can be used to represent, with a fixed number of digits, numbers of  different orders of magnitude: e.g. 
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floating point multiplication the following three 

steps can be done: 
• Unpack the operands, re-insert the hidden bit, and 

check for any exceptions on the operands (such as 

zeros or NaNs). 

• Multiplication of the significands, calculation of 

the sign of the two significands, and addition of 

the exponents take place. 

• The final result needs to be normalized and the 

exponent adjusted before packing and removing 

the hidden bit. 

Multiplication does not require shifting of the 

significands or adjustment of the exponents as in 

the adder unit until the final stage for 

normalization purposes. For the basic summation 

of partial products in a floating-point 

multiplication represented in scientific notation 

(significant multiplied by the radix to some 

power), one multiplies the two significands and 

adds the two radix powers. Normalization of the 

significant ensures the decimal point of the 

significant has an exactly one significant digit to 

the left of it which may or may not need to be 

done [1]. 

III. 24-BIT PIPELINED INTEGER  

MULTIPLIER 
 

The floating-point multiplier block diagram can 

be seen in Figure 2. 

 
Figure 2: Pipelined Multiplier Block  

Diagram 

The pipelined floating-point multiplier generates a 

product every clock when the pipeline has 

completely filled, and has a latency of 13 cycles. 

The pipeline stages for the multiplier are much 

simpler in comparison to the adder stages. Twelve 

of the 13 stages are used for the computation of 

the integer multiply. By simply relying upon 

VHDL, synthesis tools for the creation of the 

multiplication produced a design which was 

deemed unacceptable considering the planned 

resource budget. An alternative integer multiplier 

was created using a parameterized multiplier 

generation program. The generated 24X24 integer 

multiplier utilizes Booth recoding and pipeline 

stages to preserve routing, timing, and size of the 

multiplier. Two bits of the multiplier are issued at 

a time for twelve consecutive clock cycles, 

starting with the lowest two bits. 

Figure 2 illustrates the pipeline multiplier stages 

for the floating-point multiplier. The exponent and 

mantissa operations can be performed 

concurrently until the final stage where 

normalization takes place. In floating-point 

multiplication, the exponents must be added 

together as they are in this implementation during 

the first stages. The result from the exponent 

addition continues through a pipeline delay until 

the mantissa result completes. Carry-out logic 

from the mantissa multiplication informs the 

control logic not to perform a 1-bit shift since the 

implied one exists. Note that the exponent must 

continue through several pipeline delays that 

require registered logic [2]. 
 

IV.  IMPLEMENTATION IN VHDL 
The multiplier VHDL consists of several different 

components that rely on a clocked process and 

registered signals. The components consist of a 

pipeline delay element, a 9- bit adder and a 24X24 

pipelined integer multiplier. The VHDL clocked 

process provides much of the glue logic for the 

components used in order to ensure signals to 

each component are registered properly and to 

avoid timing hazards. The pipelined integer 

multiplier, for instance, requires that the inputs be 

registered for expected results. The inputs to the 

floating-point multiplier need to be checked for a 

possible zero outcome and assert a flag through 

the pipeline to indicate a zero value be given as 

the result during the last stage in the pipeline. The 

VHDL code provides concurrent operations for 

some of the initial stages. As the mantissa 

undergoes integer multiplication, calculations on 
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the exponent are done and passed through a 

pipeline delay to remain synchronized with the 

integer multiplier data. The VHDL used in the 

multiplier differs from the 32-bit floating- point 

pipelined adder in that no state machines are 

required for the multiplier. Instead, the VHDL 

provides minimal control logic to ensure the 

components are given data on the correct cycles. 

 

4.1 Mantissa Multiplication 

 and Exponent Addition 
The multiplier undergoes two separate, parallel 

operations during the first 12 stages. One of the 

operations includes multiplying the two 24-bit 

mantissa values using the 24X24 pipelined integer 

multiplier. The multiplier generates the result on 

the thirteenth clock cycle. During the mantissa 

calculation, the exponent addition takes place 

using the 9-bit integer adder component. Nine 

bits, instead of eight, are used to handle carry-out 

situations. The carry-out bit provides important 

information used in the final stage of the floating-

point multiplier to handle exponent biasing 

adjustments. Since the exponent calculation does 

not require more than a clock cycle, a pipeline 

delay component delays the calculated exponent 

result until the last stage when the bias 

adjustments are ready to be done. In addition, two 

smaller logic operations take place. The first 

determines if either of the input operands are zero. 

If so, a special zero-flag needs to be set. The 

second uses XOR logic to determine the resulting 

sign bit of the two input operands [3]. The zero- 

flag and sign bit need to be delayed as well until 

the last stage in the floating-point multiplier. All 

data going through the pipelined delay must 

continue to be synchronized with operand B going 

through the pipelined integer multiplier. 

  
  
 4.2 Exponent Adjustment  

 and Product Assembly  

 Stage 
The last stage receives the data from the pipelined 

integer multiplier and the other pipeline delay 

elements. The stage logic checks the zero-flag bit 

to see if the output is simply a zero. Otherwise, a 

one in the most significant bit of the mantissa 

indicates the resulting mantissa value has already 

been normalized. If not, one and the mantissa 

output shifted by one must adjust the exponent. 

The exponent undergoes subtraction to remove an 

extra biasing factor from the addition of an earlier 

stage in the pipeline. Depending on the most 

significant bit of the mantissa, different values are 

subtracted from the exponent. The final stage 

assigns the resulting values to the output signals 

of the floating-point multiplier. 

 
4.3 Stages in Single Precision 

 Floating Point Multiplier 
The standard floating point multiplier has several 

stages: 

• Prenormalizing, 

• Multiplying, 

• Postnormalizing, 

• Shifting 

• Rounding 

All of the stages involve multiple steps, but some 

stages are more complex than others. Each is 

described in its own section [3]. 
 

Prenormalizing 
Recall that, in IEEE 754 format, normalized 

numbers have an implicit leading 1, and that 

denormalized numbers do not. Additionally, recall 

that denormalized numbers use leading zeros to 

increase the range of the exponent. To keep the 

multiplication stage simple, both inputs are 

converted into the same form.  

 

 

Multiplying 
The multiplication stage involves three parts: 

multiplying mc and md, adding ec and ed, and 

detecting tininess. Multiplying the mantissas ñ 

The two mantissas are already in a standard form 

due to the prenormalization stage. 

 

Postnormalizing 
In the postnormalization stage, the multiplier 

normalizes the product and returns MN 
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Shifting 
If the product is a denormalized number, then it 

might need to be shifted to the right to provide the 

appropriate number of leading zeros to indicate 

the correct exponent. 

 

Rounding 
The product of two n-bit numbers has the 

potential of being 2(n+1) bits wide. The result of 

floating point multiplication, however, must fit 

into the same n bits as the multiplier and the 

multiplicand. This, of course, often leads to loss 

of precision. The IEEE standard attempted to keep 

this loss as minimal as possible with the 

introduction of standard rounding modes. [16] 

When all are enabled, the multiplier 

supports all IEEE rounding modes: round to 

nearest even, round to zero, round to positive 

infinity, and round to negative infinity [4]. 

 

3.2.1Special Case Path 
 
The multiplier cannot always determine a result 

by simply doing a multiplication. There are 

certain inputs that require the multiplier to take 

special action. The multiplier performs this action 

in parallel with the regular multiplication, and 

chooses this special result in cases in which it is 

required. 
Not a number (NaN) - The IEEE 754 Standard 

specifies that an implementation will return a NaN 

that is given to it as input, or either one if both 

inputs are NaN's. The multiplier can be 

configured to return either the first NaN or the 

higher of the two. The Intel Pentium series returns 

the higher of the two NaNís and, as this multiplier 

was tested using a processor from that series, the 

multiplier is by default set to do the same. 

Infinity - Nearly anything multiplied by infinity is 

properly signed infinity, with the exception of 

NaN, described above, and zero, described below. 

Infinity and zero - The result of the multiplication 

of infinity and zero is undefined. The multiplier 

will therefore return a predefined NaN. If none of 

these cases apply, the special case path signals 

that the result of the standard path should be 

chosen. 

 

 

V.  RESULTS  
 

This design has been implemented, simulated on 

ModelSim and synthesized for VHDL. Simulation 

based verification is one of the methods for 

functional verification of a design. In this method, 

test inputs are provided using standard test 

benches. The test bench forms the top module that 

instantiates other modules. Simulation based 

verification ensures that the design is functionally 

correct when tested with a given set of inputs. 

Though it is not fully complete, by picking a 

random set of inputs as well as corner cases, 

simulation based verification yield reasonably 

good results. 

 

 

The following snapshots are taken from 

ModelSim after the timing simulation of the 

floating point multiplier core. 

 

 
Figure 3: Output of Single Precision 

Floating Point Multiplier when above 

inputs aregiven 
 

 

VI. Conclusion 
Single precision floating point multiplier is 

designed and implemented using ModelSim in 

this thesis. The designed multiplier conforms to 

IEEE 754 single precision floating point standard. 

In this implementation exceptions (like invalid, 

inexact, infinity, etc) are considered. In this 

implementation rounding modes like round to 

positive infinity, round to negative infinity, round 

to zero and round to even. The designed is 
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verified using FPU test bench. The design is also 

verified for overflow and underflow cases. 
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