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ABSTRACT 
Social media networks are dynamic. All things considered, the request in which organize ties create is an 

imperative part of the system flow. This examination proposes a novel dynamic system demonstrate, the Nodal 

Attribute-based Temporal Exponential Random Graph Model (NATERGM) for dynamic system investigation. 

The proposed demonstrate centers around how the nodal traits of a system influence the request in which the 

system ties create. Worldly examples in social media networks are demonstrated in light of the nodal qualities of 

people and the time data of system ties. Utilizing social media information gathered from a knowledge sharing 

group, observational tests were led to assess the execution of the NATERGM on distinguishing the transient 

examples and foreseeing the qualities without bounds networks. Results demonstrated that the NATERGM 

showed an improved example testing ability and an expanded expectation precision of system attributes contrasted 

with benchmark models. The proposed NATERGM show clarifies the parts of nodal qualities in the arrangement 

procedure of dynamic networks.  
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I.INTRODUCTION 

 

Social media networks are developing on the web 

networks that basically associate people. These 

networks con-sist of hubs that speak to singular social 

media clients and ties that speak to different 

connections between the clients. Cases of social media 

networks incorporate online companionship networks 

[1], [2], following-adherent networks [3], and content 

sharing networks [4], [5]. The connections between the 

online clients are regularly open data, which gives 

chances to utilizing social system investigation (SNA) 

to better understand how and why people set up social 

associations online [6]. Subsequently, a developing 

number of studies have utilized SNA to look at social 

media networks [7], [4], [8], [5], [9].  

 

Social media networks have two essential qualities. 

Initially, they are dynamic in nature. System ties create 

in a request, however not all the while. All things 

considered, connections between people may change 

after some time. Second, social media clients vary in 

different properties, for example, sex, useful part in 

online groups, and notoriety. Therefore, social media 

networks are multimode networks [10], [11] and 

distinctive hub writes exist in the system. An outcome 

of these two qualities is that the apparently same 

system examples can come about because of various 

system arrangement forms, contingent upon the request 

in which the system ties create. For instance, Fig. 1 

shows two procedures in shaping a two-star design. 

Here, we expect that the dark hubs speak to very 

dynamic people (e.g., people who every now and again 

come on the web and leave messages) in online groups 

and the numbers beside organize ties demonstrate the 

request in which the connections create. The Pattern A 

delineates a procedure where very dynamic people are 

organized over others when creating connections, while 

the example B shows the contrary inclination. On the 
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off chance that the request in which the system ties 

create is disregarded, we can't separate between these 

two examples and understand how very dynamic 

people take part in the dynamic procedure of system 

development.

 
 

Fig. 1. Different Processes Leading to the Same 

Network Pattern 

 

Differentiating between various temporal patterns is 

thus critical to understand the formation mechanisms of 

social media networks. However, current social 

network research usually adopts a static view of 

networks based on the assumption that all network ties 

have developed con-currently upon observation. This 

assumption, while con-tributing to simplicity and being 

useful for identifying static patterns of networks, leads 

to reduced representa-tion of real social media 

networks. As a result, the ability of social network 

analysis to identify network patterns may be negatively 

affected. The problem can further re-duce the practical 

value of social network analysis to un-derstand various 

network phenomena in social media con-texts. 

 

In this study, we propose a novel dynamic network 

model, the Nodal Attribute-based Temporal 

Exponential Random Graph Model (NATERGM), for 

dynamic network analysis. NATERGM is an extension 

of TERGM [12] and focuses on how nodal attributes of 

networks affect the or-der in which network ties 

develop. The proposed model extracts nodal attributes 

of individuals and time infor-mation of network ties 

from social media networks, based on which various 

temporal patterns are modeled and their likelihoods of 

occurrence are estimated. Extending prior work [13], 

with empirical data we demonstrate that NA-TERGM 

provides an enhanced pattern testing capability 

compared to TERGM. Moreover, NATERGM is able 

to pre-dict the characteristics of social media networks 

in future and we show that our approach outperforms 

TERGM-based prediction models. The major objective 

of this study is to provide a framework to explore, 

analyze, and explain the formation mechanisms of 

social media networks. 

 

II.RELATED WORK 

In this segment we first audit late investigations 

examining so-cial media networks. At that point, we audit 

developing system models for dynamic system 

examination.  

 

2.1 Social Media Networks  

 

In view of a hypothetical conceptualization of system ties 

[14], four sorts of social media organize ties have been 

outlined in earlier research [6]. Vicinity ties speak to that 

two people have a place with a similar sub-groups (e.g., 

Facebook Group) or locational zones. Social connection 

ties speak to social associations between people, for 

example, virtual companionships and membership 

connections in mi-cro-blogging destinations [15], [16]. 

Connection ties speak to between dynamic practices 

between people, for example, data trades through 

message answers [17]. Stream ties speak to the 

development of products or data between organize hubs, 

for example, retweets.  

 

A few analysts have contended that these sorts of ties are 

not really decoupled, but rather speak to a continuum 

[18]. For instance, vicinity may additionally prompt social 

relations; collaborations and streams of knowledge may 

happen in the meantime.  

 

Social media networks have been contemplated for 

various purposes. When all is said in done, the 

examination goals of these investigations can be grouped 

into three classifications. The main stream of research 

centers around clarifying system instruments. This kind 

of research goes for understanding in what conditions 

people will probably set up social associations on the web. 

For instance, statistic homophily was found to exist in 

online fellowship networks [19]. Understudies of a similar 

sexual orientation, major, and habitation territory will 

probably set up social associations in Facebook kinship 

networks. Earlier research has likewise discovered that 

immediate correspondence, circuitous correspondence, 

and special connection happen every now and again in 

online web gatherings [20]. The second stream of 

research looks at how the structure of a social media 

arrange influences the results of people in the system. 

This sort of research is alluded to as basic capital 

investigations [21]. For instance, an examination of 

kinship networks in an online small scale loaning stage 
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prompted disclosures that the odds of effective financing 

were fundamentally influenced by the quantity of 

fellowship ties and by the kinds of companionship [2]. 

Research has discovered that people in an associated 

organize can anticipate results of a given issue all the 

more precisely, contrasted with the situations when they 

are detached [22]. Another famous research region is to 

segment the system into sub-graphs and recognize sub-

groups. These investigations for the most part go for 

distinguishing key gatherings or players in the system and 

understanding the qualities of these sub-groups. For 

instance, in light of centrality and coreness measures, 

center gatherings and key individuals in the center 

gathering who were most dynamic were distinguished in 

a clinical talk discussion [17]. Another investigation 

recognized Twitter client bunches from following-devotee 

networks in Twitter.com and analyzed the impact of 

intra-aggregate ties, between amass ties, and middle 

person ties on retweeting practices [3]. 

Previous studies focusing on community detection mainly 

use clustering or modularity optimization algo-rithms 

[23]. In structural capital studies, regression analy-sis has 

been frequently used to examine the relationships 

between network structures and individual outcomes. De-

pendent variables are the outcomes of network nodes, 

such as funding success [2] and online users’ activity 

levels [16]. Independent variables can be various network 

metrics of the nodes, such as degree centrality, 

betweenness central-ity [24], and structural holes [25]. To 

explain the mecha-nisms of network formation, network 

models can be used, such as the Latent Space Model [26], 

p1 models [27], and the Exponential Random Graph 

Model [28]. In social me-dia network research, ERGM has 

received increased atten-tion recently [20], [19], [29]. 

ERGMs are statistical models that test whether observed 

networks show theoretically hypothesized structural 

tendencies [30], [28]. These struc-tural tendencies, or 

configurations, are subsets of nodes and ties in the 

network, reflecting certain types of network sub-

structures. Examples of typical configurations can be 

“triangle” and “k-star” [31], [32]. In addition, nodal attrib-

utes can be incorporated in a configuration. Equation (1) 

specifies the expression of ERGM, where �� is a matrix of 

random variables representing network ties and �� is its 

re-alization; ���� is a parameter corresponding to 

configuration A, positively related to the likelihood of 

configuration A to occur; ����(��) is network statistics 

corresponding to A; �� is a normalizing constant ensuring 

that Pr(��) is a probabilistic distribution. 

 

Given an observed network, the primary task of ERGM is 

to examine which configurations appeared statistically 

more than by chance. If a parameter ���� is estimated to 

be significant, it will suggest that the corresponding 

configu-ration has better chances to occur in the network, 

which further suggests that the corresponding effect plays 

an im-portant role in the formation process of the 

network. 

Although various analytical methods have been used to 

study social media networks, studies that address the dy-

namics of social media networks are still scarce. Only a 

few studies have taken into account the time information 

relat-ing to when network ties are developed. For 

instance, Shriver et al. [16] considered the number of 

friendship ties at previous time points in their time series 

regressions. An-other study analyzed the order in which 

retweeting links were activated in micro-blogging sites, 

and found that the extent to which an individual could 

reach other parts of the network positively affected the 

popularity of the content posted by that individual [33]. 

Overall, the dynamics of so-cial media networks have 

been addressed in few prior studies. Nevertheless, 

dynamic network analysis is an emerging area of network 

research, and relevant studies have been conducted in 

biology, neural science, healthcare, and social science 

domains. We review existing dynamic network analysis 

approaches next. 

2.2 Dynamic Network Analysis 

Generally, two different approaches can be used for dy-

namic network analysis. Cross-sectional approaches ana-

lyze network data where time information is embedded 

within the network. Longitudinal approaches observe net-

works at multiple time points and track the evolution of 

networks based on comparisons [10]. Previous research 

has proposed various dynamic network models, including 

both types of approaches, for studying the dynamic pro-

cess of network formation, evolution, and dissolution. We 

review selected dynamic network models next. 

Temporal Exponential Random Graph Model (TERGM) is 

an extension of the ERGM for dynamic networks [34], 

[12], [35]. A simple TERGM model under the first-order 

Markov dependency can be written as: 

Note that the major difference between (1) and (2) is the 

specification of network statistics for each temporal pat-

tern A, which is now determined by network realizations 

in multiple observational time points (observed at t and t-

1 in this case). Given multiple observations, TERGM can 
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be used to test whether a certain temporal pattern is 

more likely to occur than by chance. For example, as 

illustrated in Fig. 2, three different temporal patterns can 

be derived from a transitivity pattern, depending on the 

order in which the three ties develop. Compared to the 

conven-tional ERGM where only a tendency for 

transitivity can be tested, TERGM differentiates between 

three different dy-namic patterns of network ties 

formation which all finally lead to the same transitivity 

structure in (a). TERGM can further test the likelihood of 

each temporal pattern to occur. 

 
Fig. 2. Three Different Temporal Patterns Derived From 

Transitivity 

 

In addition to the transitivity in this example, TERGM can 

also include network configurations of many other types 

such as temporal stability and temporal reciprocity [12], 

[36]. TERGM can also be applied to cross-sectional data if 

time duration information for network ties is pro-vided. 

However, none of the TERGM research has consid-ered 

how nodal attributes can affect the order in which net-

work ties develop. 

Separable Temporal Exponential Random Graph Model 

(STERGM) separates TERGM into a formation model and a 

dissolution model, thereby modeling not only the tem-

poral patterns of network formation, but also the 

temporal patterns of network dissolution [37], [38], [36]. 

STERGM addresses the concern that some existing 

network ties might disappear over time, such as a broken 

friendship, for example. STERGM identifies new 

connections and dis-solved ties by comparing networks at 

multiple time points. A variant of STERGM for cross-

sectional data is also pro-posed for the case when 

longitudinal data is unavailable [38]. 

Hidden Temporal Exponential Random Graph Model 

(HTERGM) is a model that combines TERGM with hidden 

Markov models [34]. It assumes that (1) network 

structure at time t, Yt, is dependent on the structure of the 

network in the previous time point Yt-1, and (2) nodal 

attributes of the network, xt, are dependent on the 

network structure Yt. It further assumes that only nodal 

attributes are observa-ble, while network structures are 

hidden states. The major aim of HTERGM is to estimate 

the transition probabilities P(Yt|Yt-1) and emission 

matrices Λ = P(xt|Yt) so that hid-den network structures 

can be inferred given time series of nodal attributes x1, 

x2, …, xt. However, HTERGM does not explain how nodal 

attributes affect the formation process of networks. 

Temporally Randomized Reference Models (TRRM) in-

vestigates the dynamic characteristics of networks by 

com-paring observed networks with an ensemble of 

temporally randomized networks [39], [40], [41]. 

Temporal randomi-zation generates new networks by 

rewiring ties in the orig-inal networks or changing time 

information associated with the ties. Typical 

randomization methods include ran-domized edges, 

randomly permutated times, random times, edge 

randomization, and time reversal [40]. Fig. 3 shows 

examples of randomized edges and randomly per-

mutated times. By comparing original networks with tem-

porally randomized networks, key dynamic 

characteristics of original networks can be understood. 

For example, Holme [39] compared e-mail networks with 

their tempo-rally randomized samples and found that in 

general the average time it took to pass information 

between network nodes is longer in the original email 

networks. 

 
Fig. 3. Network Temporal Randomization with (a) an 

original network with numbers indicating the order of tie 

activation; (b) a randomized net-work by iteratively 

rewiring network ties among four selected nodes; and 

another randomized network by permuting the time 

associated with ties. 

 

Latent space models [26] assume that each node in a net-

work is associated with a latent position in a low dimen-

sional space. The probabilities of tie occurrences are 

deter-mined by the distances between nodes in the latent 

space. The latent space model estimates the parameters 

associ-ated with latent positions based on the observed 

networks. The estimated model can be used to visualize a 

spatial rep-resentation of network relationships [26], 

[42]. Dynamic Latent Space Model (DLSM) is an extension 

of the latent space model and allows the latent positions 

to change over time [43], [44]. 

2.3 Research Gaps 
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Based on the prior literature, several research gaps can be 

identified. First, social media networks are dynamic in na-

ture. However, little research has explained the mecha-

nisms of network formation with a dynamic perspective. 

Dynamic network analysis has been frequently used to 

de-tect communities from networks [10], [11], but not to 

ex-plain the mechanisms of network formation. Most 

network mechanisms studies focused on identifying static 

network patterns, but did not explain how these patterns 

developed dynamically. Second, emerging network 

research has given rise to various approaches for 

examining temporal networks and has suggested that the 

order of network ties is an important aspect of network 

dynamics [12], [40], [33]. Recent TERGM models examine 

different dynamic pat-terns of network tie formation in 

dyadic and triadic rela-tionships when all the nodes are 

considered to be of the same type. STERGM additionally 

examines the order in which network ties dissolve. 

However, none of the existing models explain even more 

complex patterns created by the interactions of network 

tie order and nodal attributes. We need a model to 

carefully examine such interactions in or-der to 

understand how nodal attributes affect the order in which 

network ties develop. In addition, network predic-tion has 

been an under-studied research area [45]. Alt-hough prior 

research has helped identify dynamic network patterns, 

little has been done to predict future networks based on 

the identified patterns. 

 

III. NODAL ATTRIBUTE-BASED TEMPORAL 

EXPONENTIAL RANDOM GRAPH MODEL 

The proposed NATERGM focuses on how nodal attributes of 

networks affect the order in which network ties develop. 

Because the order of network ties needs to be tracked ac-

curately, NATERGM examines cross-sectional network data 

with time information for network ties. Figure 4 pre-sents the 

framework of NATERGM. The major compo-nents include 

network extraction, temporal pattern analy-sis, and network 

prediction. In the network extraction step, social connections 

are identified between individuals in so-cial media, along 

with the timestamps of these relation-ships and nodal 

attributes of the individuals. Temporal patterns of the 

networks are modeled, and the likelihood of each pattern is 

estimated in the temporal pattern analy-sis step. Based on the 

estimated model, new networks are simulated and compared 

to the original network to evalu-ate how effectively the model 

can predict future networks.  

First, network ties are extracted from social media based on 

relationships between online users. Among the various types 

of social media network ties summarized by Kane et al. [6], 

the interaction/flow and social relation ties are the ones that 

are the most dynamically established (i.e., these ties are often 

associated with timestamps). Different types of network ties 

can be identified depending on specific so-cial media 

contexts. For example, directed interac-tion/flow ties can be 

established if an individual sends greetings to another 

individual; undirected social relation ties can be established if 

two individuals become friends by using friending functions 

provided in social media plat-forms. After identifying 

network ties between all possible pairs of individuals, a 

network with N nodes is repre-sented by a matrix Y=[Yij], (i, 

j =1, 2,…N). For undirected networks, Yij=1 if a tie exists 

between nodes (i.e., individu-als) i and j, and Yij=0 

otherwise. For directed networks, Yij=1 if a tie starts from i 

and ends at j, and Yij=0 otherwise. 

For timestamp modeling, we use Tij to represent the time 

when each network tie (i, j) is established. A matrix T=[Tij], 

(i, j =1,2,…N) records the timestamps for all net-work ties 

and can be used to model the order of network ties. For 

example, if T12<T21, it would represent a process where 

node 1 sent out a tie to node 2 first, and then re-ceived a tie 

from the node 2 in return. 

Nodal attributes of individuals can be evaluated using 

different approaches. Prior studies have characterized in-

dividual social media users based on three types of fea-tures. 

Platform-based features refer to individual attrib-utes that are 

directly provided by social media platforms. For example, 

registered users are often associated with usernames while an 

unregistered user is represented by a "visitor" tag or an IP 

address in the name space. Some so-cial media platforms also 

assign functional roles to users such as members or 

administrators. This type of infor-mation can be directly used 

as nodal attributes of individ-uals. Textual features refer to 

attributes that are inferred by texts posted by the individuals. 

Social media users typi-cally leave many textual traces, such 

as private messages and message postings. Various 

characteristics of social me-dia users can be evaluated based 

on these texts, such as general opinions, writing proficiency, 

and topics of inter-ests. Social network features refer to 

individual attributes that are inferred by their connections or 

positions in the network. Social relations between individuals 

in part re-flect their personality, status, and roles. For 

example, an in-dividual who is linked with many others is 
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expected to have a high level of popularity compared to 

others who have fewer connections. Such information can 

thus be used as nodal attributes of individuals. After 

evaluating the nodal attributes of individuals, they are 

represented by a vector X=(x1, x2, ..., xN). 

3.2 Temporal Pattern Analysis 

To model temporal patterns, the nodal attributes and 

timestamps of network ties are used to represent various 

temporal patterns regarding the dynamics of network for-

mation. By taking into account the order in which network 

ties develop, common static network patterns such as reci-

procity, k-star, transitivity, and cyclicity can have different 

temporal variations. Tables 1 to 5 list examples of temporal 

patterns for directed networks. White nodes represent in-

dividuals in general and black nodes represent individuals 

with key nodal attributes (e.g., highly active individuals). 

Dashed arrows represent network ties that developed after 

solid ones. 

 

 

As can be seen from the table, the temporal patterns modeled 

by NATERGM provide an extended hypotheses testing 

capability about network formation compared to static 

patterns. In particular, these temporal patterns can be used to 

examine the roles of nodal attributes in deter-mining the order 

of network ties.  

 

 

For example, assuming that we are interested in the role of 

highly active individu-als in developing message flows in 

social media, the static reciprocity pattern would only model 

a tendency for two individuals (at least one of them being 

highly active) to ex-change messages. In comparison, if we 

observed many ”feedback” patterns in the network, it would 

suggest a ten-dency for highly active individuals to receive 

returning messages after they sent out messages first; if we 

observed many "response" patterns, it would suggest a 

tendency for highly active individuals to respond to others' 

incoming messages. Although both "feedback" and 

"response" pat-terns finally lead to the same "reciprocity" 

pattern, they model two distinct dynamic processes. In a 

similar way, NATERGM extends other static patterns (i.e., k-

star, tran-sitivity, and cyclicity) to their temporal variations 

by con-sidering the possible order of network ties, which 

provides richer insight about the dynamic process of network 

for-mation. 
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Given the list of temporal patterns in Tables 1 to 5, the major 

objective of NATERGM is to test which of these tem-poral 

patterns are more likely to be observed than to occur by 

chance in a network. The NATERGM model can be written 

as: Pr(��=��|��)=�1���exp����������� 

����(��,		,

)� (3) 

In (3), A is a set of temporal patterns to be tested, �� = [��a] 

is a vector of parameters representing the strength of each 

temporal pattern’s effect in network formation, and �� is a 

scaling parameter to ensure (3) is a probability distri-bution. 

����(•) is the network statistic of temporal pattern a, 

evaluated with network ��, timestamp matrix ��, and vector 

of nodal attributes X. Table 6 provides definition of ����(•) 

for each temporal pattern listed in Tables 2 to 5, with the 

assumption that nodal attributes are binary or categorical. I() 

is an indication function that takes the value 1 if and only if 

the expression inside results in TRUE values. For categorical 

attributes, I(Xj) takes the value 1 if node i be-longs to the 

desired category in X. For cases when nodal attributes are 

continuous variables, I(Xi) is replaced by the value of Xi. 

The likelihood of occurrence for each temporal pattern can be 

assessed by estimating the parameters ��. If a param-eter is 

positive and significant, it indicates that the corre-sponding 

temporal pattern appears more frequently than by chance in 

the network. For parameter estimation, the  Markov Chain 

Monte Carlo (MCMC) method is used, fol-lowing prior 

ERGM literature [46]. The procedure is mod-ified to adapt to 

temporal settings.  

 

 

In general, the model fitting procedure iteratively gen-erates 

random networks based on the given set of parame-ters and 

updates the parameters based on the difference between the 

generated networks and the observed net-work. For a given 

set of parameters �� = [����], Algorithm 1 is used to 

generate random networks on a given set of nodes. 

 

Given the random network generation procedure, Al-gorithm 

2 is used to estimate parameter values. It calcu-lates the 

differences for a set of network statistics between generated 

networks and the actual network, and use the differences to 

adjust the parameters used to generate the networks. 
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until convergence criterion is met 

sn is a sequence of positive numbers converging to 0. In this 

study we used sn=2exp(n)/10 , as suggested in prior research 

[46]. For convergence criterion, we also used the t-ratio 

methods in [46]. 

3.3 Network Prediction 

After estimating the parameters in NATERGM, the fitted 

model can be used to predict the characteristics of future 

networks with the following procedures. 

Based on the actual network observed at time point t-1, 

NATERGM parameters ����−�� are estimated. A 

number (=K) of networks at time point t are then simulated 

based on the parameters ����−�� using Algorithm 1. 

However, network at the time point t-1 is used as the initial 

network, instead of a randomly initialized network. 

Each generated network at time point t does not neces-sarily 

look exactly like the actual network at time point t. However, 

global network statistics averaged over K gener-ated 

networks should resemble those of the actual net-work. An 

assumption made here is that global network property does 

not change dramatically in a short term [55], and thus a 

network model estimated at time t-1 should be able to 

generate networks that are also similar to networks in time t 

in terms of global network statistics. Moreover, the 

parameters ����−�� used for network generation in the 

proposed model are related to the tendency of correspond-ing 

temporal patterns, which should be reflected gradually over 

time in networks. Therefore, we use the similarity be-tween 

generated networks with the actual network in the next time 

period to evaluate the prediction performance. 

In order to evaluate how close the generated networks are to 

the actual network in the next period, we calculate the 

absolute difference (AD) for each network statistic a’ЄA’ at 

prediction period t: 

 

CONCLUSION 

 

Dynamic collaboration between different sorts of 

people in social media is a mind boggling process and 

the request of system ties is an imperative part of social 

media arrange flow. We spoke to different fleeting 

examples of system arrangement in light of nodal 

properties and the request of system ties advancement 

and created NATERGM show for dynamic system 

examination. We directed observational tests to assess 

the execution of NATERGM and results demonstrated 

that NATERGM has an improved example testing 

ability and conceivably better forecast precision of 

system attributes contrasted with past unique system 

models. Contrasted with existing TERGM-based 

models, our proposed model can test more perplexing 

dynamic examples coming about because of the 

cooperation between arrange tie development and 

nodal traits, along these lines finding how different 

nodal qualities are influencing the arrangement 

procedure of a dynamic system. By and by, the 

proposed model can be utilized to assess the effect of 

people's traits in the development procedure of 

dynamic social media networks. By examining these 

properties, social media fashioners can understand 

what factors are basic to the social system 

advancement and figure out what functionalities to 

include or advance in their stages.  

I.  

II. The commitments of this examination are complex. 

To begin with, this investigation gives a stretched 

out ERGM-based system model to look at transient 

examples in powerful networks. The expanded 

model can look at how nodal qualities of networks 

influence the request in which organize ties create. 

Past models were not able look at the system flow 

from this point of view. Second, this investigation 

gives a rundown of worldly terms that expands 

static ERGM terms and dynamic TERM terms 

without nodal qualities. The rundown of fleeting 

terms is intended to be versatile to any broad system. 

Given another system, these transient terms can be 

utilized to understand the effect of other nodal traits 
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past the qualities utilized as cases in this 

investigation. Moreover, this examination gives a 

system forecast outline work in view of worldly 

examples distinguishing proof, which has been an 

under-considered zone in social system investigate. 

In our present model, every transient example just 

thinks about one characteristic at any given moment. 

We intend to stretch out starting here and consider 

the communications of different qualities in future 

research. 
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