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Abstract:  

Mobile Ad-hoc network is a self-configuring 

network of mobile routers connected by wireless links. 

This union forms a random topology. Mutual Exclusion in 

distributed mobile ad-hoc network ensures that only one 

process can access shared resources at a time. If at that 

time, other process requests for those shared resources, 

then the requesting process has to wait until the resources 

have been released. For mobility management, we present 

a algorithm which changes its communication according to 

the topology changes. In this algorithm we shows that the 

nodes are make communicate only with their current 

neighbors which yields more performance to adapt the 

mobility. 
 

Keywords — mobile adhoc networks, Distributed 

Mutual Exclusion, token based algorithms, dynamic 

nodes, mobility. 
 

1. Introduction 
 

In the wireless communication, mobile ad hoc network 

is a network wherein a pair of nodes communicates by sending 

messages either over a direct wireless link, or over a sequence of 

wireless links including one or more intermediate nodes. Direct 

communication is possible only between pairs of nodes that lie 

within one another’s transmission radius. Wireless link 

“failures” occurs when previously communicating nodes move 

such that they are no longer within transmission range of each 

other. Likewise, wireless link “formation” occurs when nodes 

that were too far separated to communicate move such that they 

are within transmission range of each other. Characteristics that 

distinguish ad hoc networks from existing distributed networks 

include frequent and unpredictable topology changes and highly 

variable message delays. These characteristics make ad hoc 

networks challenging environments in which to implement 

distributed algorithms. 

The mutual exclusion problem involves a group of processes, 

each of which intermittently requires access to a resource or a 

piece of code called the critical section (CS). At most one 

process may be in the CS at any given time. Providing shared 

access to resources through mutual exclusion is a fundamental 

problem in computer science, and is worth considering for the 

ad hoc environment, where stripped down mobile nodes may 

need to share resources. Distributed mutual exclusion algorithms 

that rely on the maintenance of a logical structure to provide 

order and efficiency may be inefficient when run in a mobile 

environment, where the topology can potentially change with 

every node movement. We present an algorithm which 

dynamically modifying the logical structure to adapt to the 

changing physical topology in the ad hoc environment. 

 
User Applications  

Distributed Routing Protocol  
Primitives 

Ad Hoc Network 

 

Existing distributed algorithms will run correctly on top 

of ad hoc routing protocols, since these protocols are designed to 

hide the dynamic nature of the network topology from higher 

layers in the protocol stack. Routing algorithms on ad hoc 

networks provide the ability to send messages from any node to 

any other node. However, our contention is that efficiency can 

be gained by developing a core set of distributed algorithms, or 

primitives, that are aware of the underlying mobility in the 

network, as shown in figure. In this paper, we present a mobility 

aware distributed mutual exclusion algorithm to illustrate the 

layering approach in figure. Distributed mutual exclusion 

algorithms that rely on the maintenance of a logical structure to 

provide order and efficiency may be inefficient when run in a 

mobile environment, where the topology can potentially change 

with every node movement. Badrinath et al. [3] solve this 

problem on cellular mobile networks, where the bulk of the 
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computation can be run on wired portions of the network.  

We present a mutual exclusion algorithm that induces a 

logical directed acyclic graph (DAG) on the network, 

dynamically modifying the logical structure to adapt to the 

changing physical topology in the ad hoc environment. 
 

2. Related Work 
 

Token based mutual exclusion algorithms provide 

access to the CS through the maintenance of a single token that 

cannot simultaneously be present at more than one node in the 

system. Requests for CS entry are typically directed to 

whichever node is the current token holder. Raymond [1] 

introduced a token based mutual exclusion algorithm in which 

requests are sent, over a static spanning tree of the network, 

toward the token holder; this algorithm is resilient to non-

adjacent node crashes and recoveries, but is not resilient to link 

failures. Chang et al. [3] extend Raymond’s algorithm by 

imposing a logical direction on a sufficient number of links to 

induce a token oriented DAG in which, for every node i, there 

exists a directed path originating at i and terminating at the 

token holder. Allowing request messages to be sent over all 

links of the DAG provides resilience to link and site failures. 

However, this algorithm does not consider link recovery, an 

essential feature in a system of mobile nodes. Dhamdhere and 

Kulkarni [5] show that the algorithm of [3] can suffer from 

deadlock and solve this problem by assigning a dynamically 

changing sequence number to each node, forming a total 

ordering of nodes in the system. The token holder always has the 

highest sequence number, and, by defining links to point from a 

node with lower to higher sequence number, a token oriented 

DAG is maintained. Due to link failures, a node i that want to 

send a request for the token may find itself with no outgoing 

links to the token holder. In this situation, i flood the network 

with messages to build a temporary spanning tree. Once the 

token holder becomes part of such a spanning tree, the token is 

passed directly to node i along the tree, bypassing other requests. 

Since priority is given to nodes that lose a path to the token 

holder, it seems likely that other requesting nodes could be 

starved as long as link failures continue. Also, flooding in 

response to link failures and storing messages for delivery after 

link recovery make this algorithm ill-suited to the highly 

dynamic ad hoc environment. Our token based algorithm 

combines ideas from several papers. The partial reversal 

technique from [4], used to maintain a destination oriented DAG 

in a packet radio network when the destination is static, is used 

in our algorithm to maintain a token oriented DAG with a 

dynamic destination. Like the algorithms of [3,5,1], each node in 

our algorithm maintains a request queue containing the 

identifiers of neighboring nodes from which it has received 

requests for the token. Like [5], our algorithm totally orders 

nodes. The lowest node is always the current token holder, 

making it a “sink” toward which all requests are sent. Our 

algorithm also includes some new features. Each node 

dynamically chooses its lowest neighbor as its preferred link to 

the token holder. Nodes sense link changes to immediate 

neighbors and reroute requests based on the status of the 

previous preferred link to the token holder and the current 

contents of the local request queue. All requests reaching the 

token holder are treated symmetrically, so that requests are 

continually serviced while the DAG is being re-oriented and 

blocked requests are being rerouted. 

 

3. Assumptions 
 

The system contains a set of n independent mobile 

nodes, communicating by message passing over a wireless 

network. Each mobile node runs an application process and a 

mutual exclusion process that communicate with each other to 

ensure that the node cycles between its REMAINDER section 

(not interested in the CS), its WAITING section (waiting for 

access to the CS), and its CRITICAL section. Assumptions on 

the mobile nodes and network are: 

  
���� the nodes have unique node identifiers,  

���� node failures do not occur,  

���� communication links are bidirectional and FIFO,  

���� a link-level protocol ensures that each node is aware of 

the set of nodes with which it can currently directly 

communicate by providing indications of link 

formations and failures,  

���� Incipient link failures are detectable, providing reliable 

communication on a per-hop basis, and   
���� Partitions of the network do not occur.  

 

4. Reverse Link (RL) Mutual Exclusion Algorithm 
 

In this section we first present the data structures 

maintained at each node in the system, followed by an overview 

of the algorithm, the algorithm pseudocode, and examples of 

algorithm operation. Throughout this section, data structures are 

described for node i, 0 ≤ i ≤ n − 1. Subscripts on data structures 

to indicate the node are only included when needed. 
 

�  Data structures 

 
• status: indicates whether node is in the 

WAITING, CRITICAL, or REMAINDER section. 

Initially, status = REMAINDER.  
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• N: the set of all nodes in direct wireless contact with node i. 

Initially, N contains all of node i’s neighbors.  
 
• myHeight: a three-tuple (h1, h2, i) representing the height of 

node i. Links are considered to be directed from nodes with 

higher height toward nodes with lower height, based on 

lexicographic ordering. For instance, if myHeight1 = (2, 3, 1) 

and myHeight2 = (2, 2, 2), then myHeight1 > myHeight2 and the 

link between these nodes would be directed from node 1 to node 

2. Initially at node 0, myHeight0 = (0, 0, 0) and, for all i ≠ 0, 

myHeighti is initialized so that the directed links form a DAG in 

which every node has a directed path to node 0.  
 
• height[j ]: an array of tuples representing node i’s view of 

myHeightj for all j Ni . Initially, height[j] = myHeightj, for all   
j Ni . In node i’s viewpoint, if j N, then the link between i and j 

is incoming to node i if height[j ] > myHeight, and outgoing 

from node i if height[j ] < myHeight. 
 
• tokenHolder: flag set to true if node holds token and set to 

false otherwise. Initially,   
tokenHolder = true if i = 0, and tokenHolder = false otherwise.  

 
• next: when node i holds the token, next = i, otherwise next is 

the node on an outgoing link.   
Initially, next = 0 if i = 0, and next is an outgoing neighbor 

otherwise.  
 
• Q: queue containing identifiers of requesting neighbors. 

Operations on Q include Enqueue( ), which enqueues an item 

only if it is not already on Q, Dequeue( ) with the usual FIFO 

semantics, and Delete( ), which removes a specified item from  

Q, regardless of its location. Initially, Q =  . 
 
• receivedLI[j ]: Boolean array indicating whether Link-Info 

message has been received from node j, to which a Token 

message was recently sent. Any height information received at 

node i from a node j for which receivedLI[j] is false will not be 

recorded in height[j ]. Initially, receivedLIi[j ] = true for all j Ni . 

when node i requests access to the CS  
1. status := waiting  

2. Enqueue(Q,i)  

3. if (not tokenHolder)  

4. if ( |Q| = i) ForwardRequest()  

5. else GiveTokenToNext()  
 
when node i releases the CS  

1. if ( |Q| > 0 ) GiveTokenToNext()  

2. status := REMAINDER  
 
forming[j ]: Boolean array set to true when link to node j has 

been detected as forming and reset to false when first LinkInfo 

message arrives from node j . Initially, formingi[j ] = false for all 

j Ni . 

formHeight[j]: an array of tuples storing value of myHeight 

when new link to j first detected. Initially, formHeighti[j ] = 

myHeighti for all j Ni . 
 

�  Overview of the RL algorithm 

 

The mutual exclusion algorithm is event-driven. An 

event at a node i consists of receiving a message from another 

node j ≠ i, or an indication of link failure or formation from the 

link layer, or an input from the application on node i to request 

or release the CS. Each message sent includes the current value 

of myHeight at the sender. Modules are assumed to be executed 

atomically. 
 

� Requesting and releasing the CS: When node i 

requests access to the CS, it enqueues its own identifier 

on Q and sets status to WAITING. If node i does not 

currently hold the token and i has a single element on 

its queue, it calls ForwardRequest( ) to send a Request 

message. If node i does hold the token, i can set status 

to CRITICAL and enter the CS, since it will be at the 

head of Q. When node i releases the CS, it calls 

GiveTokenToNext( ) to send a Token message if Q is 

non-empty, and sets status to REMAINDER. 
 

� Request messages: When a Request message sent by a 

neighboring node j is received at node i, i ignores the 

Request if receivedLI[j ] is false. Otherwise, i changes 

height[j ], and enqueues j on Q if the link between i and 

j is incoming at i. If Q is non-empty, and status = 

REMAINDER, i calls GiveTokenToNext( ), provided i 

holds the token. Non-token holding node i calls 

RaiseHeight( ) if the link to j is now incoming and i has 

no outgoing links or i calls ForwardRequest( ) if Q = [j 

] or if Q is non-empty and the link to next has reversed.  
 ���� Token messages: When node i receives a Token message from some neighbor j , i sets tokenHolder = true. Then i lowers its height to be lower than that of the last token holder, node j, informs all its outgoing neighbors of its newheight by sending LinkInfo messages, and calls GiveTokenToNext( ). Node i also informs j of its new height so that j will know that i received the token. LinkInfo messages. If receivedLI[j] is true when a  

LinkInfo message is received at node i from node j , j ’s 

height is saved in height[j ]. If receivedLI[j] is false, i checks if 

the height of j in the message is what it was when i sent the 

Token message to j. If so, i sets receivedLI[j] to true. If forming[j 

] is true, the current value of myHeight is compared to the value 

of myHeight when the link to j was first detected, formHeight[j 

]. If myHeight and formHeight[j] are different, then a LinkInfo 

message is sent to j . Identifier j is added to N and forming[j ] is 

set to false. If j is an element of Q and j is an outgoing link, then 

j is deleted from Q. If node i has no outgoing links and is not the 

token holder, i calls RaiseHeight( ) so that an outgoing link will 

be formed. Otherwise, if Q is non-empty, and the link to next 

has reversed, i calls ForwardRequest( ) since it must send 

another Request for the token. 

 
���� Link formation: When node i detects a new link to 

node j , i sends a LinkInfo message to j with myHeight, 
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sets forming[j ] to true, and sets formHeight[j ] = 

myHeight. 
 

���� Procedure ForwardRequest: Selects node i’s lowest 

height neighbor to be next. Sends a Request message to 

next. 
 

���� Procedure GiveTokenToNext: Node i dequeues the 

first node on Q and sets next equal to this value. If next 

= i, i enters the CS. If next ≠ i, i lowers height[next] to 

(myHeight.h1, myHeight.h2 − 1, next), so any incoming 

Request messages will be sent to next, sets 

tokenHolder= false, sets receivedLI[next] to false, and 

then sends a Token message to next. If Q is non-empty 

after sending a Token message to next, a Request 

message is sent to next immediately following the 

Token message so the token will eventually be returned 

to i. 

 

���� Procedure RaiseHeight: Called at non-token holding 

node i when i loses its last outgoing link. Node i raise 

its height using the partial reversal method, and inform 

all its neighbors of its height change with LinkInfo 

messages. All nodes on Q to which links are now 

outgoing are deleted from Q. If Q is not empty at this 

point, ForwardRequest( ) is called since i must send 

another Request for the token. 
 

5. Correctness of Reverse Link Algorithm 
 

The following theorem holds because there is only one 

token in the system at any time. 
 
Theorem 1: 

 

The algorithm ensures mutual exclusion. To prove no 

starvation, we first show that, after link changes cease, 

eventually the system reaches a “good” configuration, and then 

we apply a variant function argument. We will show that after 

link changes cease, the logical directions on the links imparted 

by height values will eventually form a “token oriented” DAG. 

Since the height values of the nodes are totally ordered, there 

cannot be any cycles in the logical graph, and thus it is a DAG. 

The hard part is showing that this DAG is token oriented, 

defined next. 
 
Definition 1:  

 

A node i is the token holder in a configuration if 

tokenHolderi = true or if a Token message is in transit from node 

i to nexti . 

Definition 2: 
 

 The DAG is token oriented in a configuration if for 
every node i, i {0, . . . ,n − 1}, there exists a directed path 
originating at node i and terminating at the token holder. To 
prove lemma 3, that the DAG is eventually token oriented, we 
first show, in lemma 1, that this condition is equivalent to the 
absence of “sink” nodes [13], as defined below. We then show, 
in lemma 2, that eventually there are no more calls to 
RaiseHeight( ). Throughout, we assume that eventually link 
changes cease. 
 
Definition 3:  

 

A node i is a sink in a configuration if (tokenHolderi = 

false) and ((myHeighti < heighti[j ]), for all j Ni ). 

  
Lemma 1: In every configuration of every execution, the DAG 

is token oriented if and only if there are no sinks. 
 
Proof: The only-if direction follows from the definition of a 

token oriented DAG. If direction is proved by contradiction, 

Assume, in contradiction, that there exists a node i in a 

configuration such that tokenHolderi = false and for which there 

is no directed path starting at i and ending at the token holder. 

Since there are no sinks, i must have at least one outgoing link 

that is incoming at some other node. Since the number of nodes 

is finite, the network is connected, and all links are logically 

directed such that no logical path can form a cycle, there must 

exist a directed path from i to the token holder, a contradiction. 

To show that eventually there are no sinks (lemma 3), we show 

that there are only a finite number of calls to RaiseHeight( ). 
 
Lemma 2: 

 In every execution with a finite number of link 

changes, there exists a finite number of calls to RaiseHeight( ). 
 
Proof: In contradiction, consider an execution with a finite 

number of link changes but an infinite number of calls to 

RaiseHeight( ). Then, after link changes cease, some node calls 

RaiseHeight( ) infinitely often. We first note that if one node 

calls RaiseHeight( ) infinitely often, then every node calls 

RaiseHeight( ) infinitely often. To see this, consider that a node i 

would call RaiseHeight( ) infinitely often only if it lost all its 

outgoing links infinitely often. But this would happen infinitely 

often at node i only if a neighboring node j raised its height 

infinitely often, and neighboring node j would only call 

RaiseHeight( ) infinitely often if its neighbor k raised its height 

infinitely often, and so on. However, claim 1 shows that at least 

one node calls RaiseHeight( ) only a finite number of times. 
 
Claim 1: No node that holds the token after the last link change 

ever calls RaiseHeight( ) subsequently. 
 
Proof: Suppose the claim is false, and some node that holds the 

token after the last link change calls RaiseHeight( ) 
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subsequently. Let i be the first node to do so. By the code, node i 

does not hold the token when it calls RaiseHeight(). Suppose 

that node i sends the token to neighboring node j at time t1, 

setting its view of j to be outgoing, and at a later time, t3, node i 

calls RaiseHeight( ). The reason i calls RaiseHeight( ) at time t3 

is that it lost its last outgoing link. Thus, at time t2 between time 

t1 and t3, the link between i and j has reversed direction in i’s 

view from outgoing to incoming. By the code, the direction 

change at node i must be due to the receipt of a LinkInfo or 

Request message from node j . We discuss these cases separately 

below. 
 
Case 1: The direction change at node i is due to the receipt of a 

LinkInfo message from node j at time t2. By the code, when i 

sends the token to j at t1, it sets receivedLI[j ] to false. 

Therefore, when the LinkInfo message is received at i from j at 

time t2, node i must have already reset receivedLI[j] to true or i 

would still see the link to j as outgoing and would not call 

RaiseHeight( ) at time t2. Since i called RaiseHeight( ) after 

receiving the LinkInfo message from j at time t2, i must have 

received the LinkInfo message node j sent when it received the 

token from i before time t2, by the FIFO assumption on message 

delivery. Then node j must have received the token and sent it to 

another node, k _= i, after which j raised its height and sent the 

LinkInfo message that node i received at time t2. However, this 

violates our assumption that i is the first node to call 

RaiseHeight( ) after the last link change, a contradiction. 
 
Case 2: The direction change at node i is due to the receipt of a 

Request message from node j at time t2. By a similar argument 

to case 1, any Request received from node j would be ignored at 

node i as long as receivedLI[j] is false. But this means that node 

j must have called RaiseHeight() after it received the token from 

node i and subsequently sent the Request received by i at time 

t2. Again, this violates the assumption that i is the first node to 

call RaiseHeight( ) after the last link change, a contradiction. 

Therefore, node i will not call RaiseHeight( ) at time t2 and the 

claim is true. Therefore, by claim 1, there is only a finite number 

of calls to RaiseHeight( ) in any execution with a finite number 

of link changes. Lemma 3 follows from lemma 2, since if a node 

becomes a sink, it will eventually be informed via LinkInfo 

messages and will then call RaiseHeight( ). 
 
Lemma 3:  

Once link changes cease, the logical direction on links 

imparted by height values will eventually always form a token 

oriented DAG. Consider a node that is WAITING in an 

execution at some point after link changes and calls to 

RaiseHeight( ) have ceased. We first define the “request chain” 

of a node to be the path along which its request has propagated. 

Then we modify the variant function argument to show that the 

node eventually gets to enter the CS. 

Definition 4: 

 Given a configuration, a request chain for any node l 

with a non-empty request queue is the maximal length list of 

node identifiers p1 = l,p2, . . . ,pj , where for each i, 1 < i ≤ j , 

• pi ’s queue is not empty,  

• pi = nextpi−1 ,  

• the link between pi−1 and pi is outgoing at pi−1 and incoming 

at pi ,  

• no Request message is in transit from pi−1 to pi, and  

• no Token message is in transit from pi to pi−1.  

Lemma 4 gives useful information about what is going on at the 

end of a request chain: 
 

Lemma 4:  

The following is true in every configuration. Let l be a 

node with a non-empty request queue and let p1 = l,p2, . . . 

,pj be l’s request chain. Then 

(a) l is in Ql iff l is WAITING,  

(b) pi−1 is in Qpi , 1 < i _ j, and  

(c) either  

• pj is the token holder,  

• or a Token message is in transit to pj ,  

• or a Request message is in transit from pj to nextpj ,  

• or a LinkInfo message is in transit from nextpj to pj with nextpj 
higher than pj ,   
• or nextpj sees the link to pj as failed.  
 
Proof: By induction on the execution. Property (a) can easily be 

shown to hold, since a node enqueues its own identifier when its 

application requests access to the CS, at which point it changes 

its status to WAITING. By the code, at no point will a node 

dequeue its own identifier until just before it enters the CS and 

sets its status to CRITICAL.  Properties (b) and (c) are 

vacuously true in the initial configuration, since no node has a 

non-empty queue. Suppose  (b) and (c) are true in the (t −1)st 

configuration, Ct−1, of the execution. It is possible to show 

these properties are true in the t th configuration, Ct , by 

considering in turn every possibility for the tth event. Most of 

the events applied to Ct−1 are easily shown to yield a 

configuration Ct in which properties (b) and (c) are true. Here 

we discuss the events for which the outcome is less clear by 

presenting the problematic cases that can appear to disrupt a 

request chain. We note that, in the following cases, non-token 

holding nodes are often required to find an outgoing link due to 

link reversals or failures. It is not hard to show that a node I that 

is not the token holder can always find an outgoing link due to 

the performance of RaiseHeight( ). 
 
Case 1: Node i receives a Request(h) from node j and does not 

enqueue j on its request queue. To ensure that j ’s Request is not 

overlooked, causing possible starvation, we show that either a 

LinkInfo or a Token message is sent to j from i if a Request from 

j is received at i and j is not enqueued.   
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Case 1.1: receivedLI[j ] is false at i. It must be that i sent the 

token to j in some previous configuration and i has not yet 

received the LinkInfo message that j must send to i upon receipt 

of the token. If the token is not in transit from i to j or held by j 

in Ct−1, then earlier j had the token and passed it on. The 

Request received by i was sent before the LinkInfo message that 

j must send to i upon receipt of the token. So if j is WAITING in 

Ct−1, it has already sent a newer Request and properties (b) and 

(c) hold for this request chain in Ct by the inductive hypothesis. 
 
Case 1.2: receivedLI[j] is true at i. Then if j is not enqueued on 

i’s request queue, it must be that myHeighti > h. Since j viewed i 

as outgoing when it sent the Request, node i must have either 

called RaiseHeight( ) after j was in Ni or the relative heights of i 

and j changed between the time link (i, j ) was first detected and 

before j was added to Ni. In either case, node j must eventually 

receive a Linkinfo message from i and see that its link to nextj 

has reversed, in which case j will take action resulting in the 

eventual sending of another Request. 
 
Case 2: Node i receives an input causing it to delete identifier j 

from its request queue. To ensure that j ’s Request is not 

forgotten when i calls Delete(Q, j ), we show that either node j 

received a Token message prior to the deletion, in which case j 

’s Request is satisfied, or node j is notified that the link to i 

failed, in which case j will take the appropriate action to reroute 

the request chain. 
 
Case 2.1: Node i calls Delete(Q, j ) because it receives a 

LinkInfo message from j indicating that i’s link to j has become 

outgoing at i. Then, since i enqueued j, it must be that in some 

earlier configuration i saw the link to j as incoming. Since the 

receipt of the LinkInfo message from j caused the link to change 

from incoming to outgoing in i’s view, it must be that the 

LinkInfo was sent by j when j received the token and lowered its 

height. If the token is not held by j in Ct−1, then earlier j had the 

token and passed it on. If j is WAITING in Ct−1, it has already 

sent a newer Request and properties (b) and (c) hold for this 

request chain in Ct by the inductive hypothesis. 
 
Case 2.2: Node i calls Delete(Q, j ) because it received an 

indication that link (i, j ) failed. Then j must receive the same 

indication, in which case it can take appropriate action to 

advance any request chains. 
 
Case 3: Node i receives an input which makes it see the link to 

nexti as incoming or failed. In this case, any request chains 

including node i in Ct−1 end at i in Ct. We show that node i 

takes the correct action to propagate these request chains by 

sending either a new Request or a LinkInfo message. 

Case 3.1: Node i receives a LinkInfo message from neighbor j = 

nexti indicating that i’s link to j has become incoming at i. If the 

link to j was i’s last outgoing link, then in Ct i will call 

RaiseHeight( ). Node i will delete the identifiers of any nodes on 

outgoing links from its request queue. Node i will send a 

LinkInfo message to each neighbor, including nodes whose 

identifiers were removed from i’s request queue. If i’s request 

queue is non-empty it will call ForwardRequest( ) and send a 

Request message to the node chosen as nexti in Ct . 
 
Case 3.2: Node i receives an indication that the link to nexti has 

failed. In Ct , i will take the same actions as it did in case 3.1, 

when its link to nexti reversed. Therefore, no action taken by 

node i can make properties (b) and (c) false and the lemma 

holds. 
 
Lemma 5: 

 Once link changes and calls to RaiseHeight( ) cease, 

for every configuration in which a node l’s request chain does 

not include the token holder, then there is a later configuration in 

which l’s request chain does include the token holder. 
 
Lemma 6:  

Vl is a variant function. 

 

Proof:  The key points to prove are:  
(1) Vl never has more than n entries and every entry is 

between 1 and n + 1, so the range of Vl is well-founded.  

(2) Most events can be easily seen not to increase Vl. Here 

we discuss the remaining events.   
When the Request message at the end of l’s request 

chain is received by node j from node   
pm, l’s request chain increases in length to m + 1, Vl 

decreases from (v1, . . . ,vm, n + 1)  
to (v1, . . . ,vm, v’m+1, . . ), where v’m+1 < n + 1 since 

v’m+1 is pm’s position in Qj after  
the Request message is received. When a Token message 

is received by the node pm at the  
end of l’s request chain, it is either 

 
• kept at pm, so Vl decreases from (v1, . . . ,vm−1, vm) to (v1, . .  

,vm−1, vm – 1),  r sent toward l, so Vl decreases from (v1, . . . , 

vm−1, vm) to (v1, . . . ,vm−1),  or sent away from l, followed by 

a Request message, so Vl decreases from  (v1, . . . ,vm−1, vm) to 

(v1, . . . ,vm−1, vm − 1,  
n + 1). 

 
 
(3) To see that the events that cause Vl to decrease will continue 

to occur, consider the following two cases: 

 

 

Case 1: The token holder is not in l’s request chain. By lemma 

5, eventually the token holder will be in l’s request chain. 

 
Case 2: The token holder is in l’s request chain. Since no node 
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stays in the CS forever, at some later time the token will be sent 

and received, decreasing the value of Vl, by part (2) of this 

proof. Once Vl equals _1_, l enters the CS. We have: 
 
Theorem 2: If link changes cease, then every request is 

eventually satisfied. 
 

6. Simulation Results 
 

In this section we discuss the static and dynamic 

performance of the Reverse Link (RL) algorithm compared to a 

mutual exclusion algorithm designed to operate on a static 

network. We simulated Raymond’s token based mutual 

exclusion algorithm as if it were running on top of a “routing” 

layer that always provided shortest path routes between nodes. 

In this section, we will refer to this simulation as “Raymond’s 

with routing” (RR). Raymond’s algorithm was used because it is 

the static algorithm from which the RL algorithm was adapted 

and because it does not provide for link failures and recovery 

and must rely on the routing layer to maintain logical paths if 

run in a dynamic network. Complexity comparison of a routing 

protocol is complicated by the fact that the number of messages 

and amount of time needed to maintain routes can be amortized 

over the number of applications using those routes. In order to 

make our results more generally applicable, we made best-case 

assumptions about the underlying routing protocol used with 

Raymond’s algorithm: that it always provides shortest paths and 

its time and message complexity is zero. If our simulation shows 

that the RL algorithm is better than the RR combination in some 

scenario, then the RL algorithm will also be better than 

Raymond’s algorithm in that scenario when any real ad hoc 

routing algorithm is used. If our simulation shows that the RL 

algorithm is worse than the RR combination in some scenario, 

then it might or might not be worse in an actual situation, 

depending on how much worse it is in the simulation and what 

are the costs of the routing algorithm. A 30 node system was 

simulated under various scenarios. A 30 node system was 

chosen, in part, because for networks larger than 30 nodes the 

time needed for simulation was very high. Also, ad hoc 

networks are generally envisioned to be much smaller scale than 

wired networks like the Internet. Typical numbers of nodes used 

for simulations of ad hoc networks range from 10 to 50. 

 
In all our experiments, each CS execution took one 

time unit and each message delay was one time unit. Requests 

for the CS were modeled as a Poisson process with arrival rate 

λreq. Thus the time delay between when a node left the CS and 

made its next request to enter the CS is an exponential random 

variable with mean 1/λreq time units. Link changes were 

modeled as a Poisson process with arrival rate λmob. Hence, the 

time delay between each change to the graph is an exponential 

random variable with mean 1/λmob time units. Each change to 

the graph consisted of the deletion of a link chosen at random 

(whose loss did not disconnect the graph) and the formation of a 

link chosen at random. 
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7. Conclusion and Discussion 
 

We presented a distributed mutual exclusion algorithm 

for mobile adhoc networks, to adapt the node mobility, and the 

results showing the performance of this algorithm to that of a 

static token based mutual exclusion algorithm running on top of 

an ideal ad hoc routing protocol. Here, the assumptions are no 

partitions in the network throughout this paper; if partitions 

occur, can be handled in adhoc routing protocol.  
Our algorithm which uses the adhoc routing protocol 

generally provides better average waiting time per CS entry. Our 

results shows that the message complexity per CS would not be 

greater than the message complexity for nodes in static mobility 

when running in the top of the adhoc routing algorithm. 
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