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Abstract: 
 

            The three goals of the inferential analysis are: parameter estimation, prediction from data and the 

model comparison. Usually a parameter of a probability distribution is unknown but determines the 

property of the distribution, that in the case of the normal distribution are its mean and standard deviation. 

The “bell curve” of the normal distribution is totally defined by the mean which is its centre and the 

standard deviation which is its width. For the prediction it is needed the estimation of certain parameters to 

predict future data.  Moreover, the comparison of the models it is related with the selection of the best 

model among two or more suitable models which explain the data.  

         The Frequentist inference is based on the long term frequencies but the Bayesian inference is mostly 

related to the degrees of belief and logical support. Shortly, the overview of the Frequentist means that 

probabilities are equal to the long term frequencies of an event without attaching them to hypothesis or to 

any fixed but unknown values, but in contrast with this, for a Bayesian it is possible to use probabilities to 

represent uncertainty or hypothesis. 

          In this article, it will be presented the estimation of the normal distribution parameters from the 

Bayesian inference and at least it will be discussed the comparison of the estimators from the classical and 

Bayesian analysis from the results obtained from simulations. 
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I.     INTRODUCTION 

It was reverend Thomas Bayes who proposed 

Bayesian theory in 1763 and used it for the 

quantification of binomial distribution by the 

collected data. Then was Laplace who discovered 

and named it in 1812 in a generalised form for 

solving various problems.  

Despite its applications, for more than 100 years, 

the degree of credibility of Bayesian analysis was 

rejected as vague and subjective and frequencies 

were accepted only by statisticians. 

It was Jeffreys in 1939 ([1]) who rediscovered it 

and built the modern Bayesian theory in 1961. It 

was then that the two schools of statistics: Bayesian 

and Frequentists were distinctly different and set 

apart. By the 1980s it still remained limited to use 

due to the needs in the calculations. 

Since 1990, it became practical thanks to the 

rapid developments of hardware and software. The 

Bayesian techniques, in this way, were applied in 

various fields of science such as economics, 

medicine, biology, engineering and so on. 

A random variable has normal distribution with 

expectation θ and variance σ
2
 when it distribution is 

given by formula (1): 
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This distribution has several important features: 
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• It is symmetrical according to parameter θ 

and the mode, median and mean is θ. 

• About 95% of the population lies within 

the range (-1.96σ, 1.96σ).  

• The linear combination of random 

variables with normal densities is also a 

random variable with normal density. 

This means that if X ~N(µ,r
2
) and 

Y~N(θ,σ
2
) then aX+bY~N(aµ+bθ, 

a
2
r

2
+b

2
σ

2
). 

• The most useful commands in language R 

for generating normal distribution are: 

dnorm, rnorm, pnorm, qnorm. 

II.     INFERENTIAL ANALYSIS FOR THE MEAN AND 

THE CONDITIONING WITH THE VARIANCE 

Suppose that we have Y1, Y2,…,Yn indipendent 

random variables identically distributed with 

normal distribution N(θ,σ
2
). The sample distribution 

is given by the formula: 
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By splitting the quadratic form under the 

exponent, it can be seen that ),|,...,( 2

1 σθnyyp  

depends on y1, y2, …, yn : 
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From this equation it can be shown that the two-

dimensional statistics (∑
=
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2 ) is a sufficient 

statistic for the pair of parameters (θ, σ
2
), from 

which it derives that the statistics ( ∑
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) is a sufficient two-

dimensional statistic for (θ, σ
2
). 

The inferential analysis for this bi-parametric 

model can be divided into two separate parametric 

problems. According to Carlin ([4]), prior 

distributions can be built in different ways, mainly 

from a given value. Let’ s first assume that we want 

to estimate θ when σ
2
 is known and for θ will be 

used a conjugate prior distribution, considering that 

a prior distribution family is called conjugate if for 

a given sample the posterior distribution is in the 

same family of distribution ([10]). For each prior 

distribution p(θ|σ
2
), the posterior distribution will 

satisfy the equation (2): 
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From the equation, we have p(θ|σ
2
) to be 

conjugate then it must contain the quadratic term 
2

21 )( cc
e

−θ
. The simplest family of probability 

distributions in R that fulfills this condition is the 

family of normal distributions, which means that if 

p(θ|σ
2
) is a normal distribution and we consider the 

sample  y1, y2,…,yn from this distribution then

),,...,|( 2

1 σθ nyyp  is also normal. Assuming that 

θ~N(µ0,τ0
2
) then the equations are true: 
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Adding the exponents and not considering -1/2, 

we have: 
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Let we show that ),,...,|( 2

1 σθ nyyp  has the 

form of a normal distribution: 
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The function has exactly the same graphical 

shape with the normal distribution curve where 

a/1  is playing the role of standard deviation and 

b/a is the expectation value. While a probability 

distribution is determined by the shape of its curve, 

then ),,...,|( 2

1 σθ nyyp  is a normal distribution.  

Marking with µn and τn
2
 the posterior distribution 

parameters then:  
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A. The Combination of Information 

Conditional probability distributions of 

parameters µn and τn
2
 are obtained as a combination 

of parameters µ0 and τ0
2
 with the sample elements. 

From the variance of the posterior distribution it 

results that 
22

0

2

11

σττ

n

n

+=  which means the inverse 

variance of the prior distribution is obtained from 

the inverse variance of the sample. The inverse 

variance is called accuracy of the model, so we 

have: 

• 22 /1~ σσ = = accuracy of the sample(it 

shows how near is yi  with parameter θ) 

• 2

0

2

0 /1~ ττ = =  accuracy of prior distribution 

• 22 /1~
nn ττ = =  accuracy of posterior  

distribution 

It is reasonable to see the accuracy as additional 

information about the model: 

  22

0

2 ~~~ σττ nn += ⇔  

 (posterior information= prior information+ sample 

information) 

The mean of posterior distribution is given by the 

formula (3): 
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Thus, the mean of the posterior distribution is 

measured from mean of the prior distribution and 

sample mean. The weight of the sample mean is 

n/σ
2 

which is also the accuracy of the sample mean, 

also the weight of the prior distribution 2

0/1 τ  serves 

as the accuracy of the prior distribution. If the mean 

of prior distribution is based on observations by the 

same population Y1, Y2,…,Yn  then the variance of 

the mean of  prior observations is τ0
2
=σ

2
/k0. In this 

way the mean of the posterior distribution is written: 
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B. The Prediction 

We will consider the prediction of a new 

observation by a population after we have made the 

observations (Y1=y1, Y2=y2, …, Yn =yn) and we must 

find the distribution for prediction. It is true that: 
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{ }2,|~ σθε ~ ),0( 2σN . 

In other words, accepting that Y
~

has a normal 

distribution with expectation θ is the same thing as 

saying that it is given a sum of θ with a normal 

distributed noise which expectation is 0. Using this 

result, we can first calculate the mean of the 

posterior distribution and the variance of: 
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Since the sum of normal independent variables 

with normal distributions is also normal then 

εθ ~~
+=Y  has a normal distribution. 

Thus, the predictive distribution is as in (4): 

{ }2

21 ,,...,,|
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C. Example 
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As an illustration, we will use simulated data with 

a small sample size from a normal distribution 

which mean is 1.8. This is the prior information to 

be used for the calculations of the parameters for 

prior and posterior distribution of mean and 

variance respectively. So, we have nine simulated 

values from the normal distribution N (1.8, 0.015): 

 

1.638164, 1.663346, 1.812662, 1.629400, 

1.705748, 1.820818, 1.659060, 1.912620, 1.777257 

 

The population mean is taken µ0=1.8 and for the 

variance we suppose that the greater part of 

probability lies between the double of standard 

deviation from the sample mean, that is µ0-2 τ0>0 or 

τ0<1.8/2=0.90. The results are shown in Table 1 for 

each distribution of the population mean: 

TABLE 1 

RESULTS OF THE PARAMETERS  

Parameters Sample Prior Posterior 

Mean 1.735 1.8 1.742 

Variance 0.01 0.81 0.01 

 

If σ
2
=s

2
=0.01 then { }01.0,,...,,|

2

21 =σθ nyyy ~

)01.0,742.1(N . 

 

 
          Fig. 1  The prior and the posterior distribution of the population mean. 

In the Fig. 1 are shown with the red line the prior 

distribution and with the blue line the posterior 

distribution for population mean. 

III. INFERENTIAL ANALYSIS OF THE UNKNOWN 

MEAN AND UNKNOWN VARIANCE 

Bayesian inferential analysis for two or more 

parameters is not very different in the concept of 

the one with one parameter. For the joint prior 

distribution p(θ,σ
2
)  of the parameters θ and σ

2
, the 

finding of the posterior distribution is related to the 

use of the Bayes rule where usually the conditional 

distribution can be  substituted by the maximum 

likelihood function ([5]): 
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The procedure begins by finding a family of 

conjugate prior distributions that makes easy the 

calculation of posterior distribution. Starting from 

the conditional probability formula, we get the 

multiplication formulas and so the joint distribution 

is written: 

)()|(),( 222 σσθσθ ppp =  

We showed earlier that when σ
2 

was known, a 

prior distribution for θ is the normal distribution (µ0, 

τ0
2
). Consider the special occasion when
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In this case, the parameters µ0 and k0 can be 

interpreted as the mean and the sample size of 

sample from a previous observation set. For σ
2 

we 

need a prior distribution family to be positively 

defined in (0, ∞). Such a distribution family is the 

family of gamma distributions, but unfortunately 

this distribution family is not conjugate for the 

variance of a normal variable. However, the family 

of gamma distributions is conjugate to 1/ σ
2 (

the 

accuracy of σ
2
). When it is used such a prior 

distribution, it is said that σ
2 

has a gamma inverse 

distribution: 

accuracy=1/ σ
2
~gama(a,b) 

variance= σ
2
~invers gama(a,b) 

For interpretation, instead of parameters a and b 

the parameters in the prior distribution will be: 
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In this way, the parameters of the prior 

distribution (σ0
2
, ν0) can be interpreted as the 
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variance and the sample size of the prior 

observations. 

D. Inferential Analysis for Posterior Distribution 

Suppose we have 
nYYY ,...,, 21

 the sample from 

normal variable ),( 2σθN  and the prior distribution 

are: 1/ σ
2
~ )

2
,

2
(

200 σ
υυ

gama ,  

   θ|  σ
2
~ )/,( 0

2

0 kN σµ . 

 As for the joint prior distribution we can write: 

)()|(),( 222 σσθσθ ppp = then even for the 

posterior distribution it can be done the same: 
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     The conditional distribution of θ when the 

sample and σ
2
 are given, by replacing 0

22

0 kστ =

and kn=k0+n is:  
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From this conclusion, if µ0 is the mean of k0  prior 

observations then ),,...,,|(
2

21 σθ nyyyE   is the 

mean of both k0 prior observations and the actual 

sample. The variance ),,...,,|(
2

21 σθ nyyyD  is the 

ratio of σ
2 

to the total number of observations 

(previous and actual observations). The posterior 

distribution of σ
2
 is taken by integrating from θ: 
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It is taken the result: 

{ }nyyy ,...,,|/1 21

2σ ~ )2/,2/(
2

nnngama συυ  

where : nn += 0υυ  









−+−+= 2

0

022

00

2 )()1(
1

µσυ
υ

σ y
k

nk
sn

nn

n  

This formula gives an interpretation of ν0 as the 

prior sample size from which is obtained σ0
2
. Since 

s
2 

is the empirical variance of the sample then (n-1) 

s
2
 gives the sum of square of the difference of the 

observations from the sample mean, so ν0 σ0
2
 and νn 

σn
2
 are respectively the sum of square of prior and 

posterior. By multiplying the last equation with νn it 

can be said that the sum of posterior squares is 

equal to the sum of prior squares with the sum of 

sample squares, while the third term is more 

difficult to be interpreted. If µ0 is considered the 

mean of k0 prior values with variance σ
2
 then 

2

0

0

0 )( µ−
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y
nk

nk
  serves as a point estimation for σ

2
. 

E. Monte Carlo Simulations 

For most data analysis it is important to estimate 

the population mean θ, so it is important to 

calculate ),...,,|( 21 nyyyE θ  and other numerical 

characteristics. These ones are determined by the 

posterior distribution of θ given by the data. As it is 

known, the conditional distribution of θ provided 

the data and σ
2
 is the normal distribution and the 

conditional distribution of σ
2
 given the data is 

invers gamma. It can be used the Monte Carlo 

method to simulate samples of from the joint 

posterior distribution ([8], [9]), so the simulation of 

S pair of the parameters would be: 
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This is accomplished in R language by using the 

commands: 
s2_postsample=1/rgamma(10000,nun/2,s2n*nu

n/2) 

teta_postsample=rnorm(10000,mun,sqrt(s2_p

ostsample/kn)) 

 This procedure involves the simulation of 10000 

pairs representing independent samples from the 

joint posterior distribution ),...,,|,( 21

2

nyyyp σθ . 

Moreover, the simulated values { })()1( ,..., Sθθ

represent independent samples from the marginal 

distribution ),...,,|( 21 nyyyp θ . 

The results of MCMC simulation from the 

example in section II-C are illustrated by the graps: 
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Fig. 2 The joint distribution after MCMC simulations 
 

 
Fig. 3 The marginal distribution of 1/ σ2 after simulations. 

 

 
Fig. 4 The marginal distribution of θ after simulations. 

A 95% confidence interval for the parameter θ is 

(1.72, 1.81). 

F. Improper Prior  

The problem involved is how Bayesian analysis 

can be used without prior information from the 

prior distribution. Many authors, from Lindley in 

1973 ([6]) and then Kass in 1996([7]), were 

doubtful in using the improper priors that are not 

probability distributions, instead of prior 

distributions. As we refer to the parameters k0 and 

ν0 as the prior sample size, it seems as small as 

these parameters are then the estimation will be 

more objective. This naturally induces to the 

thought of what happens to the posterior 

distribution when k0 and ν0 are reduced 

considerably.  

The formulas for are: 

nk

ynk
n

+

+
=

0

00µ
µ    









−

+
+−+

+
= 2

0

0

022

00

0

2
)()1(

1
µσυ

υ
σ y

nk

nk
sn

n
n

 

When 0, 00 →υk , then we have: 
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These results bring to the following posterior: 
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Marking 22 /1),(~ σσθ =p and considering that

),(~),|()|,( 222 σθσθσθ pypyp ×∝ , we get the 

same conditional distribution for θ but a gamma 

distribution for 1/σ
2 

([11]). From the integration of 

the joint distribution from σ
2  

it comes the result: 

1)-S(n~,...yy,y|
/

n21
ns

y−θ
, which means that 

after the sample is made we have that the unknown 

parameter is given by a student distribution with n-

1 degree of freedom. Meanwhile the conditional 

distribution θ
θ

|
/ ns

Y −
 is also with student 

distribution of n-1 degree of freedom. This means 

that before the sample is made, the difference of Y  

from the population mean θ is given by a student 

distribution of n-1 degree of freedom. The 

difference lies in the fact that before sampling the 

two parameters Y and θ are unknown, but after the 

sample is made then yY =  is known and it 

provides information about the unknown parameter 

θ. 

In this case we are not dealing with the prior 

probability distribution of (θ, σ
2
) which then leads 

to a posterior distribution of θ that is student 
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distribution with n-1 degree of freedom, so we are 

not in the case of proper Bayesian analysis. In the 

limit, theoretical results according to Stein ([2]) 

show that from a decision – making point of view, 

any suitable point estimator is a Bayesian estimator 

or it is the limit of a sequence of Bayesian 

estimators and each estimator is suitable ([3]).  

IV. BIAS AND MEAN SQUARE ERROR OF THE 

ESTIMATORS  

A point estimator of an unknown parameter θ is a 

function that reflects the data in a single parameter 

of the parameter space Θ. In the case where the 

sample is made from a normal distribution and we 

have the conjugate prior distribution previously 

considered, the posterior estimation of the mean θ is: 
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The elements of the sample for an estimator bθ̂  

refer to its behaviour hypothetically based on 

repeated surveys or evidence. Let’s compare the 

properties with the mean sample 

yyyy n =),...,,(ˆ
21eθ  when the exact value of the 

population mean θ0 is known:  

• 00e )|ˆ( θθθθ ==E , so eθ̂  is an unbiased 

estimator of θ0. 

• 000b )1()|ˆ( µθθθθ wwE −+== , 

 if 00 θµ ≠ , then bθ̂  is biased.  

The bias shows how close is the centre of the 

sample distribution for a point estimator with the 

correct value of the parameter. Generally, an 

unbiased estimator is desired, however the bias 

does not indicate how far it is an estimator from the 

correct value. Consider y1 an unbiased estimator of 

the population mean, this estimator is further from 

θ0 than it is y . To assess the proximity of an 

estimator with the correct value θ0, we use the mean 

square error (MSE) and if )|ˆ( 0θθEm =  then MSE 

is: 
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While )|ˆ( 0θθEm = , we have 0)|ˆ( 0 =− θθ mE

therefore the second term is zero, that is: 
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2

00 θθθθθθ biasDGMK +=  

This means that before the data is collected, the 

expected distance of an estimator from the correct 

value depends on the proximity of θ0 with the 

distribution centre and by the variance of θ̂ .  
Referring to the comparison of the two estimator 

bθ̂ with eθ̂ , 0)|ˆ( 0 =θθ ebias  but bθ̂ has the smallest 

variability: 
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The mean square errors for the two estimators are: 
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It is true that )|ˆ()|ˆ( 00 θθθθ eb MSEMSE <  when  
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If there are data on the population from which is 

made the sample, it is easy to find the values µ0 and 

k0 for which the inequality is true. In this case is 

built a Bayesian estimator with a square mean 

distance smaller than sample mean. 

If we consider µ0 =100 and σ0
2
=225, then: 
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In Fig. 5 are the graphs for the ratio of MSE for 

the two estimators for different sample sizes and k0. 
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             Fig. 5  Bayesian Estimator versus Empirical Estimator MSE 

Fig. 5 shows that the MSE for the Bayesian 

estimator is smaller than the sample mean when k0 

=1, 2 and especially when the sample size is small. 

When k0 =3, the MSE is greater for the Bayesian 

estimator but when the size n increases than it is 

seen that the bias goes to 0. 

The Fig. 6 shows the graphs for different values 

of k0 when n=10 (small sample size) and for the 

sample mean. 

 

 
                Fig. 6  The graphs of the distributions for the sample mean and the  

three Bayesian estimators (yellow, blue, green and magenta respectively). 

This graph reinforces the fact that when k0 =1 the 

Bayesian estimator’s graph (the blue curve) is 

closer the real population mean θ0=112 (intersected 

blue line) and its variance is small. This means that 

this estimator is closer to the true value of the 

parameter than the sample mean that is the 

empirical estimator. 

 

CONCLUSIONS 

The normal distribution is very important not 

only for its wide usage in different models, but even 

for the fact that the sample mean converges to a 

normal distribution by the Central Limit Theorem. 

This probability distribution belongs to the family 

of exponential distributions where the mean and the 

empirical variance of the sample are sufficient 

statistics for its parameters. 

The main benefit from the Bayesian inferential 

analysis is that it allows for small samples to make 

a better estimation usually starting from prior 

information. In this way, the normal distribution is 

determined by the estimators of its parameters and 

it can be further used in finding various 

probabilities we are interested in for different 

applications. 

The main difference between Frequentist and 

Bayesian schemes is in the different ways of 

defining the probability. The Frequentist statistics 

(the classic statistics) treats the probability of events 

and does not quantify the inaccuracy of the true 

values of parameters. Instead, Bayesian statistics 

defines the probability distribution over possible 

values of a parameter that can be useful in different 

fields of interest. 
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