
International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 61

Detecting Malware and Searching Rank Fraudulent Behavior In

Google Play
Mr.S.Jagadeesan,M.Sc, MCA., M.Phil., ME[CSE].,

(Assistant professor, Department of Computer Application, Nandha Engineering College/Anna University, Erode-52)

B.VishnuVarthini ,MCA.,
 (Department of Computer Application, Nandha Engineering College/Anna University, Erode-52)

--************************--------------------------------

Abstract:
 Fraudulent behaviors in Google Play, the most popular Android app market, fuel search rank abuse and

malware proliferation. To identify malware, previous work has focused on app executable and permission

analysis. In this paper, we introduce FairPlay, a novel system that discovers and leverages traces left behind by

fraudsters, to detect both malware and apps subjected to search rank fraud. FairPlay correlates review activities

and uniquely combines detected review relations with linguistic and behavioral signals gleaned from Google

Play app data (87 K apps, 2.9 M reviews, and 2.4M reviewers, collected over half a year), in order to identify

suspicious apps. FairPlay achieves over 95 percent accuracy in classifying gold standard datasets of malware,

fraudulent and legitimate apps. We show that 75 percent of the identified malware apps engage in search rank

fraud. FairPlay discovers hundreds of fraudulent apps that currently evade Google Bouncer's detection

technology. FairPlay also helped the discovery of more than 1,000 reviews, reported for 193 apps, which reveal a

new type of “coercive” review campaign: users are harassed into writing positive reviews, and install and review

other apps.

Keywords — Android market, search rank fraud, malware detection.

--************************----------------------------------

I. INTRODUCTION

The commercial success of Android app markets

such as Google Play [1] and the incentive model

they offer to popular apps, make them appealing

targets for fraudulent and malicious behaviors.

Some fraudulent developers deceptively boost the

search rank and popularity of their apps (e.g.,

through fake reviews and bogus installation counts)

[2], while malicious developers use app markets as a

launch pad for their malware [3], [4], [5], [6].

The motivation for such behaviors is impact: app

popularity surges translate into financial benefits

and expedited malware proliferation.

Fraudulent developers frequently exploit

crowdsourcing sites (e.g., Freelancer [7], Fiverr [8],

BestAppPromotion [9]) to hire teams of willing

workers to commit fraud collec-tively, emulating

realistic, spontaneous activities from unre-lated

people (i.e.,”crowdturfing”).

In addition, the efforts of Android markets to

identify and remove malware are not always

successful. For instance, Google Play uses the

Bouncer system [11] to remove mal-ware. However,

out of the 7,756 Google Play apps we ana-lyzed

using VirusTotal [12], 12 percent (948)

In this paper, we seek to identify both malware and
search rank fraud subjects in Google Play. Fig. 1.
An “install job” posting from Freelancer [7], asking
for 2,000 installs within 3 days (in orange), in an
organized way that includes expertise veri-fications
and provides secrecy assurances (in blue). Text
enlarged for easier reading. an efficient algorithm to
identify temporally con-strained, co-review pseudo-
cliques—formed by reviewers with substantially
overlapping co-review-ing activities across short
time windows.We use temporal dimensions of
review post times to identify suspicious review
spikes received by apps; we show that to
compensate for a negative review,for an app that has
rating R, a fraudster needs to post at least

R
5 R

1

positive reviews. We also identify apps with
“unbalanced” review, rating and install counts, as

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 62

well as apps with permission request ramps.We use
linguistic and behavioral information to (i)detect
genuine reviews from which we then (ii) extract
user-identified fraud and malware indicators.

Tools to Collect and Process Google Play Data.

We have developed GPCrawler, a tool to

automatically collect data published by Google Play

for apps, users and reviews, as well as GPad, a tool

to download apks of free apps and scan them for

malware using VirusTotal.
Novel Longitudinal and Gold Standard Datasets.

We contributed a longitudinal dataset of 87,223

freshly posted Google Play apps (along with their

2.9 M reviews, from 2.3 M reviewers) collected

between October 2014 and May 2015. We have

leveraged search rank fraud expert contacts in

Freelancer [7], anti-virus tools and manual

verifications to collect gold standard datasets of

hundreds of fraudulent, malware and benign apps [x

3]. We have published these datasets on the project

website [20].

II. RELATED WORK AND MOTIVATION

System Model. We focus on the Android app

market ecosys-tem of Google Play. The participants,

consisting of users and developers, have Google

accounts. Developers create and upload apps, that

consist of executables (i.e., “apks”), a set of required

permissions, and a description. The app mar-ket

publishes this information, along with the app’s

received reviews, ratings, aggregate rating (over

both reviews and ratings), install count range

(predefined buck-ets, e.g., 50-100, 100-500), size,

version number, price, time of last update, and a list

of “similar” apps.

Each review con-sists of a star rating ranging

between 1-5 stars, and some text. The text is

optional and consists of a title and a descrip-tion.

Google Play limits the number of reviews displayed

for an app to 4,000. Fig. 2 illustrates the participants

in Goo-gle Play and their relations.

Adversarial Model. We consider not only

malicious devel-opers, who upload malware, but

also rational fraudulent developers. Fraudulent

developers attempt to tamper with the search rank of

their apps, e.g., by recruiting fraud experts in

crowdsourcing sites to write reviews, post rat-ings,

and create bogus installs. While Google keeps secret

the criteria used to rank apps, the reviews, ratings

and install counts are known to play a fundamental

part (see e.g., [21]).

To review or rate an app, a user needs to have a
Google account, register a mobile device with that
account, and install the app on the device. This
process complicates the job of fraudsters, who are
thus more likely to reuse accounts across jobs. The
reason for search rank fraud attacks is impact. Apps
that rank higher in search results, tend to receive
more installs. This is beneficial both for fraudulent
developers, who increase their revenue, and
malicious developers, who increase the impact of
their malware.

2.1 Android Malware Detection

Zhou and Jiang [19] collected and characterized

1,200 Android malware samples, and reported the

ability of mal-ware to quickly evolve and bypass the

detection mecha-nisms of anti-virus tools.

 Burguera et al. [13] used crowdsourcing to

collect system call traces from real users, then used

a “partitional” cluster-ing algorithm to classify

benign and malicious apps. Shabtai et al. [14]

extracted features from monitored apps (e.g., CPU

consumption, packets sent, running processes) and

used machine learning to identify malicious apps.

Grace et al. [15] used static analysis to efficiently

identify high and medium risk apps.

 Previous work has also used app permissions to

pinpoint malware [16], [17], [18]. Sarma et al. [16]

use risk signals extracted from app permissions, e.g.,

rare critical permissions (RCP) and rare pairs of

critical permissions (RPCP), to train SVM and

inform users of the risks versus benefits tradeoffs of

apps. In Section 5.3 we show that FairPlay

significantly improves on the performance achieved

by Sarma et al. [16].

Peng et al. [17] propose a score to measure the

risk of apps, based on probabilistic generative

models such as Naive Bayes. Yerima et al. [18] also

use features extracted from app permissions, API

calls and commands extracted from the app

executables.
Sahs and Khan [22] used features extracted from

app per-missions and control flow graphs to train an

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 63

SVM classifier on 2,000 benign and less than 100

malicious apps. Sanz et al. [23] rely strictly on

permissions as sources of features for several

machine learning tools. They use a dataset of around

300 legitimate and 300 malware apps.

Google has deployed Bouncer, a framework that

moni-tors published apps to detect and remove

malware. Ober-heide and Miller [11] have analyzed

and revealed details of Bouncer (e.g., based in

QEMU, using both static and dynamic analysis).

Bouncer is not sufficient—our results show that 948

apps out of 7,756 apps that we downloaded from

Google Play are detected as suspicious by at least 1

anti-virus tool. In addition, FairPlay detected

suspicious behavior for apps that were not removed

by Bouncer during a more than 6 months long

interval.

Instead of analyzing app executables, FairPlay

employs a relational, linguistic and behavioral

approach based on lon-gitudinal app data. FairPlay’s

use of app permissions differs from existing work

through its focus on the temporal dimension, e.g.,

changes in the number of requested permis-sions, in

particular the “dangerous” ones. We observe that

FairPlay identifies and exploits a new relationship

between malware and search rank fraud.

2.2 Graph Based Opinion Spam Detection

Graph based approaches have been proposed to

tackle opinion spam [24], [25]. Ye and Akoglu [24]

quantify the chance of a product to be a spam

campaign target, then clus-ter spammers on a 2-hop

subgraph induced by the products with the highest

chance values. Akoglu et al. [25] frame fraud

detection as a signed network classification problem

and classify users and products, that form a bipartite

net-work, using a propagation-based algorithm.

FairPlay’s relational approach differs as it

identifies apps reviewed in a contiguous time
interval, by groups of users with a history of
reviewing apps in common. FairPlay com-bines the
results of this approach with behavioral and lin-
guistic clues, extracted from longitudinal app data,
to detect both search rank fraud and malware apps.
We emphasize that search rank fraud goes beyond
opinion spam, as it implies fabricating not only
reviews, but also user app install events and ratings

3 THE DATA

We have collected longitudinal data from 87K+

newly released apps over more than 6 months, and

identified gold standard data. In the following, we

briefly describe the tools we developed, then detail

the data collection effort and the resulting datasets.

 Data Collection Tools. We have developed the

Google Play Crawler (GPCrawler) tool, to

automatically collect data pub-lished by Google

Play for apps, users and reviews. Google Play

prevents scripts from scrolling down a user page.

Thus, to collect the ids of more than 20 apps

reviewed by a user. To overcome this limitation, we

developed a Python script and a Firefox add-on.

Given a user id, the script opens the user page in

Firefox. When the script loads the page, the add-on

becomes active. The add-on interacts with Google

Play pages using content scripts (Browser specific

compo-nents that let us access the browsers native

API) and port objects for message communication.

The add-on displays a “scroll down” button that

enables the script to scroll down to the bottom of the

page. The script then uses a DOMParser to extract

the content displayed in various formats by Goo-gle

Play. It then sends this content over IPC to the add-

on. The add-on stores it, using Mozilla XPCOM

components, in a sand-boxed environment of local

storage in a temporary file. The script then extracts

the list of apps rated or reviewed by the user.

We have also developed the Google Play App

Downloader (GPad), a Java tool to automatically

download apks of free apps on a PC, using the open-

source Android Market API[26]. GPad takes as

input a list of free app ids, a Gmail account and

password, and a GSF id. GPad creates a new market

session for the “androidsecure” service and logs in.

GPad sets parameters for the session context (e.g.,

mobile device Android SDK version, mobile

operator, country), then issues a GetAssetRequest

for each app identifier in the input list. GPad

introduces a 10s delay between requests. The result

contains the url for the app; GPad uses this url to

retrieve and store the app’s binary stream into a

local file. After collecting the binaries of the apps on

the list, GPad scans each app apk using VirusTotal

[12], an online malware detector provider, to find

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 64

out the number of anti-malware tools (out of 57:

AVG, McAfee, Symantec, Kaspersky, Mal-

warebytes, F-Secure, etc.) that identify the apk as

suspicious. We used 4 servers (PowerEdge R620,

Intel Xeon E-26XX v2 CPUs) to collect our datasets,

which we describe next.

3.1 Longitudinal App Data

In order to detect suspicious changes that occur

early in the lifetime of apps, we used the “New

Releases” link to identify apps with a short history

on Google Play. Our interest in newly released apps

stems from our analysis of search rank fraud jobs

posted on crowdsourcing sites.

 Revealed that app developers often recruit

fraudsters early after uploading their apps on Google

Play. Their intent is likely to create the illusion of an

up-and-coming app, that may then snowball with

interest from real users. By moni-toring new apps,

we aim to capture in real-time the moments when

such search rank fraud campaigns begin.

We approximate the first upload date of an app

using the day of its first review. We have started

collecting new releases in July 2014 and by October

2014 we had a set of 87,223 apps, whose first

upload time was under 40 days prior to our first

collection time, when they had at most 100 reviews.

 (Personalization). Fig. 4 shows the average rating

distribu-tion of the fresh apps. Most apps have at

least a 3.5 rating aggregate rating, with few apps

between 1 and 2.5 stars. However, we observe a

spike at more than 8,000 apps with less than 1

star.We have collected longitudinal data from these

87,223 apps between October 24, 2014 and May 5,

2015. Specifi-cally, for each app we captured

“snapshots” of its Google Play metadata, twice a

week. An app snapshot consists of values for all its

time varying variables, e.g., the reviews, the rating

and install counts, and the set of requested

Fig. 5. Co-review graph of 15 seed fraud accounts
(red nodes) and the 188 GbA accounts (orange
nodes). Edges indicate reviews written in common
by the accounts corresponding to the endpoints. We
only show edges having at least one seed fraud
account as an endpoint. The 15 seed fraud accounts
form a suspicious clique with edges weights that
range between 60 and 217. The GbA accounts are
also suspiciously well connected to the seed fraud
accounts: the weights of their edges to the seed fraud
accounts ranges between 30 and 302.

Permissions (see Section 2 for the complete list).

For each of the 2,850,705 reviews we have collected

from the 87,223 apps, we recorded the reviewer’s

name and id (2,380,708 unique ids), date of review,

review title, text, and rating.

This app monitoring process enables us to extract

a suite of unique features, that include review, install

and permis-sion changes. In particular, we note that

this approach ena-bles us to overcome the Google

Play limit of 4,000 displayed reviews per app: each

snapshot will capture only the reviews posted after

the previous snapshot.

3.2 Gold Standard Data

Malware Apps. We used GPad (see Section 3) to

collect the apks of 7,756 randomly selected apps

from the longitudinal set (see Section 3.1). Fig. 6

shows the distribution of flags raised by VirusTotal,

for the 7,756 apks. None of these apps had been

filtered by Bouncer [11]! From the 523 apps that

were flagged by at least 3 tools, we selected those

that had at least 10 reviews, to form our “malware

app” dataset, for a total of 212 apps. We collected

all the 8,255 reviews of these apps.

Fraudulent Apps. We used contacts established

among Freelancer [7]’s search rank fraud

community, to obtain the identities of 15 Google

Play accounts that were used to write fraudulent

reviews for 201 unique apps. We call the 15

accounts “seed fraud accounts” and the 201 apps

“seed fraud apps”. Fig. 5 shows the graph formed by

the review habits of the 15 seed accounts: nodes are

accounts, edges connect accounts who reviewed

apps in common, and edge weights represent the

number of such commonly reviewed apps. The 15

seed fraud accounts form a suspicious clique. This

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 65

shows that worker controlled accounts are used to

review many apps in common: the weights of the

edges between the seed fraud accounts range

between 60 and 217.

Fraudulent Reviews. We have collected all the

53,625 reviews received by the 201 seed fraud apps.

The 15 seed fraud accounts were responsible for

1,969 of these reviews. We used the 53,625 reviews

to identify 188 accounts, such that each account was

used to review at least 10 of the

 Fig. 6. Apks detected as suspicious (y axis) by
multiple anti-virus tools (x axis), through VirusTotal
[12], from a set of 7,756 downloaded apks.

 201 seed fraud apps (for a total of 6,488 reviews).

We call these, guilt by association (GbA) accounts.

Fig. 5 shows the co-review edges between these

GbA accounts (in orange) and the seed fraud

accounts: the GbA accounts are suspiciously well

connected to the seed fraud accounts, with the

weights of their edges to the seed accounts ranging

between 30 and 302.

To reduce feature duplication, we have used the

1,969 fraudulent reviews written by the 15 seed

accounts and the 6,488 fraudulent reviews written

by the 188 GbA accounts for the 201 seed fraud

apps, to extract a balanced set of fraudulent reviews.

Specifically, from this set of 8,457 (¼ 1; 969 þ 6;

488) reviews, we have collected 2 reviews from

each of the 203 (¼ 188 þ 15) suspicious user

accounts. Thus, the gold standard dataset of

fraudulent reviews con-sists of 406 reviews.

 The reason for collecting a small number of

reviews from each fraudster is to reduce feature

duplication: many of the features we use to classify

a review are extracted from the user who wrote the

review (see Table 2).

Benign Apps. We have selected 925 candidate

apps from the longitudinal app set, that have been

developed by Goo-gle designated “top developers”.

We have used GPad to fil-ter out those flagged by

VirusTotal. We have manually investigated 601 of

the remaining apps, and selected a set of 200 apps

that (i) have more than 10 reviews and (ii) were

developed by reputable media outlets (e.g., NBC,

PBS) or have an associated business model (e.g.,

fitness trackers). We have also collected the 32,022

reviews of these apps.

FAIRPLAY: PROPOSED SOLUTION

We now introduce FairPlay, a system to
automatically detect malicious and fraudulent apps.
Fig. 7. FairPlay system architecture. The CoReG
module identifies sus-picious, time related co-
review behaviors. The RF module uses linguistic
tools to detect suspicious behaviors reported by
genuine reviews. The IRR module uses behavioral
information to detect suspicious apps. The JH
module identifies permission ramps to pinpoint
possible Jekyll-Hyde app transitions.

4.1 FairPlay Overview

FairPlay organizes the analysis of longitudinal app

data into the following 4 modules, illustrated in Fig.

7. The Co-Review Graph (CoReG) module

identifies apps reviewed in a contig-uous time

window by groups of users with significantly

overlapping review histories. The Review Feedback

(RF) module exploits feedback left by genuine

reviewers, while the Inter Review Relation (IRR)

module leverages relations between reviews, ratings

and install counts. The Jekyll-Hyde (JH) module

monitors app permissions, with a focus on dan-

gerous ones, to identify apps that convert from

benign to malware. Each module produces several

features that are used to train an app classifier.

FairPlay also uses general fea-tures such as the

app’s average rating, total number of reviews,

ratings and installs, for a total of 28 features. Table 1

 TABLE 1

FairPlay’s Most Important Features, Organized
by Their Extracting Module

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 66

Notation Definition

CoReG Module number of pseudo-cliques with r

u

nCliques
r
max

,

r
med

,

r
SD clique density: max, median, SD

CSmax, CSmed,
CSSD

pseudo-cliques size: max,
median, SD

inCliqueCount
% of nodes involved in pseudo-
cliques

RF Module

malW
% of reviews with malware
indicators

fraudW, goodW
% of reviews with fraud/benign
words

FRI
fraud review impact on app
rating

IRR Module
spikeCount,
spikeamp

days with spikes & spike
amplitude

I1=Rt1, I2=Rt2 install to rating ratios

I1=Rv1, I2=Rv2 install to review ratios
JH Module

Fig. 8. Example pseudo-cliques and PCF output.
Nodes are users and edge weights denote the
number of apps reviewed in common by the end
users. Review timestamps have a 1-day granularity.
(a) The entire co-review graph, detected as pseudo-
clique by PCF when u is 6. When u is 7, PCF detects
the subgraphs of (b) the first two days and (c) the
last two days. When u=8, PCF detects only the
clique formed by the first day reviews (the red
nodes).

4.2 The Co-Review Graph (CoReG) Module

This module exploits the observation that fraudsters

who control many accounts will re-use them across

multiple jobs. Its goal is then to detect sub-sets of an

app’s reviewers that have performed significant

common review activities in the past. In the

following, we describe the co-review graph con-cept,

formally present the weighted maximal clique

enumer-ation problem, then introduce an efficient

heuristic that leverages natural limitations in the

behaviors of fraudsters.
Co-Review Graphs. Let the co-review graph of an

app, see Fig. 8, be a graph where nodes correspond

to user accounts who reviewed the app, and

undirected edges have a weight that indicates the

number of apps reviewed in common by the edge’s

endpoint users. Fig. 16a shows the co-review cli-que

of one of the seed fraud apps (see Section 3.2). The

co-review graph concept naturally identifies user

accounts with significant past review activities.
The Weighted Maximal Clique Enumeration

Problem. Let G ¼ ðV; EÞ be a graph, where V

denotes the sets of vertices of the graph, and E

denotes the set of edges. Let w be a weight function,

w : E ! R that assigns a weight to each edge of G.

Given a vertex sub-set U 2 V , we use G½U& to

denote the sub-graph of G induced by U. A vertex

sub-set U is called a clique if any two vertices in U

are connected by an edge in E. We say that U is a

maximal cliqueif no other clique of G contains U.

The weighted maximal clique enumeration problem

takes as input a graph G and returns the set of

maximal cliques of G.

Maximal clique enumeration algorithms such as

[27], [28] applied to co-review graphs are not ideal

to solve the prob-lem of identifying sub-sets of an

app’s reviewers with signifi-cant past common

reviews. First, fraudsters may not consistently use

(or may even purposefully avoid using) all their

accounts across all fraud jobs that they perform. In

addi-tion, Google Play provides incomplete

information (up to 4,000 reviews per app, may also

detect and filter fraud). Since edge information may

be incomplete, original cliques may now also be

incomplete. To address this problem, we “relax” the

clique requirement and focus instead of pseudo-

cliques:
The Weighted Pseudo-Clique Enumeration

Problem. For a graph G ¼ ðV; EÞ and a threshold

value u, we say that a ver-

tex sub-set U (and its induced sub-graph G½U&) is

a pseudo-

clique of G if its weighted ¼
e E
wðeÞ [29] 2

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 67

density r 2n exceeds
 ð Þ
Algorithm 1. PCF Algorithm Pseudo-Code

Input: days, an array of daily
reviews, and u, the weighted

threshold density
Output: allCliques, set of all detected pseudo-cliques
1. for d :=0 d < days.size(); d++
2. Graph PC := new Graph();
3. bestNearClique(PC, days[d]);
4. c := 1; n := PC.size();
5. for nd := d+1; d < days.size() & c = 1; d++
6. bestNearClique(PC, days[nd]);
7. c := (PC.size() > n); endfor
8. if (PC.size() > 2)
9. allCliques := allCliques.add(PC); fi endfor

10. return
11. function bestNearClique(Graph PC, Set revs)
12. if (PC.size() = 0)
13. for root := 0; root < revs.size(); root++
14. Graph candClique := new Graph ();
15. candClique.addNode (revs[root].getUser());
16. do candNode := getMaxDensityGain(revs);
17. if (density(candClique [{candNode}) u))
18. candClique.addNode(candNode); fi
19. while (candNode != null);
20. if (candClique.density() > maxRho)
21. maxRho := candClique.density();
22. PC := candClique; fi endfor
23. else if (PC.size() > 0)
24. do candNode := getMaxDensityGain(revs);
25. if (density(candClique [candNode) u))
26. PC.addNode(candNode); fi
27. while (candNode != null);
28. return

For each day when the app has received a review

(line 1), PCF finds the day’s most promising

pseudo-clique (lines 3 and 12 22): start with each

review, then greedily add other reviews to a

candidate pseudo-clique; keep the pseudo cli-que (of

the day) with the highest density. With that “work-

in-progress” pseudo-clique, move on to the next day

(line 5): greedily add other reviews while the

weighted density of the new pseudo-clique equals or

exceeds u (lines 6 and 23 27). When no new nodes

have been added to the work-in-prog-ress pseudo-

clique (line 8), we add the pseudo-clique to the

output (line 9), then move to the next day (line 1).

The greedy choice (getMaxDensityGain, not

depicted in Algorithm 1)

1. r is thus the average weight of the graph’s

edges, normalized by the total number of edges of a
perfect clique of size n.

TABLE 2

Features Used to Classify Review R Written by User

U for App A

Notation Definition

rR The rating of R
LðRÞ The length of R

posðRÞ
Percentage of positive statements
in R

negðRÞ
Percentage of negative
statements in R

nrðUÞ

The number of reviews written

by U

pðrRÞ
Percentile of rR among all
reviews of U

ExpU ðAÞ The expertise of U for app A
BU ðAÞ The bias of U for A

PaidðUÞ
The money spent by U to buy
apps

RatedðUÞ Number of apps rated by U
plusOneðUÞ Number of apps +1’d by U

n:flwrsðUÞ
Number of followers of U in
Google+

Picks the review not yet in the work-in-progress

pseudo-clique, whose writer has written the most

apps in common with reviewers already in the

pseudo-clique. Fig. 8 illustrates the output of PCF

for several u values.
If d is the number of days over which A has

received reviews and r is the maximum number of
reviews received in a day, PCF’s complexity is
Oðdr

2
ðr þ dÞÞ.

We note that if multiple fraudsters target an app in

the same day, PCF may detect only the most densely

connected pseudo-clique, corresponding to the most

prolific fraudster, and miss the lesser dense ones.
CoReG Features. CoReG extracts the following

features from the output of PCF (see Table 1) (i) the

number of cli-ques whose density equals or exceeds

u, (ii) the maximum, median and standard deviation

of the densities of identified pseudo-cliques, (iii) the

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 68

maximum, median and standard deviation of the

node count of identified pseudo-cliques, normalized

by n (the app’s review count), and (iv) the total

number of nodes of the co-review graph that belong

to at least one pseudo-clique, normalized by n.

4.3 Reviewer Feedback (RF) Module

Reviews written by genuine users of malware and

fraudu-lent apps may describe negative experiences.

The RF module exploits this observation through a

two step approach: (i) detect and filter out fraudulent

reviews, then (ii) identify malware and fraud

indicative feedback from the remaining reviews.

Step RF.1: Fraudulent Review Filter. We posit

that certain features can accurately pinpoint genuine

and fake reviews. We propose several such features,

see Table 2 for a sum-mary, defined for a review R

written by user U for an app A.

Text based features. We used the NLTK library

[30] and the Naive Bayes classifier, trained on two

datasets: (i) 1,041 sentences extracted from

randomly selected 350 positive and 410 negative

Google Play reviews, and (ii) 10,663 sen-tences

extracted from 700 positive and 700 negative IMDB

movie reviews [31]. 10-fold cross validation of the

Naive Bayes classifier over these datasets reveals a

false negative rate of 16.1 percent and a false

positive rate of 19.65 percent, for an overall

accuracy of 81.74 percent. We ran a binomial test

[32] for a given accuracy of p=0.817 over N=1,041

cases using the binomial distribution binomialðp; N

Þ to assess the 95 percent confidence interval for our

result. The deviation of the binomial distribution is

0.011. Thus, we are 95 percent confident that the

true performance of the classifier is in the interval

(79.55, 83.85).

We used the trained Naive Bayes classifier to

determine the statements of R that encode positive

and negative senti-ments. We then extracted the

following features: (i) the per-centage of statements

in R that encode positive and negative sentiments

respectively, and (ii) the rating of R and its

percentile among the reviews written by U.
In Section 5 we evaluate the review classification

accu-racy of several supervised learning algorithms

trained on these features and on the gold standard

datasets of fraudu-lent and genuine reviews

introduced in Section 3.2.

Step RF.2: Reviewer Feedback Extraction. We

conjecture that since no app is perfect, a “balanced”

review that contains both app positive and negative

sentiments is more likely to be genuine, and (ii)

there should exist a relation between the review’s

dominating sentiment and its rating. Thus, after

filtering out fraudulent reviews, we extract feedback

from the remaining reviews. For this, we have used

NLTK to extract 5,106 verbs, 7,260 nouns and

13,128 adjectives from the 97,071 reviews we

collected from the 613 gold stan-dard apps (see

Section 3.2). We removed non ascii charac-ters and

stop words, then applied lemmatization and

discarded words that appear at most once. We have

attempted to use stemming, extracting the roots of

words, however, it performed poorly. This is due to

the fact that reviews often contain (i) shorthands,

e.g., “ads”, “seeya”, “gotcha”, “inapp”, (ii)

misspelled words, e.g., “pathytic”, “folish”, “gredy”,

“dispear” and even (iii) emphasized mis-spellings,

e.g., “hackkked”, “spammmerrr”, “spooooky”. Thus,

we ignored stemming.

We used the resulting words to manually identify

lists of words indicative of malware, fraudulent and

benign behav-iors. Our malware indicator word list

contains 31 words (e.g., risk, hack, corrupt, spam,

malware, fake, fraud, black-list, ads). The fraud

indicator word list contains 112 words (e.g., cheat,

hideous, complain, wasted, crash) and the benign

indicator word list contains 105 words.
RF Features. We extract 3 features (see Table 1),

denoting the percentage of genuine reviews that

contain malware, fraud, and benign indicator words

respectively. We also extract the impact of detected

fraudulent reviews on the overall rating of the app:

the absolute difference between the app’s average

rating and its average rating when ignor-ing all the

fraudulent reviews.

4.4 Inter-Review Relation (IRR) Module

This module leverages temporal relations between
reviews, as well as relations between the review,
rating and install counts of apps, to identify
suspicious behaviors.

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 69

Plots the lower bound on the number of fake

reviews that need to be posted to cancel a 1-star

review, ver-sus the app’s current rating. It shows

that the number of reviews needed to boost the

rating of an app is not constant. Instead, as a review

campaign boosts the rating of the subject app, the

number of fake reviews needed to continue the pro-

cess, also increases. For instance, a 4 star app needs

to receive 3, 5-star reviews to compensate for a

single 1 star review, while a 4.2 star app needs to

receive 4 such reviews. Thus, adversaries who want

to increase the rating of an app, i.e., cancel out

previously received negative reviews, will need to

post an increasing, significant number of positive

reviews.

Such a “compensatory” behavior is likely to lead

to sus-piciously high numbers of positive reviews.

We detect such behaviors by identifying outliers in

the number of daily pos-itive reviews received by an

app. Fig. 9 shows the timelines and suspicious

spikes of positive reviews for 2 apps from the

fraudulent app dataset (see Section 3.2). We identify

days with spikes of positive reviews as those whose

number of positive reviews exceeds the upper outer

fence of the box-and-whisker plot built over the

app’s numbers of daily posi-tive reviews.

Reviews, Ratings and Install Counts. We used the

Pearson’s x
2
 test to investigate relationships between

the install count and the rating count, as well as

between the install count and the average app rating

of the 87 K new apps, at the end of the collection

interval. We grouped the rating count in buckets of

the same size as Google Play’s install count buck-ets.

Fig. 10 shows the mosaic plot of the relationships

between rating and install counts. p=0.0008924, thus

we con-clude dependence between the rating and

install counts. The standardized residuals identify

the cells (rectangles) that contribute the most to the

x
2
 test. The most significant rating:install ratio is

1:100.

cells correspond to apps that have a certain install

count range (x axis) and average rating range (y

axis). It shows that few popular apps, i.e., with more

than 1,000 installs, have below 3 stars, or above 4.5

stars. We conjecture that fraudster efforts to alter the

search rank of an app will not be able to preserve a

natural balance of the features that impact it (e.g.,

the app’s review, rating, and install counts),IRR

Features. We extract temporal features (see Table 1):

the number of days with detected spikes and the

maximum amplitude of a spike. We also extract (i)

the ratio of installs to ratings as two features, I1=Rt1

and I2=Rt2 and (ii) the ratio of installs to reviews, as

I1=Rv1 and I2=Rv2. ðI1; I2& denotes the install count

interval of an app, ðRt1; Rt2& its rat-ing interval and

ðRv1; Rv2& its (genuine) review interval.

4.5 Jekyll-Hyde App Detection (JH) Module

In addition, Android’s API level 22 labels 47

permissions as “dangerous”. Fig. 12b compares the

distributions of the number of dangerous

permissions requested by the gold standard malware,
fraudulent and benign apps. The most popular

dangerous permissions among these apps are
“modify or delete the contents of the USB storage”,

“read phone status and identity”, “find accounts on

the device”, and “access precise location”. Only 8
percent of the legiti-mate apps request more than 5

dangerous permissions, while 16.5 percent of the
malware

After a recent Google Play policy change [33],

Google Play organizes app permissions into groups

of related per-missions. Apps can request a group of

permissions and gain implicit access also to

dangerous permissions..
JH Features. We extract the following features (see

Table 1)

5.1 Experiment Setup

We have implemented FairPlay using Python to

extract data from parsed pages and compute the

features, and the R tool to classify reviews and apps.

We have set the threshold den-sity value u to 3, to

detect even the smaller pseudo cliques.
We have used the Weka data mining suite [34] to

per-form the experiments, with default settings. We

experi-mented with multiple supervised learning

algorithms. Due to space constraints, we report

results for the best perform-ers: MultiLayer

Perceptron (MLP) [35], Decision Trees (DT) (C4.5)

and Random Forest (RF) [36], using 10-fold cross-

validation [37]. For the backpropagation algorithm

of the MLP classifier, we set the learning rate to 0.3

and the momentum rate to 0.2. We used MySQL to

store collected data and features.

5.2 Review Classification

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 70

To evaluate the accuracy of FairPlay’s fraudulent

review detection component (RF module), we used

the gold standard datasets of fraudulent and genuine

reviews

5.3 App Classification

To evaluate FairPlay, we have collected all the

97,071 reviews of the 613 gold standard malware,

fraudulent and benign apps, written by 75,949 users,

as well as the 890,139 apps rated by these users.
In the following, we evaluate the ability of

various super-vised learning algorithms to correctly

classify apps as either benign, fraudulent or malware

Fraud Detection Accuracy. Table 4 shows 10-fold

cross val-idation results of FairPlay on the gold

standard fraudulent and benign apps (see Section

3.2). All classifiers achieve an accuracy of around

97 percent. Random Forest is the best, having the

highest accuracy of 97.74 percent and the lowest

FPR of 1.01 percent. Its EER is 2.5 percent and the

area under the ROC curve (AUC) is 0.993 (see Fig.

15).
Fig. 16a shows the co-review subgraph for one of

the seed fraud apps identified by FairPlay’s PCF.

The 37 accounts that reviewed the app form a

suspicious tightly connected clique: any two of

those accounts have reviewed at least 115 and at

most 164 apps in common.

Malware Detection Accuracy. We have used

Sarma et al. [16]’s solution as a baseline to evaluate

the ability of FairPlay to accurately detect malware.

We computed Sarma et al. [16]’s RCP and RPCP

indicators (see Section 2.1) using the longitudinal

app dataset. We used the SVM based variant of

Sarma et al. [16], which performs best. Table 4

shows 10-fold cross validation results over the

malware and benign gold standard sets. FairPlay

significantly outperforms Sarma

High: any two of the 37 accounts reviewed at

least 115 apps and up to 164 apps in common! (b &

c) Statistics over the 372 fraudulent apps out of

1,600 investigated: (b) Distribution of per app

number of discovered pseudo-cliques. 93.3 percent

of the 372 apps have at least 1 pseudo-clique of u 3

(c) Distribution of percentage of app reviewers

(nodes) that belong to the largest pseudo-clique and

to any clique. Eight percent of the 372 apps have

more than 90 percent of their reviewers involved in

a cliqueet al. [16]’s solution, with an accuracy that

consistently exceeds 95 percent. We note that the

performance of Sarma et al.’s solution is lower than

the one reported in [16]. This inconsistency may

stem from the small number of malware apps that

were used both in [16] (121 apps) and in this paper

(212 apps).

For FairPlay, Random Forest has the smallest

FPR of 1.51 percent and the highest accuracy of

96.11 percent. It also achieves an EER of 4 percent

and has an AUC of 0.986. This is surprising: most

FairPlay features are meant to identify search rank

fraud, yet they also accurately identify malware.

Is Malware Involved in Fraud?We conjectured

that the above result is due in part to malware apps

being involved in search rank fraud. To verify this,

we have trained FairPlay on the gold standard

benign and fraudulent app datasets, then we have

tested it on the gold standard malware dataset. MLP

is the most conservative algorithm, discovering

60.85 percent of malware as fraud participants.

Random Forest discovers 72.15 percent, and

Decision Tree flags 75.94 percent of the malware as

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 71

fraudulent. This result confirms our conjecture and

shows that search rank fraud detection can be an

impor-tant addition to mobile malware detection

efforts.
Top-most Impactful Features. We further seek to

compare the efficacy of FairPlay’s features in
detections fraudulent apps and malware. Table 6
shows the most impactful fea-tures of FairPlay when
using the Decision Tree algorithm to classify
fraudulent versus benign and malware versus benign
apps. It shows that several features are common : the
standard deviation, median and maximum over the
sizes of identified pseudo-cliques (CSSD, CSmed,
CSmax), the number of reviews with fraud indicator
words (fraudW). Surprisingly, even the number of
reviews with malware indicator words (malW) has
an impact in identifying fraud-ulent apps, yet, as
expected, it has a higher rank when iden-tifying
malware apps

In addition, as expected, features such as the
percentage of nodes involved in a pseudo-clique
(inCliqueCount), the number of days with spikes
(spikeCount) and the maximum density of an
identified pseudo-clique (rmax) are more rele-vant to
differentiate fraudulent from benign apps. The num-
ber of pseudo-cliques with density larger than 3
(nCliques) the ratio of installs to reviews (I1=Rv1)
and the number of dangerous permissions
(dangerCount) are more effective to differentiate
malware from benign apps.

More surprising are the features that do not

appear in the top, for either classifier. Most notably,

the Jekyll-Hyde fea-tures that measure the ramps in

the number of dangerous permissions. One

explanation is that the 212 malware apps in our gold

standard dataset do not have sufficient danger-ous

permission ramps. Also, we note that our conjecture

that fraudster efforts to alter the search rank of an

app will not be able to preserve a natural balance of

the features that impact it (see IRR module) is only

partially validated: solely the I1/Rv1 feature plays a

part in differentiating malware from benign apps.

Furthermore, we have zoomed in into the
distributions of the sizes and densities of the largest
pseudo-cliques, for the gold standard fraudulent and
malware apps. Fig. 17 shows

Scatterplots for the gold standard fraudulent and
malware apps. (a) Each red square represents a

fraudulent app, whose y axis value is its number of
nodes (reviews) in the largest pseudo-clique
identified, and whose x axis value is its number of
nodes. (b) For each fraudulent app, the density of its
largest pseudo-clique versus its number of nodes. (c)
For each malware app, the size of its largest pseudo-
clique versus its number of nodes. (d) For each
malware app, the density of its largest pseudo-clique
versus its number of nodes. Fraudulent apps tend to
have more reviews. While some malware apps have
relatively large (but loosely connected) pseudo-
cliques, their size and density is significantly smaller
than those of fraudulent apps.

Fig. 18. Scatterplots of the 372 fraudulent apps out
of 1,600 investigated, showing, for each app, (a) the
number of nodes (reviews) in the largest cli-que
identified versus the app’s number of nodes and (b)
the density of the largest clique versus the app’s
number of nodes. While apps with more nodes also
tend to have larger cliques, those cliques tend to
have lower densities. scatterplots over the gold
standard fraudulent and malware apps, of the sizes
and densities of their largest pseudo-cliques, as
detected by FairPlay. Fig. 17a shows that fraudu-
lent apps tend to have very large pseudo-clique and
Fig. 17c shows that malware apps have significantly
smaller pseudo-cliques. We observe however that
malware apps have fewer reviews, and some
malware apps have pseudo-cliques that contain
almost all their nodes. Since the maxi-mum, median
and standard deviation of the pseudo-clique sizes are
computed over values normalized by the app’s
number of reviews, they are impactful in
differentiating malware from benign apps.

Fig. 17b shows that the largest pseudo-cliques of

the larger fraudulent apps tend to have smaller

densities. Fig. 17d shows a similar but worse trend

for malware apps, where with a few exceptions, the

largest pseudo-cliques of the malware apps have

very small densities.

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 72

5.4 FairPlay on the Field

We have also evaluated FairPlay on other, non

“gold standard” apps. For this, we have first selected

8 app cat-egories: Arcade, Entertainment,

Photography, Simulation, Racing, Sports, Lifestyle,

Casual. We have then selected the 6,300 apps from

the longitudinal dataset of the 87K apps, that belong

to one of these 8 categories, and that have more than

10 reviews. From these 6,300 apps, we randomly

selected 200 apps per category, for a total of 1,600

apps. We have then collected the data of all their

50,643 reviewers (not unique) including the ids of

all the 166,407 apps they reviewed.

We trained FairPlay with Random Forest (best

perform-ing on previous experiments) on all the

gold standard benign and fraudulent apps. We have
then run FairPlay on

the 1,600 apps, and identified 372 apps (23 percent)

as fraudulent. The Racing and Arcade categories

have the highest fraud densities: 34 percent and 36

percent of their apps were flagged as fraudulent.
Intuition. We now focus on some of the top most impactful FairPlay features to

offer an intuition for the surprisingly high fraud percentage (23 percent of 1,600

apps). Fig. 16b shows that 93.3 percent of the 372 apps have at least 1 pseudo-

clique of u 3, nearly 71 percent have at least 3 pseudo-cliques, and a single app

can have up to 23 pseudo-cliques. Fig. 16c shows that the pseudo-cliques are

large and encompass many of the reviews of the apps: 55 percent of the 372 apps

have at least 33 percent of their reviewers involved in a pseudo-clique, while

nearly 51 percent of the apps have a single pseudo-clique containing 33 percent

of their reviewers.

5.5 Coercive Review Campaigns

Upon close inspection of apps flagged as

fraudulent by Fair-Play, we detected apps

perpetrating a new attack type: harass the user to

either (i) write a positive review for the app, or (ii)

install and write a positive review for other apps

(often of the same developer). We call these

behaviors coercive review campaigns and the

resulting reviews, as coerced reviews. Example

coerced reviews include, “I only rated it because i

didn’t want it to pop up while i am playing”, or

“Could not even play one level before i had to rate it

[...] they actually are telling me to rate the app 5

stars”.

In order to find evidence of systematic coercive

review campaigns, we have parsed the 2.9 million

reviews of our dataset to identify those whose text

contains one of the root words ½“make”, “ask”,

“force”& and “rate”. Upon manual inspection of the

results, we have found 1,024 coerced reviews. The

reviews reveal that apps involved in coercive review

campaigns either have bugs (e.g., they ask the user

to rate 5 stars even after the user has rated them), or

reward the user by removing ads, providing more

features, unlock-We have observed several

duplicates among the coerced reviews. We identify

two possible explanations. First, as we previously

mentioned, some apps do not keep track of the user

having reviewed them, thus repeatedly coerce subse-

quent reviews from the same user. A second

explanation is that seemingly coerced reviews, can

also be posted as part of a negative search rank fraud

campaign. However, both scenarios describe apps

likely to have been subjected to fraudulent behaviors.

We have introduced FairPlay, a system to detect

both fraud-ulent and malware Google Play apps.

Our experiments on a newly contributed

longitudinal app dataset, have shown that a high

percentage of malware is involved in search rank

fraud; both are accurately identified by FairPlay. In

addition, we showed FairPlay’s ability to discover

hundreds of apps that evade Google Play’s detection

technology, including a new type of coercive fraud

attack.

CONCLUSIONS
 We have introduced FairPlay, a system to detect

both fraud- ulent and malware Google Play apps.

Our experiments on a newly contributed

longitudinal app dataset, have shown that a high

percentage of malware is involved in search rank

fraud; both are accuratelyidentified by FairPlay. In

addition, we showed FairPlay’s ability to discover

hundreds of apps that evade Google Play’s detection

technology, including a new type of coercive fraud

attack.

REFERENCES

[1] Google Play. [Online]. Available: https://play.google.com/
[2] E. Siegel, “Fake reviews in Google Play and Apple App

Store,” Appentive, Seattle, WA, USA, 2014.
[3] Z. Miners. (2014, Feb. 19). “Report: Malware-infected

Android

International Journal of Computer Techniques -– Volume 5 Issue 2, Mar – Apr 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 73

apps spike in the Google Play store,” PC World. Available:
http:// www.pcworld.com/article/2099421/report-
malwareinfected-android-apps-spike-in-the-google-play-
store.html

[4] S. Mlot. (2014, Apr. 8). “Top Android App a Scam,
Pulled From Google Play,” PCMag. Available:
http://www.pcmag.com/ article2/0,2817,2456165,00.asp

[5] D. Roberts. (2015, Jul. 8). “How to spot fake apps on the
Google Play store,” Fortune. Available:
http://fortune.com/2015/07/08/ google-play-fake-app/

[6] A. Greenberg (2012, May 23). “Researchers say they

snuck malware app past Google’s ‘Bouncer’ Android

market scanner,” Forbes Security, [Online]. Available:

http://www.forbes.com/

sites/andygreenberg/2012/05/23/researchers-say-they-

snuck-malware-app-past-googles-bouncer-android-

market-scanner/ #52c8818d1041

[7] Freelancer. [Online]. Available:

http://www.freelancer.com

[8] Fiverr. [Online]. Available: https://www.fiverr.com/
[9] BestAppPromotion. [Online]. Available:

www.bestreviewapp. com/

[10] G. Wang, et al., “Serf and turf: Crowdturfing for fun and

profit,”
in Proc. ACM WWW, 2012. [Online]. Available:
http://doi.acm. org/10.1145/2187836.2187928

[11] J. Oberheide and C. Miller, “Dissecting the Android
Bouncer,” presented at the SummerCon2012, New York,
NY, USA, 2012.

[12] VirusTotal - free online virus, Malware and URL scanner.

[Online]. Available: https://www.virustotal.com/, Last

accessed on: May 2015.

