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Abstract—Skeletal maturity assessment is important for diagnosing and monitoring growth disorders in Children and
young adults. Statistical models of bone shape and appearance have been shown to be useful for estimating skeletal
maturity. One critical requirement in automated skeletal maturity estimation is matching built models to unseen images
of the bones of the hand. Oftentimes some form of initialization is required to prevent the model from falling into local
minima. In this work we used Markov Graph Shape models (MGSM) to initialize the image of an incoming radiographic
image and then fit a global Active Appearance models of the whole hand using the found points from the Markov Graph
Shape models as 'weighted’ constraints. Having found the approximate positions of the bones of hands, we then fit local
models to refine the model fit. By analysing performance on dataset of 70 digitized images of normal children we achieved
a model fitting accuracy of an overall point-to-point median error of 0.67mm.
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1 INTRODUCTION

Skeletal maturity assessment is important
in diagnosing growth disorders in Children
and young adults. Active Appearance Models
(AAMs) are known for their effectiveness in
medical image segmentation and model match-
ing. However, they need good initialisation. We
use Markov Graph Shape models (MGSM) to
find sparse points on the images [14]. These
sparse points are used to initialise the global
AAMs. With the knowledge of the approximate
position of all the bones of the hand, we further
used these known points as constraints while
finding the exact position of the bones. This
was done by fitting local AAMs (models of dif-
ferent bone complexes) using the approximate
points from global models as constraints. This
work presupposes that Global and Local Sta-
tistical models of appearance have been built.
This we have done in our earlier works [3]
and [1]. In this work we have used a Global-
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Local model fitting strategy to fit statistical
models to Radiographic images. This is with
the ultimate objective of extracting model pa-
rameters of shape, texture and appearance for
estimating skeletal maturity. The efficacy of the
extracted parameters for the estimation is well
established in literature. [1], [13]. The objective
of automatically fitting a model to an unseen
image as presented in this work and several
others in literature is key to achieving an au-
tomated Skeletal maturity assessment system.
Without these efforts, skeletal assessment will
need a manual intervention with all its atten-
dant inconsistencies.

To achieve the above objective we use the
global AAMs described in earlier works [3].
Each new image is matched with a global
AAM. This gives the approximate position of
the different bones of the hand.

With the knowledge of the approximate posi-
tion of all the bones of the hand, we further use
these known points as constraints while finding
the exact position of the bones. This was done
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by fitting local AAMs (models of different bone
complexes) using the approximate points from
global models as constraints.

Figure 1b shows the skeletal maturity growth
points based on Tanner and Whitehouse (TW)
method of determining skeletal maturity [1]
while figure 1a shows the different bones of the
hands. Two methods are prevalent in Clinical
radiology for the determination of skeletal ma-
turity and they are attributed to Greulich and
Pyle [9] and Tanner and Whitehouse [1]. The
former considers all the 28 bones of the hand in
a subjective manner, while the former considers
13 Radius Ulna and Short (RUS) in an objective
manner and it is believed to be more accurate.
Our goal is to match built models to the 13 TW
RUS bones. These bones are listed in Table 2.
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Fig. 1. (a) Bones of the hand [1].

(b) Skeletal maturity growth points based on
TW method. RUS bones: Radius(1), Ulna(2),
Metacarpal |, lll, V, Proximal phalanges(ppha)
[, I, V (10,15,16) , Middle phalanges (mpha)
lll, V (14,17), Distal phalanges (dpha) I, I,
V (12,13,18); Carpal bones: Capitate(4), Ha-
mate(5), Triquetral(8), Lunate(3), Scaphoid (8),
Trapezium(6) and Trapezoid(9).

Figure 2 shows the process for locating the
bones in a new radiograph. Markov Graph
Shape models (MGSM) with global AAM are
used to find the approximate locations of the
bones. The bone complexes of interest are then
extracted. Local models of equivalent bone
complexes are then fit using points from the
global model as constraints. The accuracy of the
model fit is evaluated at the global and local
levels.

The innovation in this work is the combi-
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Fig. 2. Process diagram for automatic matching
of hand radiographs using Active Appearance
Models (AAM)

nation of an MRF-based local shape model
for guided candidate selection with a PCA-
based global shape model for regularization.
The method also innovatively uses a two-stage
cascade implementation for robustness: in the
tirst step, we determine the global translation,
orientation and scale using only the MRF to
localize a salient subset of the landmark points;
in the second step, we refine the previously
localized points and localize a larger set of less
salient landmarks in the model by allowing the
global model to account for more of the shape
variation.

Additionally the combination of Markov
Random Graph Models (MGSM) with Con-
strained Active Appearance Model with a
weighted fit is also an innovation. The origi-
nal AAM constrained fit assumes equal vari-
ances for all points. We however introduced
a weighted fit. After the initial AAM fit, we
computed the Euclidean points’ error difference
between the target points and the best model fit
while specifying a maximum error threshold.
We modified the constraint weights based on
how large the errors are.

2 RELATED WORK

A comparable work in literature includes the
work of Luis-Garcia et al [11] where an adap-
tive snake was used to find the contours of the
hand. An average success rate of 73.9% was
reported. Another approach by Pietka et al [12]
reduced the regions of interest to Epipyseal-
Metapyseal Region of Interest (EMROI). A suc-
cess rate of 96% was reported. It was however
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reported that about 14% of their data set was
set aside due to poor quality. This action may
have had a positive effect on the success rate
[11]. The works of Giordano et al [8] and
Pietka et al [12] examined a reduced number
of bone complexes while our work and Luis-
Garcia et al’s considered the entire bones of
the hand. Thodberg et al. [13], whose work is
very closely related, did not quote a result for
the localisation of bones. Tresadern et al. [14]
used the MGSM to find sparse points in an
image. This work did not proceed to segment-
ing and matching local models which are often
requred for skeletal maturity. Cootes et al. [6]
and Lindner et al. [10] in their very excellent
work presented a robust shape model fitting
using Random Forest Regression Voting and
they applied their methods to several datasets
including hand radiographs with excellent re-
sults. However they needed hundreds of im-
ages. Adeshina et al. [2] presented a similar
method with an impressive results using a Part
and Geometry models. This work differs from
our earlier work by demonstrating that Markov
Based Graph models can be used instead of
Parts and Geometry models to acheive the
same purpose and indeed better results. This
method is also more robust as its model build-
ing process require fewer number of images.
The method will prove very useful when the
number of available dataset is limited.

3 METHODS
3.1 Data Set

We have access to a database of radiographs
of the non-dominant hand of normally devel-
oping children being collated at the University
of Manchester ! for a different bone ageing
project. In this work, we used a subset of 142
digitized radiographs of normal children.

3.2 Construction of Markov graph shape
model

We performed initial experiments in construct-
ing sparse models capable of being used for
initialising global AAM for the localisation of

1. Special thanks to Prof Judith Adams for providing the
dataset

the bones of the hand in hand radiograph.
We used a Markov graph (local patch mod-
els) shape models.This involves representing an
image with a set of patches together with a
geometrical model of their relative positions.
The geometry is modeled with a global pose
and linear shape model. The local displace-
ments from the global model is modeled with
a Markov Random Field (MRF). Matching to a
new radiograph involves an alternating scheme
in which an MRF inference technique selects
the best candidate for each point, these are then
used to update the parameters of the global
pose and shape model. This scheme was made
robust by introducing different level of cascade
with increasing complexity.

This technique formulates the object match-
ing as a global shape alignment problem com-
bined with MRF-based local modeling. The
model can be represented by a set of N points,
such that X = {x; = (u;,v;)}. Given a query
image, I, the objective is to find the optimal set
X*, that maximises the posterior,

p(X|[T)ocp(I|X)p(X). 1)

The number of found patches for each x; can
be very large and combinatorially intractable.
As a result of this, we made assumptions of
conditional independence between found fea-
tures, this enables us approximate the joint
prior with a Markov Random Field (MRF). The
process reduces the complexity of the problem
so that an approximate solution, Y, can be
found efficiently. We can then regularise with
a global shape prior to push the approximate
solution towards the optimum X*.

The iterative procedure can be summarised
as follows:

e Initialise point locations, Xj using fixed

locations from the detector output.

e Fors=1toN

1) Select the best candidates,
Y, =argmaxyp(I|Y)p (Y | X;fkq)
An MRF Solver picks the best
combination of candidates by
minimising energy function G, the
dynamic programming solver was
used in the case.

G=X0(y)+aX(yiy;)
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where y;,y,; are patch candidates
associated with patches 7,j.a is a
parameter that weights the influ-
ence of the prior and likelihood
terms, ¢ (-) is an error function that
indicates the goodness of fit be-
tween a pair of candidates and 6 (-)
is an error function that indicates
the goodness of fit with the image
data.

2) Update points by regularising the
candidates by fitting a shape model
X; =argmaxx p (X | Yy)

The algorithm was implemented in a cascade
format, with two levels of 12 and 21 points.
The candidate points have to be initialised by
marking up a number of points on the train-
ing images. In this form, the model training
remains semi-manual as sparse landmarks are
required for each image.

3.3 Construction of Statistical Appearance
Models

Statistical appearance models (SAM) [5] were
generated by combining a model of shape vari-
ation with a model of texture variation. Each
radiograph was automatically annotated with
points around important structures. Statistical
models of shape and texture (intensities in the
reference frame) were constructed by applying
Principal Component Analysis (PCA) to the
resulting annotations, leading to linear models
of the form

x=%+Pb, g=g+P,b, )
where X is the mean shape, g is the mean
texture, P, P, are the main modes of shape and
texture variation and b,,b, are the shape and
texture model parameter vectors. Combining
the shape and texture models gives a combined
appearance model of the form

x=X+Qc g=g+QC 3)
where Q;, Q, are matrices describing the
modes of variation derived from the training
set and c is a combined vector of appearance
parameters controlling both shape and texture.

3.4 Active Appearance Model search

The AAM matching algorithm is outlined be-
low. There are two main components: a pa-
rameterized model of object appearance, and
an estimate of relationship between parameter
errors and image residuals [4].

The appearance model parameters, ¢, and
shape transformation parameters, t, define the
position of the model points in an image frame,
X, which gives the shape of the image patch
to be represented by the model. During the
matching we sample the pixels in the region
of the image, g;,, and project them to the tex-
ture model frame, g, = T '(g;,). The current
texture model is given by g,, = g + P,Q,c
The model, image difference in the normalized
texture frame is

r(p) = 8s—8m 4)

where p are the parameters of the of the model
pl = (c’|tT|u”). A scalar measure of difference
is the sum of squares of the elements of r,
E(p) = r’r. A first order Taylor expansion of
equation 4 gives

or

r(p+op) =r(p) + %51) (5)

where the i element of matrix g—; is 5;?
If our current residual is r, we intenci to
choose dp so as to minimize |r(p+dp)|> by
equating equation 5 to zero, we then get a Root

Mean Square solution as shown below:

or’ or\ " or”
op 813) Ip
®
It would be necessary to re-calculate 2% in
standard optimization exercise and this is com-
putationally expensive. It is however consid-
ered approximately fixed - the estimation can
be done from the training set. Numeric differ-
entiation can be used to estimate g—; displacing
each parameter systematically from the known
optimal value on typical images and computing
the average over a set. Residuals at displace-
ments of differing magnitudes measured - say
0.55D for each parameter and this is combined
with a Gaussian to smooth them. R is precalcu-

lated and used for subsequent searches [4]. The

op = —Rr(p) where R = (
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images used in calculating the partial residuals
can be examples from the training set or the
images generated using the appearance model.

3.5 Constrained active appearance models
(CAAM)

The AAM as a local search method depends on
an update matrix learned near correct solutions.
As a result, it depends upon adequate initial-
isation. Usually this initialisation is provided
by prior estimates of some of the shape points,
either manually, or through automatic methods
as discussed in preceding sections. There may
be some prior knowledge of the variances as-
sociated with these initialisation points. Cootes
et al. developed the Constrained AAM [7] to
incorporate such constraints.

Essentially the least squares minimisation of
the standard AAM is replaced by a maximum
a-posteriori (MAP) formulation, which seeks to
maximise the probability of the model given the
data which (by Bayes theorem) is proportional
to:

P(datalmodel) P(model) (7)

Assuming a uniform prior on the model
parameters. This can be equated to a least
squares formulation where Gaussian residuals
are not correlated and the variances are equal.
A Gaussian prior could be assumed on the
model parameters, and Cootes et al. showed
how the AAM update step can be reformulated
to incorporate this prior. In the rest of this sec-
tion we will be concentrating on incorporating
prior knowledge about constrained points. We
worked with a simplified version of [7] and
assumed a constant model prior [1].

The Jacobian of the residual can be repre-
sented as J (see section 3.4)

o
o

as a result equation 6 in section section 3.4
can be re-written as

J (8)

together with their covariance matrix Sy. Un-
known points can be represented by zeroes,
together with large upper bounds in Sy, and
effectively zeroes in Sx~'. Let d(p) = (X — Xj)
be a Vector of the displacements of the current
point positions from their prior positions. We
assume further that the prior point positions
are Gaussian distributed, and also that the
texture residuals are independently and iden-
tically distributed with variance 0,2 r is the
Vector of residuals. Then maximising the log-
arithm of the MAP is equivalent to minimising
(see section 3.4):
Ey(p) =0, *r'r+d"Sx'd (10)
By using a first order Taylor expansion simi-
lar to that used to derive the basic AAM update
equation, the parameter update is given by the
solution to the equation set:
Adép=-—a (11)
where, after defining the Jacobian of d w.r.t
p as K

A = (0,TT+K'Sx'K)
- 1 (12)
a = (ar 2J7r(p) + KTSx d)
and
K= od (13)
op
When  computing the prior point

displacement Jacobian K, it is necessary to take
into account the global pose transformation t
as well as the appearance model parameters c.
Cootes further developed the special case of
isotropic prior point positional variance with
zero off-diagonal terms, and when the pose
transformation S;(x) is a similarity transform
which scales by s. Let x, be the prior point
positions mapped into the model frame, so
xo = S, '(Xp), and let y = s(x — xo). Then
dTSX_ld = yTSX_ly.

R = |:JTJ:| _lJT (9) In this case:
— —29T T -1
Suppose we have prior estimates of the po- A= (JT T I+ K S;f Klm) (14)
sitions of some points in the image frame X, a = (Ur_QJTF(p) + K" Sx™ Y)
ISSN :2394-2231 http:/ /www.ijctjournal.org page 40
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(5Th?5 Jacobian K,
(5%’|53tf> and:

is the concatenation

-1
(g% _ —S(W_(X_XO)'<?’?7O’O>

(15)
The update equation can then be solved
using standard methods in linear algebra; for
example, since the matrix A is symmetric,
Cholesky decomposition can be used for speed
to invert A; but if that appears ill-conditioned,
then SVD can be used to robustly calculate an
inverse (in the least-squares sense).

4 EXPERIMENTS AND RESULTS

The first step in processing a new image is to
match a sparse model which is able to locate the
main joints. This was achieved using Markov
Graph Shape Models.

We perform a constrained fit with AAM on
the radiograph, using dense points as con-
straints. Cootes et al. [7] reported lower bound-
ary errors with higher number of constraint
points. For this reason we warped 330 points
using the points found by our Markov Graph
Shape model with a Thin Plate Spline (TPS) de-
formation field. The original AAM constrained
fit assumes equal variances for all points. We
however introduced a weighted fit. After the
initial AAM fit, we computed the Euclidean
points” error difference between the target
points and the best model fit while specifying
a maximum error threshold. We modified the
constraint weights based on how large the er-
rors are. When the errors are greater than the
threshold we allocate a weight of 0. This is
an infinite variance on such points, equivalent
to ignoring the constraints on such points and
allowing the formal model constraints to take
precedence.

Fitting a global model to these bones could
only get approximate positions of the bones.
This is because of the global model constraint
enforces global fidelity, to ensure shapes do
not assume implausible poses. We use a lo-
cal model to capture the extensive variability
which is inherent in the bones of the hand. 13
local models were used, corresponding to each

RUS complex, to further refine the location of
the bones.

4.1 Markov graph shape model experi-
ments

We used a subset of 142 radiographs for ex-
perimentation. We built a Markov graph shape
model of salient structure of the bones of the
hand using 72 images, while we tested the
models on previously unseen 70 images. 21
landmarks were manually annotated on each
of the 72 images. These 21 landmarks are a
subset of a 330 landmarks earlier put on the
72 training images. Typical landmarks on a
single image is shown in Figure 3a. A model
of two level of cascade was built with 12 and
21 points respectively. The model as shown in
Figure 3b was tested on the remaining 70 im-
ages. Preliminary experiments were performed
to evaluate the influence of the number of
cascade and the structure of MRF prior. We
evaluated the performance of a given image by
computing d (x}, z;) which is the mean distance
between the found point, x;, and its manually
labelled counterpart z;. To make the euclidean
error distance invariant to scale, it is normalised
with respect ti a reference distance, d,.r. This
reference distance was defined as the length
of the fifth metacarpal. The normalised scale
invariant median error m,. is given as;

1 d(x},z;)
= — A Y 1
Me = & XZ: by (16)

The sparse model and initial landmark points
are shown in figure 3a and 3b respectively. The
performance evaluation is shown in Figure 4.
We have applied the method of Tresadern et
al. [14] to acheive this results.

4.2 Constrained Active Appearance global
Model fitting experiments

We have applied the CAAM to Markov Graph
Shape model built by using the 21 found points
from the part based model to warp all 330
points (marked on a reference image) to the
incoming radiograph and then fit an AAM
with modified version of Constrained AAM fit
(refine with AAM) [7]. In this way we have
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a b

Fig. 3. (a) Hand radiograph images with land-
mark points, (b) A trained model.
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Fig. 4. Performance evaluation on 70 images.

two sets of dense annotations which identified
the position of the bones. The first is that from
using the 19 found points to propagate 330
points to all images in the set (with TPS). For
clarity we call this ‘Initial points from TPS
warp’. The second is the result of fitting Ap-
pearance Models using the propagated points
as constraints. Again for clarity we call this
‘After CAAM refinement’. This was done using
the global model of the entire hand. In theory
the result of the second should be better than
the first.

The table below shows the results of points
to point errors for a global model fit. These

errors were found by computing the point to
point errors between a set of 330 automatic
points and their manually annotated equivalent
as shown in table 1. This is also illustrated in
Figure 5.

MGSM Global Model Accuracy

Mean (mm) Median (mm)
Initial points from TPS warp 2.07+0.1 1.75
After CAAM refinement 1.19 £0.1 0.91
TABLE 1

Search error statistics. Point to point errors
(mm) of the global model fit using MGSM based
constraints with CAAM.

i
MGSM Model Manual pts - 1

Sparse pts -
MGSM (21)

Final Results

Fig. 5. Process flow for CAAM fit. From 21
automatically found points on 70 images, 330
manual points on a reference image, a TPS
warp of manual points to other images, a further
refine fit and final points’ result.

Figure 6a shows the result of initial point
from TPS warp and Figure 6b shows the result
after AAM refinement.

Fig. 6. (a) Qualitative result of initial point from
TPS warp on an image (b) Resulting points after
CAAM refinement.
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4.3 Local model fitting experiments

We extracted the 13 bone complexes which
have been proven sufficient for skeletal matu-
rity assessment as shown in Adeshina et al. [3].
Earlier clinical studies by Tanner et al. [1] also
confirm the findings. It must be noted that we
located all the bones of the hand, and only
report on the complexes that are relevant to our
work based on our earlier experiments.

The extracted bone complexes are from our
global CAAM fit, having recorded better results
when compared to a direct thin plate spline
propagation as shown in Table 1. We then
titted local models to each of the complexes
using the extracted points as constraints. Table
2 shows the result of points extracted without
a local AAM refinement and that with local
AAM refinement when compared with manual
ground truth annotation.

Having fit the AAMs to the bone complexes,
the shape, texture and appearance parameters
of the models are extracted for further analysis.
These parameters have been found to have a
linear correlation with skeletal maturity . Qual-
itative results of automatic points’ and refined
points” errors are shown in Figure 7. For clarity
we define ‘automatic warp points’ as dense
bone border points obtained from a TPS warp
of the 21 MGSM points. While ‘refined with
CAAM’ are points after a CAAM have been
applied.

Automatic Warp points Refine AAM points
Mean Median Mean Median
Ulna 1.1440.03 1.15 1.02+0.05 0.80
Radius 1.04 £0.03 1.02 1.03£0.02 0.86
pphab 0.84 +0.02 0.79 1.774+0.61 0.64
ppha3 0.83 +0.03 0.79 1.60 £0.34 0.90
pphal 0.98 +0.12 0.71 0.92+0.11 0.64
mphab 0.84 +0.04 0.75 0.65+0.05 0.46
mpha3 0.86 +0.04 0.80 0.56 +0.02 0.44
mcarpal5 | 0.90 +0.02 0.86 0.924-0.06 0.73
mcarpal3 | 0.94 +0.03 0.86 1.03 £0.06 0.84
mcarpall | 1.06 +0.02 1.02 0.904-0.04 0.85
dphab 0.85 +0.03 0.73 0.62 +0.05 0.49
dpha3 0.79 +0.02 0.78 0.41+0.02 0.56
dphal 1.11 £0.26 0.87 1.16+0.29 0.50
[ Average [ 093£0.05 | 085 [ 097+0.13 [ 0.67 |
TABLE 2

Search error statistics. Point to point errors
(mm) of local models without and with
refinement with CAAM

Fig. 7. Qualitative results of final points location
for mcarpal5, ppha5. Column (a) with automatic
warp and (b) with CAAM refinement

5 DiscusSION AND CONCLUSIONS

This work presents a method to automatically
fit a model to a radiograph with some human
intervention. We dealt with the issues of AAM
initialisation by using Markov Graph Shape
models (MGSM). We formulated the necessary
framework to ensure that an accurate localisa-
tion of the bones is achieved.

We had used the initial points, found by the
Markov Graph Shape model to propagate a
detailed annotation on one image (330 points)
and compared the results of this with a CAAM
global model fit as shown in Table 1. The
improved result shows that the use of a CAAM
was justified. We acheive an overall median
of about 0.67mm which is a maginal increase
over our earlier work which used a Part and
Geometry model [2].

A comparable work to this aspect of locali-
sation of the outline of the bones in literature
is the work of Luis-Garcia et al [11] where an
adaptive snake was used to find the contours
of the hand. An average success rate of 73.9%
was reported. Giordano et al [8] reported 86%
success rate for EMROI extraction. The works
of Giordano and Pietka et al examine a reduced
number of bone complexes while our work and
Luis-Garcia et al’s considered the entire bones
of the hand. It is difficult to compare results
because of uncertainty about the metric used
(i.e.N% success in the cited papers, a numerical
error in this work).
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We achieved a median error of 0.85mm with
automatically warped points without CAAM
refinement and a median error of 0.67mm
with CAAM refinement. We achieved a bones’
matching accuracy of 0.67mm and this is com-
parable to what is obtained in the litera-
ture [11].

Cootes et al. [6] and Lindner et al. [10]
in their work with Random Forests and Con-
strained Local Models reported a mean point
error of ‘less than 1mm 90% of the time. The
requirement of several hundreds of images is a
drawback (they used 200 for training and 200
for testing). Though their results are excellent
as a generic framework for several types of
datasets (and we hope to further explore its
application to skeletal maturity), our results are
comparable for this dataset.

The closest work to our is that of Adeshina
et al. [2] where a Part and Geometry model
was used to initialize a global of Radio-
graphic images. They achieved a median error
of 0.87mm with automatically warped points
without CAAM refinement and a median error
of 0.71mm with CAAM refinement. A bones’
matching accuracy of 0.71mm. We achieved
a median error of 0.85mm with automatically
warped points without CAAM refinement and
a median error of 0.67mm with CAAM refine-
ment. We achieved a bones” matching accuracy
of 0.67mm This is just a marginally better result.
Whereas Adeshina et al. [2] model building
process require very sparse annotation of just a
single image to build the Parts and Geometry
model, in this method we are required to man-
ually sparsely annotate all the images require
for building the MGSM models. However the
advantage of this work is that, as a result of a
more supervised learning’ the method require
a comparatively lower number of images for
building a robust MGSM models.
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