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------------------------------------------------************************----------------------------------------
Abstract:   To improve the performance of software engineering processes and imperative to identify and 
eliminate rework that could have been avoided. While security or its absence is a property of running 
software many aspects of software requirements, design, implementation and testing contribute to the 
presence or absence of security in the finished product. Software is continues to function correctly under 
malicious attack. Verification and validation (V&V) techniques like security testing, code review and formal 
verification are becoming effective means to reduce the number of post release vulnerabilities in software 
products. The aim of reduce the dimensionality, removing irrelevant data, increasing learning accuracy and 
improving result comprehensibility. The feature subset selection algorithm and support vector machine as 
involves identifying a subset of the most useful features that produces compatible results as the original 
entire set of features. A feature subset selection algorithm may be evaluated from both the efficiency and 
effectiveness points of view. A feature subset selection algorithm is used for software vulnerabilities such as 
verification and validation. The support vector machines are supervised learning models with associated 
learning algorithms that analyze data and anomaly detection, predict the vulnerabilities in software. The 
used for classification and regression analysis to result. 
 Keywords— Quality of Software Product, Malicious Attack, Measurement Feature, Testability, 
anomaly Detection   
------------------------------------------------************************----------------------------------------
I. INTRODUCTION 

Software engineering is about the creation of 
large pieces of software that consist of thousands of lines 
of code and involve many person months of human effort. 
One of the attractions of software engineering is that there 
is no one single best method for doing it, but instead a 
whole variety of different approaches. Consequently the 
software engineer needs knowledge of many different 
techniques and algorithm. This diversity is one of the 
delights of software engineering and this by presenting 
the range of current techniques and algorithm. Cycle and 
quality promise. Design-for-testability is a very important 
issue in software engineering. 

In traditional V&V the system provides the 
context under which the software will be evaluated and 

V&V activities occur during all phases of the system 
development lifecycle. The transition to a product line 
approach to development removes the individual system 
as the context for evaluation and introduces activities that 
are not directly related to a specific system. This 
dissertation describes the extension of V&V from an 
individual application system to a product line of systems 
that are developed within an architecture-based software 
engineering environment. This dissertation describes the 
extension of V&V from an individual application system to 
a product line of systems that are developed within an 
architecture-based software engineering environment. 
This seeks to ensure that the software is reliable. One of 
the all-time greats of software engineering. A piece of 
software that meets its specification is of limited use if it 
crashes frequently. Verification is concerned with the 
developers view the internal implementation of the 
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system. Two types of verification are unit testing and 
system testing. In unit testing, each module   of the 
software is tested in isolation. The inputs to unit testing 
are:  

       1. The unit specification        2. The unit code        3. A list of expected test results. The products of unit testing are the test results. 
Unit testing verifies that the behavior of the coding 
conforms to its unit specification. In system testing or 
integration testing, the modules are linked together and 
the complete system tested. The inputs to system testing 
are the system specification and the code for the complete 
system. The outcome of system testing is the completed, 
tested software, verifying that the system meets its 
specification. 

A single security problem can cause severe 
damage to an organization by not only incurring large 
costs late fixes but by losing invaluable assets and 
credibility and leading to legal issues. Annual world-wide 
losses caused from cyber attacks have been reported for. 
The organizations must prioritize vulnerability detection 
efforts and prevent vulnerabilities from being injected. 
One way of identifying the most vulnerable code locations 
is to use characteristics of the software product itself. 
Perhaps complex code is more likely to be vulnerable than 
simple code. 
II. RELATED WORK 

Many factors are believed to increase the 
vulnerability of software system. The more widely 
deployed or popular is a software system the more likely it 
is to be attacked. Early identification of defects has been a 
widely investigated topic in software engineering 
research. Early identification of software vulnerabilities 
can help mitigate these attacks to a large degree by 
focusing better security verification efforts in these 
components. Predicting vulnerabilities is complicated by 
the fact that vulnerabilities are most often, few in number 
and introduce significant bias by creating a sparse dataset 
in the population. 

To improve the security of software, we must 
therefore not only look for general problem patterns but 
also learn specific patterns that apply only to the software 
at hand. In a investigation of the Mozilla vulnerability 
history. We surprisingly found that components that had a 
single vulnerability in the past were generally not likely to 
have further vulnerabilities. However components that 
had similar imports or function calls were likely to be 
vulnerable. Based on this observation we were able to 
extend Vulture by a simple predictor that correctly 

predicts about half of all vulnerable components, and 
about two thirds of all predictions are correct. This allows 
developers and project managers to focus their efforts 
where it is needed most “We should look at XPInstall 
Manager because it is likely to contain yet unknown 
vulnerabilities.” 

 
2.1 General Over view  

The mining of textual for many important 
activities in software engineering tracing of requirements 
retrieval of components from a repository location of 
manage text for an area of question etc. Many such 
activities leave the final word to the analyst have the 
relevant items been retrieved. Other items that should 
have been retrieved and analysts become a part of the text 
mining process. The decisions on the relevance of 
retrieved elements impact the final outcome of the 
activity. 
 
Text Mining 
 In the field of Software Engineering as two 
distinct and well-defined ways in text mining information 
retrieval and machine learning methods are applied. The 
first direction is the exploratory study of existing artifacts 
of software development.  The document hierarchies, code 
repositories, bug report databases, etc., The purpose of 
learning new “interesting” information about the 
underlying patterns. Research of this sort is tolerant to the 
varying accuracy of text mining methods. The certain 
subtleties of some datasets might be missed the most 
general are most likely be discovered in analysis. 
 
Text Mining and Vulnerabilities  

A few approaches are related to work as the text 
mining techniques and treat all or parts of the source code 
as text. However most work focuses on defect prediction 
and not on vulnerability prediction the topic of work. Used 
text features and spam filtering algorithms to predict 
defects in software analyzed the source code of the 
changes as text in order to build a predictor to determine 
whether the introduced changes are buggy. The 
determined that the use of K nearest neighbors (kNN) 
technique results in a significant trade-off in terms of 
precision. 
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2.2 Machine Learning   
Machine learning deals with the issue of how to 

build programs that improve their performance at some 
task through experience. Machine learning algorithms 
have proven to be of great practical value in a variety of 
application domains. Not surprisingly the field of software 
engineering turns out to be a fertile ground where many 
software development and maintenance tasks could be 
formulated as learning problems and approached in terms 
of learning algorithms. The deals with the subject of 
applying machine learning methods to be engineering.  
The first provide the characteristics and applicability of 
some frequently utilized machine learning algorithms. 
Then summarize and analyze the existing work and 
discuss some general issues. Finally offer some guidelines 
on applying machine learning methods to software 
engineering tasks. Machine learning algorithms can out 
how to perform important tasks by generalizing from 
examples. This is of- ten feasible and cost-effective manual 
programming is not. As more data becomes available, 
more ambitious problems can be tackled. 

 
Representation: 

A classifier must be represented in some formal 
language that the computer can handle. Conversely 
choosing a representation for a learner is amount to 
choosing the set of classifiers that it can possibly learn. 
This set is called the hypothesis space of the learner. If a 
classifier is not in the hypothesis space, it cannot be 
learned. 
 
Evaluation  

An evaluation function (also called objective 
function or scoring function) is needed to distinguish good 
classifiers from bad ones. The evaluation function used 
internally by the algorithm may differ from the external 
one that we want the classifier to optimize for ease of 
optimization (see below) and due to the issues discussed. 
A method to search among the classifiers in the language 
for the highest-scoring one. The choice of optimization 
technique is key to the efficiency of the learner, and also 
helps determine the classifier produced if the evaluation 
function has more than one optimum. It is common for 
new learners to start out using off-the-shelf optimizers are 
later replaced by custom designed ones 
III. PREVIOUS IMPLEMENTATIONS  
 The identified all faults in the software based on 
the failures that have surfaced during testing. Additionally 

the customer reported failures do not complete the 
identification of all non-security faults as predictors or all 
security faults and failures as dependent variables. 
Moreover the testing effort may not have been equal for all 
components and thus components with fewer failures may 
appear more reliable or secure. Therefore analyses are 
based on incomplete data. The Type I (48%) and Type II 
(43%) error rates are high indicating that the model is not 
precise  if applied at Cisco could lead to effort wasted on 
low security risk components while some attack-prone 
components are never found. Additional metrics in a 
statistical model may help identify attack-prone 
components with lower Type I and Type II error rates. 
Furthermore there are few security data making statistical 
analyses difficult. The model presented one industrial 
software system and will not necessarily yield the same 
results on different software systems.  
 The starting point in study is the source code 
(including comments) of a software application that 
consists of a number of Java files. Each Java file is 
tokenized into a vector of terms (text processing 
terminology) and the frequency of each term in the file is 
counted. The frequencies are not normalized to the length 
of the file. This procedure has been attempted in early 
experimentation and caused a deterioration of 
performance. The routine used for tokenization uses a set 
of delimiters that includes white spaces, Java punctuation 
characters (such as comma and colon) and both 
mathematical and logical operators. The routine is 
implemented is available. 
Listing 1. Source code in file HelloWorldApp.java 
/* The HelloWorldApp class prints ’’Hello World!’’ */ 
class HelloWorldApp  
   { 
 Public static void main (String [] args)  
 { 
 System.out.println (’’Hello World!’’); 
 } 
} 
 For instance Listing 1 would be tokenized and 
transformed into the feature vector of  Listing 2, where 
each monogram is followed by a count. Listing 2. Feature 
vector for file HelloWorldApp.java args: 1, class: 2, Hello: 
2, HelloWorldApp: 2, main: 1, out: 1, println: 1, prints: 
1,public: 1, static: 1, String: 1, System: 1,The: 1, void: 1, 
World: 2  From a computational perspective, creating the 
feature vectors for one version of a large application took 
an average of 40 seconds. 
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IV. SYSTEM IMPLEMETNATION  
Many feature subset selection (FSS) algorithms 

have been proposed but not all of them are appropriate for 
a given feature selection problem. At the same time is 
rarely a good way to choose appropriate FSS algorithms 
for the problem at hand. FSS algorithm automatic 
recommendation is very important and practically useful. 
A meta learning based FSS algorithm automatic 
recommendation method is presented. The proposed 
method first identifies the data sets that are most similar 
to the one at hand by the k-nearest neighbor classification 
algorithm and the distances among these data sets are 
calculated based on the commonly-used data set 
characteristics. It ranks all the candidate FSS algorithms 
according to their performance on these similar data sets 
and chooses the algorithms with best performance as the 
appropriate ones. The performance of the candidate FSS 
algorithms is evaluated by a multi-criteria metric that 
takes into account not only the classification accuracy over 
the selected features but also the runtime of feature 
selection and the number of selected features. The 
proposed recommendation method is extensively tested 
on 50 real world data sets with 22 well-known and 
frequently-used different FSS algorithms for five 
representative classifiers. The results show the 
effectiveness of our proposed FSS algorithm 
recommendation method. 

 
Fig1.1: System Architecture 

 
 
4.1 Feature Subset Selection 

Feature subset selection (FSS) plays an important 
role in the fields of data mining and machine learning. A 
good FSS algorithm can effectively remove irrelevant and 
redundant features and take into account feature 
interaction. This not only leads up to an insight 
understanding of the data but also improves the 
performance of a learner by enhancing the generalization 

capacity and the interpretability of the learning model 
Although a large number of FSS algorithms have been 
proposed. There is no single algorithm which performs 
uniformly well on all feature selection problems. 
Experiments have confirmed that there could exist 
significant differences of performance (e.g., classification 
accuracy) among different FSS algorithms over a given 
data set. That means for a given data set some FSS 
algorithms outperform others. 

 
Assertion Density 

The FSS algorithm recommendation method is 
based on the relationship between the performance of FSS 
algorithms and the meta-features of data sets. The 
recommendation can be viewed as a data mining problem. 
The performance of FSS algorithms and the meta-features 
are the target function and the input variables 
respectively. Due to the ubiquity of “Garbage In, Garbage 
Out” (Lee, Lu, Ling, & Ko) in the field of data mining the 
selection of the meta-features is crucial for our proposed 
FSS recommendation method. The meta-features are 
measures that are extracted from data sets and can be 
used to uniformly characterize different data sets the 
underlying properties are reflected. The meta-features 
should be not only conveniently and efficiently calculated 
but also related to the performance of machine learning 
algorithms. 
Meta-Knowledge Database Construction 

The meta-knowledge database is constructed by 
the following three steps. Firstly the meta-features are 
extracted from each historical data set by the module 
“Meta features extraction”. Then each candidate FSS 
algorithm is applied on each historical data set. The 
classification accuracy. The runtime of feature selection 
and the number of selected features are recorded and the 
corresponding value of the performance metric EARR is 
calculated. This is accomplished by the module 
“Performance metric calculation”.  Finally for each data 
set.  The tuple is composed of the meta-features and the 
values of the performance metric EARR for all the 
candidate FSS algorithms is obtained and added into the 
knowledge database. 
 
 
 
4.2 FSS Algorithm Recommendation 

Based on the introduction of the first part “Meta-
knowledge Database Construction” presented the learning 
target of the meta-knowledge data is a set of EARR values 
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instead of an appropriate FSS algorithm. It has been 
demonstrated that the researchers usually resort to the 
instance-based or k-NN (nearest neighbors) methods or 
their variations for algorithm recommendation.  The k-NN 
based FSS algorithm recommendation procedure is 
proposed. The recommending FSS algorithms for a new 
data set firstly the meta-features of this data set are 
extracted. The distance between the new data set and each 
historical data set is calculated according to the meta-
features.  The k nearest data sets are identified and the 
EARR values of the candidate FSS algorithms on these k 
data sets are retrieved from the meta-knowledge 
database. Finally  all the candidate FSS algorithms are 
ranked according to these EARR values the algorithm with 
the highest EARR achieves the top rank the one with the 
second highest EARR gets second rank and so forth  and 
the top r algorithms are recommended. 
 
4.3Support Vector Machine  

Support vector machines (SVMs) method for 
binary classification. Traditional training algorithms for 
SVMs such as chunking and SMO scale super linearly with 
the number of   infeasible for large training sets. Since it 
has been commonly observed that dataset sizes and 
development of training algorithms. The survey work on 
SVM training methods that target this large-scale learning 
regime. Most of these algorithms use either (1) variants of 
primal stochastic gradient descent (SGD) or (2) quadratic 
programming in the dual. For (1) The discuss why SGD 
generalizes well even though it is poor at optimization  
and describe algorithms such as Pegasus and FOLOS that 
extend basic SGD to quickly solve the SVM problem. For 
(2) the survey recent methods such as dual coordinate-
descent and BMRM and proven competitive with the SGD 
based solvers.  the training set size increase  and explain  
SGD-based algorithms are able to satisfy. 
4.4 Comparison of Machine Learning Technique 
and Feature Subset Selection Algorithm 

The performed a large scale studies by mining 
more than 182 open source android applications to check 
the most vulnerability. The focus on the first release of 
each application show that it is possible to build a 
classifier of good quality that predicts whether a file is 
vulnerable using term frequencies. New projects can be 
checked against these properties to detect anomalies. The 
authors validated their approach based on a sample of 182 
projects where 90 percent of the top-ranked anomalies 
uncovered actual defects. The approach is based on bag of 

words and achieves a mean accuracy of 89 percent mean, 
recall of 89-90 percent, mean fall-out of 30-35 percent. 

 
Table 1.1: Machine Learning Technique 

 
Table 1.2: Feature Subset Selection Algorithm and 

Support Vector Machine 
EVALUATION RESULT:  
As main contribution explores the value of a technique 
backed by text mining and machine learning and applies 
the technique to a relevant class of applications. The 
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ensuring a potentially high impact in case of success. The 
approach presented here is applied to the problem of 
predicting software vulnerabilities. Analyzed 20 “apps” for 
the Android OS platform and followed their evolution over 
time. The total analyzed 182 releases spanning. The above 
-mentioned text mining technique in a series of three 
experiments of increasing complexity. In the first 
experiment the focus on the first release of each 
application. The show that it is possible to build a classifier 
of good quality that predicts whether a file is vulnerable 
using term frequencies.  

 
Fig.1.2: Comparison between value for machine 

learning & feature subset selection algorithm 

 
Fig.1.3 Value of Machine Learning and Feature Subset 

Selection Algorithm 
 

 
Fig.1.3:Comparison between Times for Machine 

Learning Technique and Feature Subset Selection 
Algorithm 

 
Fig.1.4: Time of Machine Learning and Feature Subset 

Selection Algorithm 
 
CONCLUSION  

The presented empirical evidence that features 
correlate with vulnerabilities. Based on this empirical 
evidence as have introduced vulnerable that predicts 
vulnerable components by looking at their features. It is 
fast and reasonably accurate. It analyzes a project as 
complex as Mozilla in about half an hour and correctly 
identifies half of the vulnerable components. Two thirds of 
its predictions are correct. The contributions of the 
present paper are as follows. A technique for mapping past 
vulnerabilities by mining and combining vulnerability 
databases with version archives. Empirical evidence that 
contradicts popular wisdom saying that vulnerable 
components will generally have more vulnerabilities in the 
future. Evidence that features correlate with 
vulnerabilities .A tool that learns from the locations of past 
vulnerabilities to predict future ones with reasonable 
accuracy. An approach for identifying vulnerabilities that 
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automatically adapts to specific projects and products. A 
predictor for vulnerabilities that only needs a set of 
suitable features and thus can be applied before the 
component is fully implemented.. 
FUTURE WORK: 

The empirically features are good predictors for 
vulnerabilities. The believe that this is so because features 
characterize a component’s domain. The type of service 
that it uses or implements and it is really the domain that 
determines a component’s vulnerability. The plan to test 
this hypothesis by studies across multiple systems in 
similar domains. 
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