
International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 60

Software Susceptibility Forecast Using Attribute Subset Collection and Support Vector Machine
1Ms. Asma Banu R., 2Mrs. Shoba S. A.,

1 M.Phil Research Scholar, PG & Research Department of Computer Science & Information Technology Arcot Sri
Mahalakshmi Women’s College, Villapakkam, Vellore, Tamil Nadu, India. 2Assistant Professor, HOD of PG & Research Department of Computer Science & Information Technology Arcot Sri
Mahalakshmi Women’s College, Villapakkam, Vellore, Tamil Nadu, India .

--************************--
Abstract: To improve the performance of software engineering processes and imperative to identify and
eliminate rework that could have been avoided. While security or its absence is a property of running
software many aspects of software requirements, design, implementation and testing contribute to the
presence or absence of security in the finished product. Software is continues to function correctly under
malicious attack. Verification and validation (V&V) techniques like security testing, code review and formal
verification are becoming effective means to reduce the number of post release vulnerabilities in software
products. The aim of reduce the dimensionality, removing irrelevant data, increasing learning accuracy and
improving result comprehensibility. The feature subset selection algorithm and support vector machine as
involves identifying a subset of the most useful features that produces compatible results as the original
entire set of features. A feature subset selection algorithm may be evaluated from both the efficiency and
effectiveness points of view. A feature subset selection algorithm is used for software vulnerabilities such as
verification and validation. The support vector machines are supervised learning models with associated
learning algorithms that analyze data and anomaly detection, predict the vulnerabilities in software. The
used for classification and regression analysis to result.
 Keywords— Quality of Software Product, Malicious Attack, Measurement Feature, Testability,
anomaly Detection
--************************--
I. INTRODUCTION

Software engineering is about the creation of
large pieces of software that consist of thousands of lines
of code and involve many person months of human effort.
One of the attractions of software engineering is that there
is no one single best method for doing it, but instead a
whole variety of different approaches. Consequently the
software engineer needs knowledge of many different
techniques and algorithm. This diversity is one of the
delights of software engineering and this by presenting
the range of current techniques and algorithm. Cycle and
quality promise. Design-for-testability is a very important
issue in software engineering.

In traditional V&V the system provides the
context under which the software will be evaluated and

V&V activities occur during all phases of the system
development lifecycle. The transition to a product line
approach to development removes the individual system
as the context for evaluation and introduces activities that
are not directly related to a specific system. This
dissertation describes the extension of V&V from an
individual application system to a product line of systems
that are developed within an architecture-based software
engineering environment. This dissertation describes the
extension of V&V from an individual application system to
a product line of systems that are developed within an
architecture-based software engineering environment.
This seeks to ensure that the software is reliable. One of
the all-time greats of software engineering. A piece of
software that meets its specification is of limited use if it
crashes frequently. Verification is concerned with the
developers view the internal implementation of the

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 61

system. Two types of verification are unit testing and
system testing. In unit testing, each module of the
software is tested in isolation. The inputs to unit testing
are:

 1. The unit specification 2. The unit code 3. A list of expected test results. The products of unit testing are the test results.
Unit testing verifies that the behavior of the coding
conforms to its unit specification. In system testing or
integration testing, the modules are linked together and
the complete system tested. The inputs to system testing
are the system specification and the code for the complete
system. The outcome of system testing is the completed,
tested software, verifying that the system meets its
specification.

A single security problem can cause severe
damage to an organization by not only incurring large
costs late fixes but by losing invaluable assets and
credibility and leading to legal issues. Annual world-wide
losses caused from cyber attacks have been reported for.
The organizations must prioritize vulnerability detection
efforts and prevent vulnerabilities from being injected.
One way of identifying the most vulnerable code locations
is to use characteristics of the software product itself.
Perhaps complex code is more likely to be vulnerable than
simple code.
II. RELATED WORK

Many factors are believed to increase the
vulnerability of software system. The more widely
deployed or popular is a software system the more likely it
is to be attacked. Early identification of defects has been a
widely investigated topic in software engineering
research. Early identification of software vulnerabilities
can help mitigate these attacks to a large degree by
focusing better security verification efforts in these
components. Predicting vulnerabilities is complicated by
the fact that vulnerabilities are most often, few in number
and introduce significant bias by creating a sparse dataset
in the population.

To improve the security of software, we must
therefore not only look for general problem patterns but
also learn specific patterns that apply only to the software
at hand. In a investigation of the Mozilla vulnerability
history. We surprisingly found that components that had a
single vulnerability in the past were generally not likely to
have further vulnerabilities. However components that
had similar imports or function calls were likely to be
vulnerable. Based on this observation we were able to
extend Vulture by a simple predictor that correctly

predicts about half of all vulnerable components, and
about two thirds of all predictions are correct. This allows
developers and project managers to focus their efforts
where it is needed most “We should look at XPInstall
Manager because it is likely to contain yet unknown
vulnerabilities.”

2.1 General Over view

The mining of textual for many important
activities in software engineering tracing of requirements
retrieval of components from a repository location of
manage text for an area of question etc. Many such
activities leave the final word to the analyst have the
relevant items been retrieved. Other items that should
have been retrieved and analysts become a part of the text
mining process. The decisions on the relevance of
retrieved elements impact the final outcome of the
activity.

Text Mining
 In the field of Software Engineering as two
distinct and well-defined ways in text mining information
retrieval and machine learning methods are applied. The
first direction is the exploratory study of existing artifacts
of software development. The document hierarchies, code
repositories, bug report databases, etc., The purpose of
learning new “interesting” information about the
underlying patterns. Research of this sort is tolerant to the
varying accuracy of text mining methods. The certain
subtleties of some datasets might be missed the most
general are most likely be discovered in analysis.

Text Mining and Vulnerabilities

A few approaches are related to work as the text
mining techniques and treat all or parts of the source code
as text. However most work focuses on defect prediction
and not on vulnerability prediction the topic of work. Used
text features and spam filtering algorithms to predict
defects in software analyzed the source code of the
changes as text in order to build a predictor to determine
whether the introduced changes are buggy. The
determined that the use of K nearest neighbors (kNN)
technique results in a significant trade-off in terms of
precision.

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 62

2.2 Machine Learning
Machine learning deals with the issue of how to

build programs that improve their performance at some
task through experience. Machine learning algorithms
have proven to be of great practical value in a variety of
application domains. Not surprisingly the field of software
engineering turns out to be a fertile ground where many
software development and maintenance tasks could be
formulated as learning problems and approached in terms
of learning algorithms. The deals with the subject of
applying machine learning methods to be engineering.
The first provide the characteristics and applicability of
some frequently utilized machine learning algorithms.
Then summarize and analyze the existing work and
discuss some general issues. Finally offer some guidelines
on applying machine learning methods to software
engineering tasks. Machine learning algorithms can out
how to perform important tasks by generalizing from
examples. This is of- ten feasible and cost-effective manual
programming is not. As more data becomes available,
more ambitious problems can be tackled.

Representation:

A classifier must be represented in some formal
language that the computer can handle. Conversely
choosing a representation for a learner is amount to
choosing the set of classifiers that it can possibly learn.
This set is called the hypothesis space of the learner. If a
classifier is not in the hypothesis space, it cannot be
learned.

Evaluation

An evaluation function (also called objective
function or scoring function) is needed to distinguish good
classifiers from bad ones. The evaluation function used
internally by the algorithm may differ from the external
one that we want the classifier to optimize for ease of
optimization (see below) and due to the issues discussed.
A method to search among the classifiers in the language
for the highest-scoring one. The choice of optimization
technique is key to the efficiency of the learner, and also
helps determine the classifier produced if the evaluation
function has more than one optimum. It is common for
new learners to start out using off-the-shelf optimizers are
later replaced by custom designed ones
III. PREVIOUS IMPLEMENTATIONS
 The identified all faults in the software based on
the failures that have surfaced during testing. Additionally

the customer reported failures do not complete the
identification of all non-security faults as predictors or all
security faults and failures as dependent variables.
Moreover the testing effort may not have been equal for all
components and thus components with fewer failures may
appear more reliable or secure. Therefore analyses are
based on incomplete data. The Type I (48%) and Type II
(43%) error rates are high indicating that the model is not
precise if applied at Cisco could lead to effort wasted on
low security risk components while some attack-prone
components are never found. Additional metrics in a
statistical model may help identify attack-prone
components with lower Type I and Type II error rates.
Furthermore there are few security data making statistical
analyses difficult. The model presented one industrial
software system and will not necessarily yield the same
results on different software systems.
 The starting point in study is the source code
(including comments) of a software application that
consists of a number of Java files. Each Java file is
tokenized into a vector of terms (text processing
terminology) and the frequency of each term in the file is
counted. The frequencies are not normalized to the length
of the file. This procedure has been attempted in early
experimentation and caused a deterioration of
performance. The routine used for tokenization uses a set
of delimiters that includes white spaces, Java punctuation
characters (such as comma and colon) and both
mathematical and logical operators. The routine is
implemented is available.
Listing 1. Source code in file HelloWorldApp.java
/* The HelloWorldApp class prints ’’Hello World!’’ */
class HelloWorldApp
 {
 Public static void main (String [] args)
 {
 System.out.println (’’Hello World!’’);
 }
}
 For instance Listing 1 would be tokenized and
transformed into the feature vector of Listing 2, where
each monogram is followed by a count. Listing 2. Feature
vector for file HelloWorldApp.java args: 1, class: 2, Hello:
2, HelloWorldApp: 2, main: 1, out: 1, println: 1, prints:
1,public: 1, static: 1, String: 1, System: 1,The: 1, void: 1,
World: 2 From a computational perspective, creating the
feature vectors for one version of a large application took
an average of 40 seconds.

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 63

IV. SYSTEM IMPLEMETNATION
Many feature subset selection (FSS) algorithms

have been proposed but not all of them are appropriate for
a given feature selection problem. At the same time is
rarely a good way to choose appropriate FSS algorithms
for the problem at hand. FSS algorithm automatic
recommendation is very important and practically useful.
A meta learning based FSS algorithm automatic
recommendation method is presented. The proposed
method first identifies the data sets that are most similar
to the one at hand by the k-nearest neighbor classification
algorithm and the distances among these data sets are
calculated based on the commonly-used data set
characteristics. It ranks all the candidate FSS algorithms
according to their performance on these similar data sets
and chooses the algorithms with best performance as the
appropriate ones. The performance of the candidate FSS
algorithms is evaluated by a multi-criteria metric that
takes into account not only the classification accuracy over
the selected features but also the runtime of feature
selection and the number of selected features. The
proposed recommendation method is extensively tested
on 50 real world data sets with 22 well-known and
frequently-used different FSS algorithms for five
representative classifiers. The results show the
effectiveness of our proposed FSS algorithm
recommendation method.

Fig1.1: System Architecture

4.1 Feature Subset Selection

Feature subset selection (FSS) plays an important
role in the fields of data mining and machine learning. A
good FSS algorithm can effectively remove irrelevant and
redundant features and take into account feature
interaction. This not only leads up to an insight
understanding of the data but also improves the
performance of a learner by enhancing the generalization

capacity and the interpretability of the learning model
Although a large number of FSS algorithms have been
proposed. There is no single algorithm which performs
uniformly well on all feature selection problems.
Experiments have confirmed that there could exist
significant differences of performance (e.g., classification
accuracy) among different FSS algorithms over a given
data set. That means for a given data set some FSS
algorithms outperform others.

Assertion Density

The FSS algorithm recommendation method is
based on the relationship between the performance of FSS
algorithms and the meta-features of data sets. The
recommendation can be viewed as a data mining problem.
The performance of FSS algorithms and the meta-features
are the target function and the input variables
respectively. Due to the ubiquity of “Garbage In, Garbage
Out” (Lee, Lu, Ling, & Ko) in the field of data mining the
selection of the meta-features is crucial for our proposed
FSS recommendation method. The meta-features are
measures that are extracted from data sets and can be
used to uniformly characterize different data sets the
underlying properties are reflected. The meta-features
should be not only conveniently and efficiently calculated
but also related to the performance of machine learning
algorithms.
Meta-Knowledge Database Construction

The meta-knowledge database is constructed by
the following three steps. Firstly the meta-features are
extracted from each historical data set by the module
“Meta features extraction”. Then each candidate FSS
algorithm is applied on each historical data set. The
classification accuracy. The runtime of feature selection
and the number of selected features are recorded and the
corresponding value of the performance metric EARR is
calculated. This is accomplished by the module
“Performance metric calculation”. Finally for each data
set. The tuple is composed of the meta-features and the
values of the performance metric EARR for all the
candidate FSS algorithms is obtained and added into the
knowledge database.

4.2 FSS Algorithm Recommendation

Based on the introduction of the first part “Meta-
knowledge Database Construction” presented the learning
target of the meta-knowledge data is a set of EARR values

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 64

instead of an appropriate FSS algorithm. It has been
demonstrated that the researchers usually resort to the
instance-based or k-NN (nearest neighbors) methods or
their variations for algorithm recommendation. The k-NN
based FSS algorithm recommendation procedure is
proposed. The recommending FSS algorithms for a new
data set firstly the meta-features of this data set are
extracted. The distance between the new data set and each
historical data set is calculated according to the meta-
features. The k nearest data sets are identified and the
EARR values of the candidate FSS algorithms on these k
data sets are retrieved from the meta-knowledge
database. Finally all the candidate FSS algorithms are
ranked according to these EARR values the algorithm with
the highest EARR achieves the top rank the one with the
second highest EARR gets second rank and so forth and
the top r algorithms are recommended.

4.3Support Vector Machine

Support vector machines (SVMs) method for
binary classification. Traditional training algorithms for
SVMs such as chunking and SMO scale super linearly with
the number of infeasible for large training sets. Since it
has been commonly observed that dataset sizes and
development of training algorithms. The survey work on
SVM training methods that target this large-scale learning
regime. Most of these algorithms use either (1) variants of
primal stochastic gradient descent (SGD) or (2) quadratic
programming in the dual. For (1) The discuss why SGD
generalizes well even though it is poor at optimization
and describe algorithms such as Pegasus and FOLOS that
extend basic SGD to quickly solve the SVM problem. For
(2) the survey recent methods such as dual coordinate-
descent and BMRM and proven competitive with the SGD
based solvers. the training set size increase and explain
SGD-based algorithms are able to satisfy.
4.4 Comparison of Machine Learning Technique
and Feature Subset Selection Algorithm

The performed a large scale studies by mining
more than 182 open source android applications to check
the most vulnerability. The focus on the first release of
each application show that it is possible to build a
classifier of good quality that predicts whether a file is
vulnerable using term frequencies. New projects can be
checked against these properties to detect anomalies. The
authors validated their approach based on a sample of 182
projects where 90 percent of the top-ranked anomalies
uncovered actual defects. The approach is based on bag of

words and achieves a mean accuracy of 89 percent mean,
recall of 89-90 percent, mean fall-out of 30-35 percent.

Table 1.1: Machine Learning Technique

Table 1.2: Feature Subset Selection Algorithm and

Support Vector Machine
EVALUATION RESULT:
As main contribution explores the value of a technique
backed by text mining and machine learning and applies
the technique to a relevant class of applications. The

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 65

ensuring a potentially high impact in case of success. The
approach presented here is applied to the problem of
predicting software vulnerabilities. Analyzed 20 “apps” for
the Android OS platform and followed their evolution over
time. The total analyzed 182 releases spanning. The above
-mentioned text mining technique in a series of three
experiments of increasing complexity. In the first
experiment the focus on the first release of each
application. The show that it is possible to build a classifier
of good quality that predicts whether a file is vulnerable
using term frequencies.

Fig.1.2: Comparison between value for machine

learning & feature subset selection algorithm

Fig.1.3 Value of Machine Learning and Feature Subset

Selection Algorithm

Fig.1.3:Comparison between Times for Machine

Learning Technique and Feature Subset Selection
Algorithm

Fig.1.4: Time of Machine Learning and Feature Subset

Selection Algorithm

CONCLUSION

The presented empirical evidence that features
correlate with vulnerabilities. Based on this empirical
evidence as have introduced vulnerable that predicts
vulnerable components by looking at their features. It is
fast and reasonably accurate. It analyzes a project as
complex as Mozilla in about half an hour and correctly
identifies half of the vulnerable components. Two thirds of
its predictions are correct. The contributions of the
present paper are as follows. A technique for mapping past
vulnerabilities by mining and combining vulnerability
databases with version archives. Empirical evidence that
contradicts popular wisdom saying that vulnerable
components will generally have more vulnerabilities in the
future. Evidence that features correlate with
vulnerabilities .A tool that learns from the locations of past
vulnerabilities to predict future ones with reasonable
accuracy. An approach for identifying vulnerabilities that

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 66

automatically adapts to specific projects and products. A
predictor for vulnerabilities that only needs a set of
suitable features and thus can be applied before the
component is fully implemented..
FUTURE WORK:

The empirically features are good predictors for
vulnerabilities. The believe that this is so because features
characterize a component’s domain. The type of service
that it uses or implements and it is really the domain that
determines a component’s vulnerability. The plan to test
this hypothesis by studies across multiple systems in
similar domains.

REFERENCES:
1. B. Smith and L. Williams, “Using SQL hotspots in a
prioritization heuristic for detecting all types of web
application vulnerabilities,” in Proc. IEEE Int. Conf. Softw.
Testing, Verification Validation, 2011.
2. A. Zeller, T. Zimmermann, and C. Bird, “Failure is a four-
letterword: A parody in empirical research,” in Proc. Int.
Conf. Predictive Models Softw. Eng., 2011.
3. Y. Shin, A. Meneely, L. Williams, and J. A. Osborne,
“Evaluating complexity, code churn, and developer activity
metrics as indicators of software vulnerabilities,” IEEE
Trans. Softw. Eng., Nov.–Dec. 2011.
4. S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,
“Predicting vulnerable software components,” in Proc.
ACM Conf. Comput.Commun. Secur., 2007.
5. Ostrand, T.J., Weyuker, E.J., and Bell, R.M., "Predicting
the Location and Number of Faults in Large Software
Systems", IEEE Trans. Software Eng., 31(4), 2005.
6. Gegick, M., Rotella, P., and Williams, L., "Toward Non-
Security Failures as a Predictor of Security Faults and
Failures", in Proc. International Symposium on
Engineering Secure Software and Systems (ESSoS),
Leuven, Belgium, February 04-06, 2009.

7. Adrian Schr¨oter, Thomas Zimmermann, and Andreas
Zeller, “Predicting component Failures at Design Time,” In
Proc. 5th Int’l Symposium on Empirical Software
Engineering, New York, NY, USA, September 2006.
8. H. Hata, O. Mizuno, and T. Kikuno, “Fault-prone module
detection using large-scale text features based on spam
filtering,”Empirical Softw. Eng., 2010.

