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---------------------------------------------**************************------------------------------------------------ 
Abstract: 

It is very hard to debug networks. Every day network engineers struggle with router fiber cuts, 
misconfigurations, mislabeled cables, faulty interfaces, software bugs, intermittent links and additional reasons that 
are reason for networks to behave badly, or be unsuccessful completely. Network engineers chase down bugs by 
means of the most elementary tools like ping and trace route, and trail down origin causes by means of combination 
of perception and wisdom. Debugging networks is just becoming difficult as networks are getting larger and are 
getting more complex. This paper proposes an automatic testing and debugging procedure for verifying the various 
network conditions and to provide safe reaching of the packets to the desired destination. The paper uses the 
Automatic Test Packet Generation system for debugging and adds an enhancement to that system which restricts the 
number of test packets generated and removes the threshold violation over the file size limit. This reduces the time 
taken to debug the entire system.   Keywords — Test Packet Generation, Network Troubleshooting, Data Plane Analysis. 
-------------------------------------------************************------------------------------------------- 
I.  INTRODUCTION 
Operating a modern network is no easy task. Every day 
network engineers have to wrestle with misconfigured routers, 
fiber cuts, faulty interfaces, mislabeled cables, software bugs, 
intermittent links and a myriad other reasons that cause 
networks to misbehave, or fail completely. Network engineers 
hunt down bugs using the most rudimentary tools (e.g., ping, 
traceroute, SNMP, and tcpdump), and track down root causes 
using a combination of accrued wisdom and intuition. 
Debugging networks is only becoming harder as networks are 
getting bigger (modern data centers may contain 10,000 
switches, a campus network may serve 50,000 users, a 
100Gb/s long-haul link may carry 100,000 flows) and getting 
more complicated (with over 6,000 RFCs, router software is 
based on millions of lines of source code, and network chips 
often contain billions of gates). Small wonder that network 
engineers have been labeled “masters of complexity”. 
Troubleshooting a network is difficult for good reasons. First, 
the forwarding state is distributed across multiple routers and 
firewalls and is defined by their forwarding tables, filter rules, 
and other configuration parameters. Second, the forwarding 

state is hard to observe, because it typically requires manually 
logging into every box in the network via the Command Line 
Interface (CLI). Third, there are many different programs, 
protocols, and humans updating the forwarding state 
simultaneously.  Facing this hard problem, network engineers deserve better 
tools than ping and traceroute. In fact, in other fields of 
engineering testing tools have been evolving for a long time. 
For example, both the ASIC and software design industries 
are buttressed by billion-dollar tool businesses that supply 
techniques for both static (e.g., design rule) and dynamic (e.g., 
timing) verification. 
Modern computer networks can be divided into the  
 Data plane and  
 The control plane 
The data plane consists of a number of interconnected 
switches; each contains forwarding rules that determine the 
flow of packets. For example, the forwarding rule in an 
Ethernet switch looks at a packet’s destination MAC address, 
and decides its next port. On top of the data plane is the 
control plane that runs routing protocols such as OSPF or 
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BGP. The control plane populates the data plane with 
forwarding rules based on its global network knowledge. 
The unfortunate realities of network operation make 
automatic, systematic data plane troubleshooting a necessity. 
However, there is more than one way to approach this 
problem. Moreover, different networks may call for different 
approaches. Any data plane tester design should answer the 
following three questions: 
 Method: Do we only read and analyze forwarding tables 

(static analysis), or do we actually send out test packets to 
observe the network’s behavior (dynamic analysis)? 

 Knowledge: How much we know about the network 
under test? Do we know all the forwarding tables and 
topology, just part of them, or none of them? 

 Coverage: Which network components do we cover, 
links or rules? How do we achieve 100% coverage? Is 
that even possible? 

 
II. RELATED WORK 
Let us start by solving the simple white box, dynamic testing 
problem: 
Given all forwarding rules and network topology, what is the 
minimum set of test packets that can cover 100% of rules, 
links and interfaces? Moreover, how to use this set to localize 
and diagnose data plane problems? This kind of problems 
occurs frequently in today’s network management. Consider 
two examples: 
Example 1:  
Suppose a router with a faulty line card starts dropping 
packets silently. Alice, who administers 100 routers, receives 
a ticket from several unhappy users complaining about 
connectivity. First, Alice examines each router to see if the 
configuration was changed recently, and concludes that the 
configuration was untouched. Next, Alice uses her knowledge 
of the topology to triangulate the faulty device with ping and 
traceroute. Finally, she calls a colleague to replace the line 
card. 
Example 2: 
Suppose that video traffic is mapped to a specific queue in a 
router, but packets are dropped because the token bucket rate 
is too low. It is not at all clear how Alice can track down such 
a performance fault using ping and traceroute. 
Automatic Test Packet Generation (ATPG) is one answer to 
this dynamic testing problem: 
ATPG automatically generates a set of packets to test the 
liveness of the underlying topology and the congruence 
between data plane state and configuration specifications. The 
tool can also automatically generate packets to test 

performance assertions such as packet latency. In Example 1 
instead of Alice manually deciding which ping packets to 
send, the tool does so periodically on her behalf. In Example 
2, the tool determines that it must send packets with certain 
headers to “exercise” the video queue, and then determines 
that these packets are being dropped.  ATPG detects and diagnoses errors by independently and 
exhaustively testing all forwarding entries, firewall rules, and 
any packet processing rules in the network. In ATPG, test 
packets are generated algorithmically from the device 
configuration files and FIBs, with the minimum number of 
packets required for complete coverage. Test packets are fed 
into the network so that every rule is exercised directly from 
the data plane. Since ATPG treats links just like normal 
forwarding rules, its full coverage guarantees testing of every 
link in the network. It can also be specialized to generate a 
minimal set of packets that merely test every link for network 
liveness. At least in this basic form, we feel that ATPG or 
some similar technique is fundamental to networks: Instead of 
reacting to failures, many network operators such as Internet2  
proactively check the health of their network using pings 
between all pairs of sources. However all-pairs ping does not 
guarantee testing of all links, and has been found to be 
unscalable for large networks such as PlanetLab.  Organizations can customize ATPG tomeet their needs; for 
example, they can choose to merely check for network 
liveness (link cover) or check every rule (rule cover) to ensure 
security policy. ATPG can be customized to check only for 
reachability or for performance as well. ATPG can adapt to 
constraints such as requiring test packets from only a few 
places in the network, or using special routers to generate test 
packets from every port. ATPG can also be tuned to allocate 
more test packets to exercise more critical rules.  
 
III. PROPOSED WORK 
The main behind the proposed ATPG model is to restrict the 
number of packets generated so that the debugging time can 
be reduced to greater extent and the threshold over the file size 
limit will be removed so that the data file can be divided into 
equal groups among the minimum number of test packets.  3.1 Network Model:  ATPG uses the header space framework a geometric model of 
how packets are processed we described. In header space, 
protocol-specific meanings associated with headers are 
ignored: a header is viewed as a flat sequence of ones and 
zeros. A header is a point (and a flow is a region) in the 
{0,1}L space, where L is an upper bound on header length. By 
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using the header space framework, we obtain a unified, 
vendor-independent and protocol-agnostic model of the 
network1 that simplifies the packet generation process 
significantly.  3.2 Definitions  Packets: A packet is defined by a (port , header ) tuple, where 
the port denotes a packet’s position in the network at any time 
instant; each physical port in the network is assigned a unique 
number.  Router: A switch transfer function, T , models a network 
device, such as a switch or router. Each network device 
contains a set of forwarding rules (e.g., the forwarding table) 
that determine how packets are processed. An arriving packet 
is associated with exactly one rule by matching it against each 
rule in descending order of priority, and is dropped if no rule 
matches.  3.3 ATPG System:   Based on the network model, ATPG generates the minimal 
number of test packets so that every forwarding rule in the 
network is exercised and covered by at least one test packet. 
When an error is detected, ATPG uses a fault localization 
algorithm to determine the failing rules or links.  Figure 1 is a block diagram of the ATPG system. The system 
first collects all the forwarding state from the network (step 
1). This usually involves reading the FIBs, ACLs and config 
files, as well as obtaining the topology. ATPG uses Header 
Space Analysis to compute reachability between all the test 
terminals (step 2).   
 

  Fig 1: ATPG Architecture 
The result is then used by the test packet selection algorithm 
to compute a minimal set of test packets that can test all rules 
(step 3). These packets will be sent periodically by the test 
terminals (step 4). If an error is detected, the fault localization 
algorithm is invoked to narrow down the cause of the error 

(step 5). While steps 1 and 2 are described in, steps 3 through 
5 are new.  3.3.1 Test Packet Generation Algorithm:  A set of test terminals in the network can send and receive test 
packets. Our goal is to generate a set of test packets to 
exercise every rule in every switch function, so that any fault 
will be observed by at least one test packet. This is analogous 
to software test suites that try to test every possible branch in a 
program. The broader goal can be limited to testing every link 
or every queue. When generating test packets, ATPG must 
respect two key constraints: (1) Port: ATPG must only use test  
terminals that are available; (2) Header: ATPG must only use 
headers that each test terminal is permitted to send.  
For example, the network administrator may only allow using 
a specific set of VLANs. Formally: 
Problem1 (Test Packet Selection) For a network with the 
switch functions, {T1, ...,Tn}, and topology function, ¡, 
determine the minimum set of test packets to exercise all 
reachable rules, subject to the port and header constraints.  ATPG chooses test packets using an algorithm we call Test 
Packet Selection (TPS). TPS first finds all equivalent classes 
between each pair of available ports. An equivalent class is a 
set of packets that exercises the same combination of rules. It 
then samples each class to choose test packets, and finally 
compresses the resulting set of test packets to find the 
minimum covering set.  Generate all-pairs reachability table. ATPG starts by 
computing the complete set of packet headers that can be sent 
from each test terminal to every other test terminal. For each 
such header, ATPG finds the complete set of rules it exercises 
along the path. To do so, ATPG applies the all-pairs 
reachability algorithm described, on every terminal port, an 
all-x header (a header which has all wild carded bits) is 
applied to the transfer function of the first switch connected to 
each test terminal. Header constraints are applied here. For 
example, if traffic can only be sent on VLAN A, then instead 
of starting with an all-x header, the VLAN tag bits are set to 
A. As each packet pk traverses the network using the network 
function, the set of rules that match pk are recorded in pk. 
history.  3.3.2 Fault Localization:  ATPG periodically sends a set of test packets. If test packets 
fail, ATPG pinpoints the fault(s) that caused the problem.  Faultmodel  
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A rule fails if its observed behavior differs from its expected 
behavior. ATPG keeps track of where rules fail using a result 
function R. For a rule r , the result function is defined as  

 “Success” and “failure” depend on the nature of the rule: a 
forwarding rule fails if a test packet is not delivered to the 
intended output port, whereas a drop rule behaves correctly 
when packets are dropped. Similarly, a link failure is a failure 
of a forwarding rule in the topology function. On the other 
hand, if an output link is congested, failure is captured by the 
latency of a test packet going above a threshold. We can 
divide faults into two categories: action faults and match 
faults. An action fault occurs when every packet matching the 
rule is processed incorrectly. Examples of action faults 
include unexpected packet loss, a missing rule, congestion, 
and mis-wiring. 
 

  Figure 2: Router Selection Process 
The above figure clearly depicts that the router selection 
process is done via checking the drop condition if the router is 
in drop state (off) the ATPG system automatically selects 
another router for data transferring.  IV. ANALYSIS 
The system is tested only for the time taken to debug the 
entire network. As the proposed system claims to reduce the 
debugging time compared to the existing system we compare 
our results with the existing system. 
 

 
Figure 3: Debugging time Comparison 

As the figure clearly depicts that the proposed system utilizes 
constant size for debugging this is due to that the number of 
test packets generated will be equal at all data sizes. Whereas 
the existing system generates more number of test packets 
with the growth of the data size which will clearly takes more 
debugging time. 
 
V.CONCLUSION 
In any complex system, accidents and failures are the norm 
rather than the exception. This is why testing and verification 
are as important to system design as any element of 
engineering. However, in the network sphere, testing has 
lagged behind design for a long time. The tools and methods 
described in this paper, along with other recent efforts from 
the network research community, demonstrate the power of 
rigorous, systematic, and automatic network testing. The 
paper proposed an ATPG system that generates only a 
minimal set of test packets and removes the threshold over the 
file size limitation. Doing this the proposed system clearly 
outperformed the existing system in the time taken to 
debugging. 
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