
International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 44

Minimizing the Test Packet Failures by Applying Threshold on
Test Packet Generation in Debugging and Network Testing

 P. Anjaneyulu1, T. Venkata Naga Jayudu2
1(P.G student Dept of CSE, JNTUA University, Andhra Pradesh, India) 2(Asst. Professor Dept of CSE, JNTUA University, Andhra Pradesh, India)

---**************************--
Abstract:

It is very hard to debug networks. Every day network engineers struggle with router fiber cuts,
misconfigurations, mislabeled cables, faulty interfaces, software bugs, intermittent links and additional reasons that
are reason for networks to behave badly, or be unsuccessful completely. Network engineers chase down bugs by
means of the most elementary tools like ping and trace route, and trail down origin causes by means of combination
of perception and wisdom. Debugging networks is just becoming difficult as networks are getting larger and are
getting more complex. This paper proposes an automatic testing and debugging procedure for verifying the various
network conditions and to provide safe reaching of the packets to the desired destination. The paper uses the
Automatic Test Packet Generation system for debugging and adds an enhancement to that system which restricts the
number of test packets generated and removes the threshold violation over the file size limit. This reduces the time
taken to debug the entire system. Keywords — Test Packet Generation, Network Troubleshooting, Data Plane Analysis.
---************************---
I. INTRODUCTION
Operating a modern network is no easy task. Every day
network engineers have to wrestle with misconfigured routers,
fiber cuts, faulty interfaces, mislabeled cables, software bugs,
intermittent links and a myriad other reasons that cause
networks to misbehave, or fail completely. Network engineers
hunt down bugs using the most rudimentary tools (e.g., ping,
traceroute, SNMP, and tcpdump), and track down root causes
using a combination of accrued wisdom and intuition.
Debugging networks is only becoming harder as networks are
getting bigger (modern data centers may contain 10,000
switches, a campus network may serve 50,000 users, a
100Gb/s long-haul link may carry 100,000 flows) and getting
more complicated (with over 6,000 RFCs, router software is
based on millions of lines of source code, and network chips
often contain billions of gates). Small wonder that network
engineers have been labeled “masters of complexity”.
Troubleshooting a network is difficult for good reasons. First,
the forwarding state is distributed across multiple routers and
firewalls and is defined by their forwarding tables, filter rules,
and other configuration parameters. Second, the forwarding

state is hard to observe, because it typically requires manually
logging into every box in the network via the Command Line
Interface (CLI). Third, there are many different programs,
protocols, and humans updating the forwarding state
simultaneously. Facing this hard problem, network engineers deserve better
tools than ping and traceroute. In fact, in other fields of
engineering testing tools have been evolving for a long time.
For example, both the ASIC and software design industries
are buttressed by billion-dollar tool businesses that supply
techniques for both static (e.g., design rule) and dynamic (e.g.,
timing) verification.
Modern computer networks can be divided into the
 Data plane and
 The control plane
The data plane consists of a number of interconnected
switches; each contains forwarding rules that determine the
flow of packets. For example, the forwarding rule in an
Ethernet switch looks at a packet’s destination MAC address,
and decides its next port. On top of the data plane is the
control plane that runs routing protocols such as OSPF or

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 45

BGP. The control plane populates the data plane with
forwarding rules based on its global network knowledge.
The unfortunate realities of network operation make
automatic, systematic data plane troubleshooting a necessity.
However, there is more than one way to approach this
problem. Moreover, different networks may call for different
approaches. Any data plane tester design should answer the
following three questions:
 Method: Do we only read and analyze forwarding tables

(static analysis), or do we actually send out test packets to
observe the network’s behavior (dynamic analysis)?

 Knowledge: How much we know about the network
under test? Do we know all the forwarding tables and
topology, just part of them, or none of them?

 Coverage: Which network components do we cover,
links or rules? How do we achieve 100% coverage? Is
that even possible?

II. RELATED WORK
Let us start by solving the simple white box, dynamic testing
problem:
Given all forwarding rules and network topology, what is the
minimum set of test packets that can cover 100% of rules,
links and interfaces? Moreover, how to use this set to localize
and diagnose data plane problems? This kind of problems
occurs frequently in today’s network management. Consider
two examples:
Example 1:
Suppose a router with a faulty line card starts dropping
packets silently. Alice, who administers 100 routers, receives
a ticket from several unhappy users complaining about
connectivity. First, Alice examines each router to see if the
configuration was changed recently, and concludes that the
configuration was untouched. Next, Alice uses her knowledge
of the topology to triangulate the faulty device with ping and
traceroute. Finally, she calls a colleague to replace the line
card.
Example 2:
Suppose that video traffic is mapped to a specific queue in a
router, but packets are dropped because the token bucket rate
is too low. It is not at all clear how Alice can track down such
a performance fault using ping and traceroute.
Automatic Test Packet Generation (ATPG) is one answer to
this dynamic testing problem:
ATPG automatically generates a set of packets to test the
liveness of the underlying topology and the congruence
between data plane state and configuration specifications. The
tool can also automatically generate packets to test

performance assertions such as packet latency. In Example 1
instead of Alice manually deciding which ping packets to
send, the tool does so periodically on her behalf. In Example
2, the tool determines that it must send packets with certain
headers to “exercise” the video queue, and then determines
that these packets are being dropped. ATPG detects and diagnoses errors by independently and
exhaustively testing all forwarding entries, firewall rules, and
any packet processing rules in the network. In ATPG, test
packets are generated algorithmically from the device
configuration files and FIBs, with the minimum number of
packets required for complete coverage. Test packets are fed
into the network so that every rule is exercised directly from
the data plane. Since ATPG treats links just like normal
forwarding rules, its full coverage guarantees testing of every
link in the network. It can also be specialized to generate a
minimal set of packets that merely test every link for network
liveness. At least in this basic form, we feel that ATPG or
some similar technique is fundamental to networks: Instead of
reacting to failures, many network operators such as Internet2
proactively check the health of their network using pings
between all pairs of sources. However all-pairs ping does not
guarantee testing of all links, and has been found to be
unscalable for large networks such as PlanetLab. Organizations can customize ATPG tomeet their needs; for
example, they can choose to merely check for network
liveness (link cover) or check every rule (rule cover) to ensure
security policy. ATPG can be customized to check only for
reachability or for performance as well. ATPG can adapt to
constraints such as requiring test packets from only a few
places in the network, or using special routers to generate test
packets from every port. ATPG can also be tuned to allocate
more test packets to exercise more critical rules.

III. PROPOSED WORK
The main behind the proposed ATPG model is to restrict the
number of packets generated so that the debugging time can
be reduced to greater extent and the threshold over the file size
limit will be removed so that the data file can be divided into
equal groups among the minimum number of test packets. 3.1 Network Model: ATPG uses the header space framework a geometric model of
how packets are processed we described. In header space,
protocol-specific meanings associated with headers are
ignored: a header is viewed as a flat sequence of ones and
zeros. A header is a point (and a flow is a region) in the
{0,1}L space, where L is an upper bound on header length. By

International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 46

using the header space framework, we obtain a unified,
vendor-independent and protocol-agnostic model of the
network1 that simplifies the packet generation process
significantly. 3.2 Definitions Packets: A packet is defined by a (port , header) tuple, where
the port denotes a packet’s position in the network at any time
instant; each physical port in the network is assigned a unique
number. Router: A switch transfer function, T , models a network
device, such as a switch or router. Each network device
contains a set of forwarding rules (e.g., the forwarding table)
that determine how packets are processed. An arriving packet
is associated with exactly one rule by matching it against each
rule in descending order of priority, and is dropped if no rule
matches. 3.3 ATPG System: Based on the network model, ATPG generates the minimal
number of test packets so that every forwarding rule in the
network is exercised and covered by at least one test packet.
When an error is detected, ATPG uses a fault localization
algorithm to determine the failing rules or links. Figure 1 is a block diagram of the ATPG system. The system
first collects all the forwarding state from the network (step
1). This usually involves reading the FIBs, ACLs and config
files, as well as obtaining the topology. ATPG uses Header
Space Analysis to compute reachability between all the test
terminals (step 2).

 Fig 1: ATPG Architecture
The result is then used by the test packet selection algorithm
to compute a minimal set of test packets that can test all rules
(step 3). These packets will be sent periodically by the test
terminals (step 4). If an error is detected, the fault localization
algorithm is invoked to narrow down the cause of the error

(step 5). While steps 1 and 2 are described in, steps 3 through
5 are new. 3.3.1 Test Packet Generation Algorithm: A set of test terminals in the network can send and receive test
packets. Our goal is to generate a set of test packets to
exercise every rule in every switch function, so that any fault
will be observed by at least one test packet. This is analogous
to software test suites that try to test every possible branch in a
program. The broader goal can be limited to testing every link
or every queue. When generating test packets, ATPG must
respect two key constraints: (1) Port: ATPG must only use test
terminals that are available; (2) Header: ATPG must only use
headers that each test terminal is permitted to send.
For example, the network administrator may only allow using
a specific set of VLANs. Formally:
Problem1 (Test Packet Selection) For a network with the
switch functions, {T1, ...,Tn}, and topology function, ¡,
determine the minimum set of test packets to exercise all
reachable rules, subject to the port and header constraints. ATPG chooses test packets using an algorithm we call Test
Packet Selection (TPS). TPS first finds all equivalent classes
between each pair of available ports. An equivalent class is a
set of packets that exercises the same combination of rules. It
then samples each class to choose test packets, and finally
compresses the resulting set of test packets to find the
minimum covering set. Generate all-pairs reachability table. ATPG starts by
computing the complete set of packet headers that can be sent
from each test terminal to every other test terminal. For each
such header, ATPG finds the complete set of rules it exercises
along the path. To do so, ATPG applies the all-pairs
reachability algorithm described, on every terminal port, an
all-x header (a header which has all wild carded bits) is
applied to the transfer function of the first switch connected to
each test terminal. Header constraints are applied here. For
example, if traffic can only be sent on VLAN A, then instead
of starting with an all-x header, the VLAN tag bits are set to
A. As each packet pk traverses the network using the network
function, the set of rules that match pk are recorded in pk.
history. 3.3.2 Fault Localization: ATPG periodically sends a set of test packets. If test packets
fail, ATPG pinpoints the fault(s) that caused the problem. Faultmodel

International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 47

A rule fails if its observed behavior differs from its expected
behavior. ATPG keeps track of where rules fail using a result
function R. For a rule r , the result function is defined as

 “Success” and “failure” depend on the nature of the rule: a
forwarding rule fails if a test packet is not delivered to the
intended output port, whereas a drop rule behaves correctly
when packets are dropped. Similarly, a link failure is a failure
of a forwarding rule in the topology function. On the other
hand, if an output link is congested, failure is captured by the
latency of a test packet going above a threshold. We can
divide faults into two categories: action faults and match
faults. An action fault occurs when every packet matching the
rule is processed incorrectly. Examples of action faults
include unexpected packet loss, a missing rule, congestion,
and mis-wiring.

 Figure 2: Router Selection Process
The above figure clearly depicts that the router selection
process is done via checking the drop condition if the router is
in drop state (off) the ATPG system automatically selects
another router for data transferring. IV. ANALYSIS
The system is tested only for the time taken to debug the
entire network. As the proposed system claims to reduce the
debugging time compared to the existing system we compare
our results with the existing system.

Figure 3: Debugging time Comparison

As the figure clearly depicts that the proposed system utilizes
constant size for debugging this is due to that the number of
test packets generated will be equal at all data sizes. Whereas
the existing system generates more number of test packets
with the growth of the data size which will clearly takes more
debugging time.

V.CONCLUSION
In any complex system, accidents and failures are the norm
rather than the exception. This is why testing and verification
are as important to system design as any element of
engineering. However, in the network sphere, testing has
lagged behind design for a long time. The tools and methods
described in this paper, along with other recent efforts from
the network research community, demonstrate the power of
rigorous, systematic, and automatic network testing. The
paper proposed an ATPG system that generates only a
minimal set of test packets and removes the threshold over the
file size limitation. Doing this the proposed system clearly
outperformed the existing system in the time taken to
debugging.

REFERENCES
[1] Hongyi Zeng, Peyman Kazemian,” Automatic Test
 Packet Generation”, IEEE/ACM Transactions on
 Networking, April 2014, PP. 554 – 566. [2] Scott Shenker. The future of networking, and the past
 of protocols. http:// pennetsummit.org/talks/shenker-
 tue.pdf. [3] The Internet2 Observatory Data Collections.
 http://www.internet2.edu/ observatory/archive/data-
 collections.html. [4] All-pairs ping service for PlanetLab ceased.
 http://lists.planet-lab.org/pipermail/users/2005-
 July/001518.html. [5] Peyman Kazemian, George Varghese, and Nick

0
1000
2000
3000
4000
5000

250 KB 500 KB 750 KB 1000 KB

Tim
e in

 Mi
lli S

eco
nds

File SizeProposed
Existing

International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 48

 McKeown. Header Space Analysis: static checking for
 networks. Proceedings of NSDI’12, 2012. [6] Franck Le, Sihyung Lee, Tina Wong, Hyong S. Kim,
 and Darrell Newcomb. Detecting network-wide and
 router-specific misconfigurations through data mining.
 IEEE/ACMTrans. Netw., 17(1):66–79, February 2009. [7] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek,
 Colin Dixon, Thomas Anderson, Arvind
 Krishnamurthy, and Arun Venkataramani. iplane: an
 information plane for distributed services. In
 Proceedings of OSDI’06, pages 367–380, Berkeley,
 CA, USA, 2006. USENIX Association.
[8] Hassel, the header space
 library.https://bitbucket.org/peymank/hassel-public/. [9] The Internet2 Observatory Data Collections.
 http://www.internet2.edu/observatory/archive/ data-
 collections.html.

[10] Ajay Mahimkar, Zihui Ge, Jia Wang, Jennifer Yates,
 Yin Zhang, Joanne Emmons, Brian Huntley, and
 Mark Stockert. Rapid detection of maintenance
 induced changes in service performance. In
 Proceedings of the 2011 ACM CoNEXT
 Conference, pages 13:1–13:12, New York, NY, USA,
 2011. ACM.

[11] M. Jain and C. Dovrolis. End-to-end available
 bandwidth: measurement methodology, dynamics,
 and relation with tcp throughput. IEEE/ACM Trans.
 Netw. 11(4):537{549,Aug. 2003. [12] P. Kazemian, G. Varghese, and N. McKeown.
 Header Space Analysis: static checking for networks.
 Proceedings of the 9th conference on Symposium on
 Networked Systems Design & Implementation,
 2012. [13] R. R. Kompella, J. Yates, A. Greenberg, and A. C.
 Snoeren. Ip fault localization via risk modeling. In
 Proceedings of the 2nd conference on Symposium on
 Networked Systems Design & Implementation –
 Volume 2, NSDI'05, pages 57{70,
 Berkeley, CA, USA, 2005. USENIX Association. [14] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and [15] Kostic. A SOFT way for open ow switch
 interoperability testing. In Proceedings of the
 Seventh COnference on emerging Networking
 EXperiments and Technologies, CoNEXT '12, 2012.

