
International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 29

––––
Zeta - A Set of Textual DSLs to Define Graphical DSLs

Markus Gerhart*, Marko Boger**
*(Applied computer science, University of Applied Sciences, Konstanz)
**(Applied computer science, University of Applied Sciences, Konstanz)

--************************----------------------------------
Abstract:
 Domain-specific modeling is increasingly adopted in the software development industry. While
textual domain-specific languages (DSLs) already have a wide impact, graphical DSLs still need to live up
to their full potential. In this paper, we describe an approach to automatically generate a graphical DSL
from a set of textual languages. With our approach, node and edge type graphical DSLs can be described
using textual models. A set of carefully designed textual DSLs is the input for our generators. The result of
the generation is a graphical editor for the intended domain. The development time for a graphical editor is
reduced significantly. The whole project is available as open source under the name "Zeta". This
publication focuses on the explanation of the textual DSLs for defining a graphical node and edge editor.

Keywords — Model-Driven Software Development (MDSD), Domain-Specific Language (DSL),
Metamodel, Model-Driven Architecture (MDA), Graphical Online Editor, Language design
--************************----------------------------------
I. INTRODUCTION

The creation of domain-specific graphical
languages and editors will be very important in the
near future. This arises from the common
requirements regarding efficiency, speed of
development and the need for domain-specific
solutions. To meet these requirements, the existing
approach for the development of graphical
modelling languages and editors should be
reconsidered.

Editors for graphical modelling languages
currently come in three flavors: stencil-based
drawing tools, domain-specific modelling tools, and
general purpose modelling tools. Stencil-based
drawing tools can be tailored to depict a certain
domain-specific modelling language, but it lacks
the semantic understanding of the model and can in
general not be used for model-driven approaches.
While they have their use cases, we will not
consider them further in this paper. General purpose
editors or cross-domain editors exist as tools on the
market and have been very successful. Examples
for languages in this category are UML or BPMN.
While they have been very successful in their use
cases to describe a cross-domain concern, like

describing a software architecture or a business
process, it has been very difficult to adapt them to
domain-specific use cases, especially in a model-
driven approach. There are ways to extend such
general purpose languages to domain-specific
concepts, in the case of UML this would be a
profile. But such approaches tend to make the
development of a generator for a model
transformation very complicated. We will also not
focus on these in this paper. The focus of the paper
will be on languages and tools developed
specifically for one domain with the goal of using
the models as input to a model transformation. This
can lead to very elegant solutions, both in terms of
the modelling tool as well as the model
transformation. But the development of such
graphical editors is currently a very costly
undertaking.

In the research project "Progress in Graphical
Modeling Frameworks" (ProGraMof) we have
developed a set of domain-specific languages
(DSL's) for the description of node and edge (or
box and arrow) type graphical editors, as well as the
right toolset for the use of these languages. The
developed DSLs are exclusively used to describe
the content (element's, behavior and rules) of the

RESEARCH ARTICLE OPEN ACCESS

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 30

editor and not the general infrastructure. The
tooling infrastructure is provided by our framework.

Our goal is to enable domain experts to create
their own graphical modelling language in a simple
and cost effective way in the context of a model-
driven approach. They should gain the freedom to
design their own notation elements and to
continually adapted them to the changing needs.

The result presented in this paper is a collection
of three textual languages, each describing a
separate concern of a graphical modelling language.
They can be defined in any appropriate grammar
definition language such as EBNF, Xtext or Ace-
Grammar. In this paper, we use Ace-Grammar
which is based on the JavaScript Object Notation
(JSON) Metamodel approach.

All three languages are based on their own
metamodel, which can easily be accessed from a
generator language such as Xtend or Scala. We use
it for the creation of a graphical editor for the
defined modelling language. We have generators
for several different platforms under development.
The most prominent target platforms are Eclipse
and a web-based editor.

The paper first gives a brief overview of the
technologies used in the Section II. Subsequently
the paper reviews related work in the field in
Section III which are mostly other tools or
languages and techniques for the generation of
modelling tools. Our general approach for the
model driven creation of the modelling editors and
the general architecture of our framework with the
detailed description the developed languages is
described in Section IV. The core contribution of
this publication are the developed DSLs to define
graphical elements, styles for the graphical
elements and the graphical editor itself, which are
described in the subchapters of the general
approach. Section V shows a small implementation
Guide for the presented DSLs. Section VI
illustrates the results of our approach from different
angles. Finally, we summarize the limitations of our
research and draw conclusions in Section VII.
II. BACKGROUND

This section shortly explains the used techniques,
libraries and frameworks.

The Extended Backus-Naur Form (EBNF) is a
set of metasyntax notations, which can be used to
express a context-free grammar. The core is to
create a formal description of a formal language.
The EBNF extends the Backus-Naur Form (BNF).

A Domain Specific Language (DSL) is a formal

language which is exactly tailored to a specific
domain, a specific task or problem area.

JavaScript Object Notation (JSON) is an open-

standard and language-independent format that uses
human-readable text to transmit data objects
consisting of attribute–value pairs.

Scalable Vector Graphics (SVG) is an XML-

based vector image format for two-dimensional
graphics with support for interactivity and
animation. The SVG specification is an open
standard developed by the World Wide Web
Consortium (W3C).

A context-free grammar (CFG) is a set of

recursive rewriting rules (or productions) used to
generate patterns of strings.

The HyperText Markup Language (HTML) is

the standard markup language used to create
websites or web.

Cascading Style Sheets (CSS) is a style sheet

language used to describe the presentation of a
document written in a markup language like HTML.

Extensible Markup Language (XML) is a

markup language that defines a set of rules for
encoding documents in a format which is human
and machine readable.
III. RELATED WORK

Projects which have need for a domain-specific
graphical editor currently only have two
possibilities. On the one hand, they can use
complex tools for the Model-driven generation of a
domain-specific graphical editor or on the other
hand they can do the implement manually. In the
first case, an expert for model-driven software
development is required who implements the

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 31

metamodel and the generators. In the second case a
developer is required to implement the project.
However, in both cases is always an expert required.
The generative approach is probably the pioneering
approach and the bases for the presented approach.

There are many representatives of development
environments and approaches of model driven
development and model driven architecture in the
market. Almost all of them allow the creation of
DSL's which are based on a metamodel and the
implementation of a generator that generates the
required artefacts. This solution works perfect for
the development of a DSL for the creation of a
approach which is presented within this paper but is
not suitable for the actual users how wants in a
simple way created his own graphical editor. This is
due to the fact that the existing tools are made for
software developers and not for the different users
of the domains.

There are currently no comparable solutions to
create a domain-specific graphical node and edge
editor with reference to a metamodel. Therefore, no
direct comparison to existing solutions can be
provided. Only the existing solutions for model
driven software developers could be used as a
comparative criterion, but these are not suitable for
the above mentioned reasons.

The design of the developed languages is
influenced by many different languages and
research papers. The following list of references
had the main design influences. Zeta adopts some
ideas of the concepts and syntactic conventions of
Java [5]. From Beta [7] and common diagram types
like UML or the Business Process Model and
Notation (BPMN) comes the idea that closed shapes
should be nestable. Zeta's design of key value pairs
to describe properties of the predefined objects is
adopted from the JavaScript Object Notation
(JSON) [1] and Cascading Style Sheets (CSS) [6].
Maybe there are other allusions to other languages
but which are not known to us.

Zeta provides a powerful set of constructions for
creating specific elements which can be linked to an
existing metamodel described in Zeta [2]. The aim
is that with this set of languages the user has the
option to develop his own domain specific diagram
editor in an easy and fast way.

IV. APPROACH
In the research project "ProGraMof" we have

developed a complete tool set for the fast and
efficient creation of graphical modelling languages
as well as their efficient use in graphical editors.
The tool set as a whole is called Zeta. The name is
inspired by the internet culture to use a z to express
a "twist" of some sort, like in "gamez", "warez" etc.
In our case the fundamental twist is on the concept
of "meta", which regularly leads to headaches
among apprentices of model-driven technologies.
We needed to twist our meta-metamodeling
language - originally Ecore - to achieve better
results and came up with the name Zeta-Core. This
then inspired the name of the entire project. We use
the Greek letter ζ (zeta) in such combinations, i.e. ζ-
Core, to express the relation between the family of
languages in the Zeta project.

We have developed frameworks for graphical
editors on several platforms. These frameworks
contain the domain independent concerns of
graphical editors, such as manipulating graphs and
user interaction. The domain-specific parts are
expressed in three domain-specific textual
languages. Our generators, framework code and
runtime are based on the Scala platform by
Lightbend. For the web-based platform we use the
Ace Editor with the plugin Ace-Grammar. The
core contribution of this publication are the textual
DSLs.

Figure 1 shows the three developed languages "
ζ-Elements", " ζ-Style" and " ζ-Diagram". The aim
of this strict division of the languages is the
separation of concerns for presentation (style),
structure (element) and the definition of the actual
Diagrams which reference elements and style.

The ζ-Style language offers the functionality to
express design for elements. This is similar to the
"Cascading Style Sheets" short CSS which is, for
example, used to design websites. The ζ-Style-DSL
does not offer the full potential of the CSS but
provides a subset of the CSS options. Through the
use of the CSS approach, it is possible to expand
the style DSL at any time.

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 32

Fig. 1 Dependencies of the developed languages

The ζ-Elements language is used to define any
type of shapes or connections. This may be on the
one hand common shapes such as ellipses,
rectangles or polylines or on the other hand
connections which consist of a line on which
different forms can be placed. A shape is not
equivalent to a form. A shape consists of at least
one form, but forms can be nested as many times as
needed, so it's possible to produce very complex
shapes. The design of the shapes is made possible
through the association of a style or of defining the
style within the shape.

The link which connects the style and element
language is the diagram language. This defines the
real content of the new diagram type to be defined.
A diagram exists of nodes (elements) and edges
(connections) which is a known concept of the
graph Theory [9]. It is assigned to every node an
element type and every edge a connecting type. In
addition, the diagram language can contain a
reference to a predefined style what opens the
possibility to define a "Corporate Identity" style
which is applied to all elements of the diagram.

The clarity is guaranteed by the clear and clean
separation of presentation (the definition of the
appearance of elements) and contents (the
definition of forms). A mixture of these both
different areas of responsibility leads to confusing
textual descriptions like it is to be found for
example with Scalable Vector Graphics (SVG).
Another advantage of this approach is that with
style adaptations merely the style description must
be changed and the other languages remain
unchanged.

Each of these three languages owns her own
corresponding metamodel in the form of a Zeta-
core file. These are essential for the code generation.
By the use of a metamodel, it is possible to use

different generating languages for the code
production.

The developed languages follow a compact
construction, which orientates itself by current
object-oriented programming languages. For the
clarity of sub-elements and properties of elements,
they are enclosed in curly brackets "{" (at the
beginning) and "}" (at the end). This approach is
comparable to classes and methods of object-
oriented programming languages like java, Scala
etc.. Properties of an element can be passed with
round brackets "(" (at the beginning) and ")" (at the
end). These parameters are directly comparable to
an input parameter of methods. A clear and easy
structure of the developed languages originates
from these both easy rules. In the following, the
metasyntax notation of the developed languages is
explained in detail and displayed on the basis of
examples.

The Extended Backus-Naur Form (EBNF) [10] is
nowadays the most rigorous, comprehensible and
clearest way to define the metasyntax of
programming languages. For this reason, the
representation of the languages is realized by the
EBNF. Listing 1 describes the EBNF notation of
the data types which can be used within the
languages.

Lis. 1 EBNF representation of the Data Types

Only six data types are currently defined and can

be used. This is mainly due to the fact that in JSON
only these data types are intended. Currently, no
further data types are needed. Should this be the
case, they can be created from these basic types.
Because the complete data exchange shall be done
on the basis of JSON, it makes sense to define the
same data types. Table I shows examples for each
of the data types.

TABLE I
DATATYPES EXAMPLES

Keyword Example
identifier A1234-B12234

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 33

Integer 123123
Double 1.21 or 143.121
Digit 6
Letter A

boolean True or false

A. ζ-Element DSL
The ζ-Elements language has, to a certain degree,

a similarity to SVG, but the design goals are
different. The commonality to SVG is that the ζ-
Elements DSL uses primitive forms like lines,
curves, rectangles, polygons and ellipses to define
more complex forms. Nevertheless, a decisive
difference between these both languages is that
SVG is based on XML. The ζ-Element DSL bases
on a context-free grammar, what permits more
freedom in the design. The principal purpose of the
language is a light legibility and a quick
understanding for human users. The machine
readability or fast machine processing plays only a
subordinate role. Furthermore, there are
requirements which SVG did not meet, for example,
the definition of scaling rules and the handling of
in-/output parameters for in-/output fields for the
programmatic validating or processing.

The nesting of forms is essential in order to create
complex shapes. To initiate a nesting, the curly
brackets "{" (start) and "}" (end) are used. This rule
applies to all developed languages. All forms
except lines, curves and texts can be nested in any
depth. The element DSL is used exclusively for the
definition of forms and connections. To improve
the legibility of the language for the user, a syntax
highlighting is designed. We defined that the
keyword "shape" is used to define a form and
"connection" to define a connection between two
forms. Both are always displayed in green. The
basic forms are always highlighted in orange and
the properties of a basic form always in red. By this
go forward also, nested elements are easy to
recognize. Furthermore, the definition or the
reworking of already existing forms is made easier.
In the following, the general construction of the
different elements is explained.

In every of the following described figures are
optional information displayed italic. If a property
is optional, this is also valid for the parameters.

Besides all values to be defined by the user,
optionally with a data type, are marked in boldface.

SHAPES
 Listing 2 shows the basic structure of a form. The

definition of a form always starts with the keyword
shape followed by a unique name. Optionally an
already defined style can be referenced within
round brackets directly behind the unique name.
This style is inherited to every sub-element and can
be overwritten by every separate sub-element. The
actual definition of a form begins always with curly
bracket. The properties sizeMin and sizeMax, in
each case with the parameters width and height,
restrict the expansion of a form. This is important
for nested forms to prevent a too small or too big
representation of a sub-element. The form can be
limited concerning the dimension’s adaptation by
defining the attribute "resizing". The restriction can
be defined horizontally and vertically as well as
proportionally. The attribute "resizing" must be
checked at runtime using an algorithm. Should a
size update be permitted and the properties
minimum and maximum size are defined, a size
update is possible only in this range.

The visibility or the Z-Index of elements is fixed
by their arrangement. This means that the lowest
element in the textual description is the element
with the highest Z-Index respectively the element
covers all other elements. Furthermore, implies that
all nested elements overlay their respective parent
elements.

To attach connections to different points of a
shape, the definition of anchor points has been
integrated. An anchor point is created with the
keyword anchor. The position of an anchor point
can be defined by assigning one of three predefined
constants (corner, center or edges) to the property
position. The "corner" constant defines that all
corners of a shape are anchor points. "Center"
defines that an anchor point at the center of the
shape is present. "Edges" defines that on the four
edges an anchor is defined. Apart from the pre-
defined anchor points they can be freely positioned
relative or absolute. Absolute anchors are realized
by handing over the parameters "x" and "y" to the
property "position". The value range is between the

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 34

maximum width respectively height of the shape. If
the parameters "xoffset" and "yoffset" are handed
over, relative anchors can be created. Relative
anchor points automatically scale by resizing a
shape at runtime, which is not intended for
absolutely defined anchor points. The relative
position parameters of an anchor point can range
between 0 (upper left corner) and 1 (completely
right respectively completely below).

Lis. 2 EBNF representation of a Shape element

All following described forms/output fields can

be extended with the optional parameter style. By
referencing an existing style name in rounded
brackets after the form name, the style is applied to
the whole form. Besides even single attributes of a
style can be overridden or be created the first time.
This regulation is valid for all forms and is not
explained again for the single forms.

The definition of a line starts with the keyword
line and the entry of two points within curly
brackets (see Listing 3). The points are properties of
the line. A point exists of an obliging coordinate (x
and y) and the optional entry of a curve before and
after the point. The coordinate of a point is looked
relatively to the parent element, based on the upper
left corner. This means, with increasing X value the
point walks to the right or down with increasing Y
value.

Lis. 3 EBNF representation of a line

The definition of curves or lines which exist on

several points is important and often used aspect to
be able to display complicated forms. The general
construction of a polyline is comparable with the

line. The difference consists in the fact that a
polyline can exist of arbitrarily many points and a
curve can be defined for each point which has an
inbound and outbound edge (see Listing 4). The
specification of curves is realized with the optional
parameters curveBefore and curveAfter. The curve
of the edge leading to the point can be influenced
with the parameter curveBefore. The value of the
curvature specifies by which length before the point
(a maximum of half the distance) the curvature
starts. The same approach is also valid for the
parameter curveAfter, but for the outgoing edge.
Nevertheless, the definition of curves causes that
the defined points do not lie on a straight line.

Lis. 4 EBNF representation of a polyline

The ability to create closed forms, is a basic

requirement for the element DSL. A simple
representative is a rectangle. The general definition
of a rectangle is described in Listing 5. A rectangle
needs the specification of width and height, which
is described by the property size. To create a valid
representation of a rectangle, another mandatory
information is not required. To allow more freedom
in design and creation, there are other properties
and attributes. To shift the reference point (the
standard is defined in the upper left corner (0,0))
the property position must be defined with the
parameters x and y. This helps particularly with
nested elements so that these can be freely
positioned. It is important, that this specification is
always defined absolutely. The specification of the
property curve allows the change of the corner
points to a curve. The parameter width influences
the width of the area to be rounded of the corner
points on the X axis. This means that the maximum
value of the width is half of the rectangle width.
The parameter height immediately behaves like the
width on the Y axis. Within a rectangle, any other
elements can be nested or a compartment container
(see Listing 9) can be integrated.

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 35

Lis. 5 EBNF representation of a rectangle

Another simple representative of closed forms is

the ellipse. The definition of an ellipse is introduced
with the keyword ellipse. An ellipse requires the
specification of width and height, which are
described on the size property. The width or height
defines the diameter in the horizontal (width) and
vertical (height) extent relative to the center. Thus,
it is possible to create a circle by specifying the
same value for width and height. The position
defines the reference point of the element which
lies with an ellipse beyond the real element. This is
in the left upper corner of an invisible rectangle
with the width and height of the size property
defined value. Within an ellipse, as with the
rectangle, any other elements can be nested or a
compartment container (see Listing 9) can be
integrated.

Lis. 6 EBNF representation of a ellipse

With a polygon, it is possible to create

complicated forms in one step without nesting other
forms. A polygon exists of a number of points and
is always a closed area. The keyword polygon
initiates the definition of a polygon and contains at
least 3 up to n points. The definition of the points is
identical with polyline and is explained in Listing 4.
It is important that the points are connected in the
given order (top to bottom). The determining
difference between a polyline and a polygon is, that
a polygon is always a closed area. Furthermore, a
polygon can contain other elements. There is
merely the restriction that a polygon cannot include

a compartment. This is due to the fact that in a
polygon can be no assurance that it is always
sufficient free space available within the polygon.
This has the background that with complicated
forms a correct arrangement within the polygon is
hard to be realized up to impossibly. Nevertheless,
this premise can be lifted by the nesting of a
rectangle or an ellipse. This is clearly made easier
by the use of a rectangle or ellipse and is easier with
the use of the programmatic arrangement.

Lis. 7 EBNF representation of a polygon

The keyword outputField generates an output

field for a string representation of a form. The
number of output fields is not limited, merely the id
must be unique. The positioning and the size of the
field are steered about the keyword position or size
and behaves the same as in the forms. The
alignment of the text within the output field can be
adjusted with the respective keyword align. The
alignment can be done horizontally and vertically.
For this reason, the constants (left, center and right)
were predefined for the horizontal and (top, middle
and bottom) for the vertical adjustment. This is the
only spot which breaks the rule of the strict
separation of layout and presentation. However, it
does not make sense to define an own style because
of alignment indication.

Lis. 8 EBNF representation of a textfield

A crucial quality of graphic editors is to integrate

elements into other elements at runtime. This
important feature is reached by the specification of
the property compartment see Listing 9. A
"Compartment" is a container which allows the
storage of the defined shapes at runtime. This

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 36

allows an interaction between shapes at runtime. If
the property compartment is defined, the entire
element serves as a storage container. A
compartment can be integrated into all closed forms
apart from polygons. To influence how the objects
are stored graphically, the compartment has the
property layout. It defines how elements are
arranged in the compartment. This property is used
only for more than one stored element and offers
four arrangement possibilities. By the predefined
parameter fixed, the elements are stored at the place
where the user has dropped the element. This makes
possible that elements overlap and are not directly
visible. The defined values vertically and
horizontally arrange the elements among each other
respectively side by side. Through the constant fit, a
layout algorithm is triggered, which calculates the
optimum position for each element of the
compartment area. But it is conceivable that
elements are exchanged in their order by the
Algorithms and cannot be assigned directly any
more. The property stretching depends directly on
the constants vertical and horizontal of the layout
property. If stretching is prevented horizontally or
vertically, the stored elements are arranged up to
the defined width of the element. An automatic
enlargement of the element does not occur.
Otherwise, the element is increased according to the
stored elements. Particularly in the case of a
horizontal and vertical arrangement, the distance
between the elements plays a certain role. This can
be controlled by the property spacing which defines
the spacing of pixel. Nevertheless, spacing refers
only to the distance between the stored elements.
To adjust the space between the outermost elements
and the compartment border the property margin is
used. The distance is also given here in pixel.
Finally, a compartment must always contain a
unique id with which the compartment can be
referenced. Specifying an id for a compartment is
authentic in order to establish a reference to the
metamodel.

Lis. 9 EBNF representation of a compartment

CONNECTIONS
 Listing 10 describes the basic structure of a

connection. The keyword connection initiates the
definition of a connection which is complemented
by a unique connection id. In round brackets, an
already defined style can optionally be referenced.
This style is inherited to everybody sub-element
and can be overwritten or enhanced by every sub-
element by specifying the property styles, but only
the relevant style information for the connection are
applied. This means that a style can be used at the
same time for the definition of a connection and a
shape. The attribute connection-type defines
whether the connection is layouted independently
or by an algorithm which has to be implemented
within the generator. The predefined option for the
free adjustment is freeform or manhatten for simple
manhatten layout algorithm. The property placing
takes over the positioning of shapes on or at a
connection. A placing always consists of the
property's position, an element or predefined shape.
For the element applies the same rules and the same
structure is necessary as discussed in the subsection
"Element DSL".

Lis. 10 EBNF representation of a connection

Through this, it is possible to define complicated

forms on a connection, which cannot be created
with just one basic form like an arrow head.

The free positioning of a placing is allowed with
the property position. A position requires the
parameters offset, radius and angle. The parameter
offset defines on which relative point of the
connection the anchor point is defined. The value
range of the offset moves between 0 (0% origin of
the connection in draw direction) and 1 (100% end

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 37

of the connection). The radius specifies in which
distance from the anchor point the placing will be
placed in relation to the specified angle. The radius
can assume any integer value, the angle is always
limited to the 360° of a circle. With this procedure,
the user can define shapes above or below the
connection, which is necessary for a lot of diagram
types like the Entity Relationship Diagram (ERD).

Fig. 2 Explanation of a Placing

B. ζ-Style DSL

The presentation of shapes is an independent area
and should be separated from the definition of
shapes. Besides it makes sense, to define a
"Corporate style" for a developed diagram to make
changes to the whole diagram as easy as possible.
This causes, with the creation of a new diagram, a
separation of structure and presentation. The
approach of separation of structure, content and
presentation is already a big part of the web
development with the Hypertext Markup Language
(HTML) (structure and content) and Cascading
Style Sheets (CSS) (presentation). The Style DSL
uses ideas of the CSS, which have proven in the
context of a style language for diagram types for
graphic editors. A style is initiated with the
keyword of the same name and is identified by a
unique style name. An existing style can be
extended or overwritten with the keyword extends
and the unique style name. All attributes of the
referenced style are inherited by the use of the
keyword extends.

Lis. 11 EBNF representation of a style

An object can be influenced regarding the opacity
by the use of the attribute "transparency". This
causes that the element to be shown is displayed
transparently in the value range between 0.0
(completely visible) and 1.0 (completely
transparency). The background color can be defined
with the attribute background-color. Valid values of
the background color are a Hexadecimal color value,
a predefined color (default RGB colors) or a
reference to a defined gradient (see Listing 12). If a
gradient is used, the orientation can be influenced
by the parameter gradient-orientation. It can be
chosen between the values, horizontal and vertical.
The lines of an element can be influenced with the
line attributes (color, width and styles). For the line-
color are the same values valid as for the
background color. The line thickness (attribute line-
width) can be defined by passing the pixel
information. For the line types are five kinds
predefined (solid, dot, dash, dash-dot and dash dot
dot). The representation of text is steered with the
font attributes. These range from the font-name of
the font-color by specifying a hexadecimal or a
predefined color until the font size in pixels.
Besides it can be defined about true/false whether
the writing should be shown in italics or fat. The
attribute highlighting defines with which color
selected or several selected (multi-selected)
elements are bordered. In addition, can be steered
about the parameters allowed and unallowed which
color should appear with a valid or invalid
connection of two elements around the target

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 38

element. For all four parameters, a Hexadecimal
color value or a predefined color can be given. The
definition of gradients is initiated with the keyword
gradient, followed by a unique name. Within a
gradient, there are several areas. An area owns the
parameters color (Hexadecimal color value or a
predefined color) and offsets (values between 0.0
and 1.0). The offset specifies in percent from which
place should be started with the given color. There
are at least two areas mandatory to create a gradient.
The area specifications can be extended to any
number of areas.

Lis. 12 EBNF representation of a gradient

C. ζ-Diagram DSL
The diagram DSL establishes the link between

the defined graphic elements with the developed
metamodel. Thereby it is possible to connect a
specific graphic representation to a Metamodel-
class with the properties which are defined in the
Metamodel-class. The diagram definition is
initiated by the keyword diagram, followed by a
unique diagram name. After that, the referenced
metamodel must be specified in order to establish a
relationship between them. Optional a specified
style can be referenced which serves as the basic
style for the whole diagram. Through this definition
it is possible to create a corporate design for the
whole diagram which of course can always be
overwritten by an element.

In a diagram action groups can be created. An
action Group represents a collection of actions that
can be integrated by different nodes. An action is
initiated by the keyword action, followed by a
unique name. In addition, an action owns the
parameters label and implementation. The label
name of the action is displayed in the front-end.
The real implementation of an action must be
implemented by the user itself. It is crucial that a
location is predefined within the generator where
the custom implementations are stored. Within the
action, the class name and the accompanying
method name can be defined by the keywords
"class" and "method". There will be no further

testing of the implemented source code and it is up
to the programmer that the implementation is
complete and correct.

The definition of nodes is initiated with the
keyword node followed by a unique node name.
The link of the node with the metamodel-class is
prepared by the syntax "for <nodename>". In
addition, an independent style can be assigned to a
specific node. The assignment of a graphical
representation of a node is performed by the
attributes "shape" which references a previously
defined shape. The relationship of metamodel
attributes to in-/output fields within a shape can be
realized with the syntax "more Attribute / string ->
field name". The number of relations between In-
/output fields and more Attributes is unlimited. A
purely static text can be achieved by passing a
normal string literal. The property "palette"
specifies the name under which the elements are
grouped.

Furthermore, the behavior of individual nodes
can be manually extended with the properties
"onCreate", "onDelete" and "onChange". For this
purpose, already defined action Groups can be
involved by the keyword "include" or node-specific
actions can be created within the property by
specifying an action section. The number of
definable actions is unlimited, but the user must
ensure that the runtime of the application stays in a
tolerable execution time.

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 39

Lis. 13 EBNF representation of a diagram

V. IMPLEMENTATION GUIDE

In this section we explain, how to realize a
concrete implementation with the before described
languages. This is done using the Business Process
Model and Notation (BPMN) [8] as example.

The example in figure 3 shows how to create an
envelope for the mail event of BPMN with the ζ-
Elements DSL.

Fig. 3 Creation of the Shape „mail event“ (BPMN)

The whole figure is inside a circle, an ellipse

where width and height have the same value of 50.
Nested into this ellipse is a rectangle which forms
the edge of the envelope. The width of the rectangle
is 30 and the height is 20. The position is expressed
relative to the surrounding ellipse and is shifted 15

pixels down and 10 pixels to the right. Finally, a
polygon completes the envelope; also, its
coordinates are relative to its container, the
rectangle. The polygon points run from the top left
(0,0) across the lower middle (15,10) up to the
upper right point (30,0). The information of the
background color of the rectangle leads to the fact
that the rectangle is filled completely with blue.
However, the polygon overlays a part of the parent
element by which this area is let out. This is due to
the fact that nested elements lie higher from the
point of view of the cross section (Z-index).

Fig. 4 Creation of a Connection as Conditional Flow (BPMN)

A connection always consists of a line that
connects two shapes with each other. Any
connection has always a source and a target anchor,
on which the attachment of the connection is done.
But connections can have decorations, such as
arrowheads or a shape. In the example of BPMN,
there is a conditional connection, shown in Figure 4.
This connection has two decorations, the arrowhead
at the one end and the rhombus at the other. Text
such as the connection name or the cardinality can
be positioned on the connection as well. The
arrowhead is realized with a definition of a placing
at the end of the line. End of the line means that the
offset is defined as 1.0 (100%) of the position
property. The radius and the angle do not matter
because the placing is on the line. Within the
placing a polygon is defined. This runs through the
points (-10,10), (0,0) and (-10, -10). The point (0,0)
is the top of the triangle. Finally, the triangle is
filled in black by the definition of the background
color. The second placing, at the beginning of the
line, defines a rhombus. The position of the

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 40

beginning is achieved through the definition of the
offset with the value 0.0. The rhombus is a polygon,
with the points (0,0) below, (-20,10) left, (-40,0) top
and (-20, -10) right.

Lis. 14 Creation of a default Black and White Style

Listing 14 shows the definition of a Black and

White Style. This style is similar to the default style
of the connection "BPMN Conditional Flow" in
Figure 4. Only the transparency does not match.
The definition of the transparency of 0.95 would
mean that the element is barely visible. The
background-color of all elements of the style would
be applied and would be defined with white. The
lines definition with the color black, solid and width
1 applies to both connections as well as to the edges
of elements. The defined font properties were in an
italic illustration, not bold printed in a size of 10
pixels with the font "Tahoma" in black. These
properties are applied to all texts, for which the
style is used, as long as they are not overwritten by
another style definition.

Lis. 15 Diagram File Example content

The next model is the ζ-Diagram DSL. This is of
particular importance to link the defined elements
and the metamodel. Listing 15 defines a diagram
with the name "BPMN" which refers to a ζ-Core
metamodel with the name "BPMNModelElement".
Furthermore, the specified style
"BpmnDefaultStyle" is applied to all elements
which are referenced or defined in this diagram.

The defined node "BPMN Activity Call Activity" is
stored in the metamodel class "MMElement". This
assignment is realized by using the keyword "for".
The graphical representation of nodes is possible
through the assignment of a shape to the same
named attribute. In this example, the shape
"BPMN_Activity_Call Activity" is referenced and
the value of the text box "shape name" is stored
within the metamodel attribute "MMAttribute" of
the metamodel class "MMElement". The defined
node is placed in the category "Shapes" of the
generated editor. While the creation of a new node
the user is asked directly for the name of the new
element. This behavior is implemented via the
method "onCreate". This uses the standard action
"askFor" on the attribute "shape name". The
definition of an edge behaves identically to the one
of a node. Besides the fact that an edge has the
attributes "from" and "to". These attributes
reference the metamodel classes from or to which
connections are possible.
VI. EVALUATION

An evaluation of the developed languages was
conducted with a total of 38 participants. The
participants were divided into the groups Bachelor
and Master Student, Developers and Others. Each
group received a 4-hour introduction to meta-
modeling and in Zeta. After the introduction and a
break, each participant had to work on 4 tasks
sequentially. The tasks were to use the diagram
(Task one), shape (Task two) and style (Task three)
language separately and in conjunction in the final
Task four.

Task one was to use the diagram language. As a
basis was, the concept (meta-model), the style and
the element description were provided. The aim
was to describe the graphical editor and realize the
connection between the metamodel and the
graphical representations.

As a second task, the element language should be
used to create graphic elements. For this purpose,
templates were provided for the elements which
should be created without layout information. The
participants had to create 3 items in total, which had
rising complexity. As a basis, the metamodel, the
style and the diagram description had been provided.
This was needed in order to examine the textual

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 41

description with the help of the generated graphical
editor.

The next task was to use the style language for
the design of the elements. For assistance, the meta-
model, the item, the diagram description and the
graphic representation of the elements was provided.
It is important that the printed graphical
representation of the elements contains the layout
information. The correct representation could be
continuously checked with the help of the generated
graphical editor.

The final task was to create a fully functional
graphical editor. As a basis the meta-model and the
graphical representation of generated elements with
layout information was provided. The aim of this
task was to apply all previously performed tasks in
conjunction.

Fig. 5 Achieved correct results and Assistance required

Figure 5 on the left side shows that 90% of
participants could solve task one, 72.5% could
successfully solve task two, 95% task three and 80%
task four correctly. The right diagram in Figure 5
shows that the tasks could be finished without
assistance. 55% of the participants did not need
help with the editing of task one, 35% task two,
57.5% task three and 65% at task four. Task two
could only be solved correctly by about 3/4 and
only 35% of the participants did not need help, it's
probably because the definition of complex figures
by a textual description requires more exercise.
This presumption is supported by the note of the
participants that a graphical illustration of the form
would have been very helpful. However, it is
important that a large part of the participants were
able to successfully finish the tasks.

During the processing of the tasks, some usage
problems have occurred. These were divided into
the groups critical and non-critical. We defined that
a critical usage problem is that the defined goal of
the task cannot be achieved without concrete

assistance by the exercise leader. Furthermore,
these also include problems with the infrastructure,
such as system crashes or errors which are owed to
the development environment. Figure 6 shows the
distribution of the usage problems for each user
group and task. In black all occurred usage
problems are listed. In red, only the critical use
problems are illustrated. It turns out that the most
common and critical problems have arisen with task
4. This is in direct connection with task 1. A large
part of the problem is related to the complexity and
abstractness of meta-modeling and has no direct
relation to the developed languages. Task 2 and 3
show that the usage problems for the element and
style language are low to very low. The usage
problems for the element language are greater
because the textual description of complex
graphical elements, without having a direct preview,
is hard to imagine.

Fig. 6 Usability problems overview per task and user group

Task 4 has the highest complexity which is

reflected in the required processing time (see Figure
7). This figure shows the required processing time
per task and user group. It can be seen that the
processing times for the different tasks and users
are different. However, this was to be expected,
because each person processes, receives and applies
the newly acquired knowledge at different speeds.
The most important finding is that there has been a
significant improvement in the processing time
compared to the sum of task 1 to 3 to task 4. This
shows that the languages can be applied more
quickly after a period of training.

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 42

Fig. 7 Detailed processing time per task and user

Figure 8 shows the processing time for each user

group and task with the fastest, slowest (perhaps
canceled) and average value. The values are
distributed almost homogeneously. From this, it can
be concluded that the languages have a certain
complexity but almost every user is able to learn the
languages. On average the participants needed
29:45 minutes for task one, 41:15 minutes for task
two, 22:15 minutes for task three and 59:50 minutes
for task four.

The performed evaluation of the developed
languages shows that the languages have many
good approaches and the users can handle the
languages very well in general. This is
demonstrated by the high rate of successfully
completed tasks. By using some of the approaches
of CSS within the style language, the participants
find their way around very quickly. The definition
of graphic elements was initially very unfamiliar
and the possibilities were not recognized directly.
However, this has improved with increasing
processing of the task. After the training, the
diagram languages were considered to be very
compact.

Fig. 8 Processing time to completion or abort

Nevertheless, the evaluation showed that some

weaknesses are present, for example, a live preview
of the created graphical elements would be very
helpful. However, this is not an issue of the
languages but is an extension of the editor and
tooling. The keyword "ask for" has not been
understood directly by many participants. Here it
must be considered whether a renaming is useful.
The action groups of the diagram language were
entirely ignored, therefore, the question arises
whether these are useful or the use must be
described in more detail. The full evaluation plan
and report are available at [3] [4].
VII. CONCLUSION AND FUTURE WORK

In this paper we have shown that developing
graphical DSLs can be very efficient by using the
presented textual DSLs for node and edge type
diagrams. The languages can be used for the model
driven development of graphical modeling tools in
almost any environment. The presented approach
can be used for any specific domain which uses
diagrams for visualization. It is not necessary to be
an IT expert to use the DSLs, because the DSLs are
quite easy to learn, read and write. The necessary
meta model and the DSLs can be tailored to the
specific needs, thus the models can be very concise.
In this paper we showed some elements of the
BPMN, but the same approach could be used for
various domain-specific modeling languages.

The described approach is by no means finished
and still lacks a number of useful features.
Examples of such features are the inclusion of
shadows, the direct import of SVG images and the

 International Journal of Computer Techniques -– Volume 3 Issue 3 , May-June 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 43

definition of rapid buttons around an element in the
editor. These are just a few ideas for some
enhancements. More important is the question of
the limitations of the approach. In terms of the
languages itself, the style DSL could be extended to
all useful features of CSS. This would offer more
styling and layout options for the user. For some
kinds of the usability of the element DSL it would
be helpful to import or reference existing SVG
images or to integrated a live preview of the
described shapes.

The DSLs presented by us are targeted towards
graphical languages based on the notion of nodes
and edges. In UML, most diagram types fit into that
category, however there are a few exceptions. The
sequence and the timing diagram show time as one
dimension and differ in that sense. They cannot be
described with the presented DSLs without
considerable extensions.

We see more challenges with the development of
the appropriate generator, which generates the
graphical editor. Other topics, like multi-user
support in collaborative modeling environments,
evolution of Metamodels or diffing and merging
changes in versions of graphical models remain
topics of research and are independent of the
presented or a model driven approach.
REFERENCES
[1] A. Aziz and S. Mitchell. An introduction to javascript object notation

(json) in javascript and .net. Microsoft Developer Network, 2007.
[2] M. Gerhart, J. Bayer, J. M. Hoefner, and M. Boger. Approach to define

highly scalable metamodels based on json. BigMDE 2015, page 11,
2015.

[3] M. Gerhart and M. Boger. Evaluation plan. http://www.zeta-
project.org/evaluation/ Evaluierungsplan-MoDiGen-DSLs.htm, 2016.
Accessed: 2016-08-04.

[4] M. Gerhart and M. Boger. Evaluation report, http://www.zeta- pro
ject.org/evaluation/evaluationsbericht-modigen- dsls.htm.
http://www.zeta-project.org/evaluation/ Evaluationsbericht-MoDiGen-
DSLs.htm, 2016. Accessed: 2016-08-04.

[5] J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buckley. The Java
Language Specification, Java SE 8 Edition. Addison-Wesley
Professional, 1st edition, 2014.

[6] H. W. Lie and B. Bos. Cascading style sheets. Addison Wesley
Longman, 1997. [7] O. L. Madsen and B. Moller-Pedersen. Virtual classes: A powerful
mechanism in object-oriented programming. In Conference
Proceedings on Object-oriented Programming Systems, Languages and Applications, OOPSLA ’89, pages 397–406, New York, NY, USA,
1989. ACM.

[8] Object Management Group. Business Process Model and Notation, Specification V2.0. Needham, Massachusetts, Vereinigte Staaten,
2011. Accessed 2015-01-22.  

[9] ̄. Ore. Theory of Graphs. Number Teil 1 in American Mathematical
Society colloquium publications. American Mathematical Society,
1962.  

[10] R. S. Scowen. Extended bnf-a generic base standard. Technical report,
Technical report, ISO/IEC 14977. http://www. cl. cam. ac.
uk/mgk25/iso-14977. pdf, 1998.  

