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Abstract:  
A class of coupled neural networks with different internal time-delays and coupling delays is 

investigated, which consists of nodes of different dimensions. By constructing suitable Lyapunov 

functions and using the linear matrix inequality, the criteria of exponential stabilization for the coupled 

dynamical system are established, and formulated in terms of linear matrix inequality. Finally, numerical 

examples are presented to verify the feasibility and effectiveness of the proposed theoretical results. 
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I. INTRODUCTION 

With the rapid development of science and 

technology, neural networks are gradually and 

widely applied to the optimal control, combinatorial 

optimization, pattern recognition, and other fields. 

Due to the finite speeds of transmission and traffic 

congestion, time delays are common in actual 

systems, and the delays may be constant, time-

varying with parameter or mixed (see [1]). 

In the past two decades, stability or stabilization 

problems have been the hot topics for neural 

networks with time delays, including isolated neural 

networks and coupled neural networks (see [2]-[17] 

and references therein). For instance, the 

stabilization problem of delayed recurrent neural 

networks is investigated by a state estimation based 

approach in [2]. The exponential stability problem 

for a class of impulsive cellular neural networks 

with time delay is investigated by 

Lyapunovfunctions and the method of variation of 

parameters in[3]. Some studies on exponential 

stability or stabilization problem are about neural 

networks with time-varying delays (see [5]-[8]). 

Some sufficient conditions to ensure the existence, 

uniqueness and global exponential stability of the 

equilibrium point of cellular neural networks with 

variable delays are derived in[5]. For the problem 

of exponential stabilization for a class of non-

autonomous neural networks with mixed discrete 

and distributed time-varying delays, some new 

delay-dependent conditions for designing a 

memoryless state feedback controller which 

stabilizes the system with an exponential 

convergence of the resulting closed-loop system are 

established in [6]. A new class of stochastic Cohen-

Grossberg neural networks with reaction-diffusion 

and mixed delays is studied in [7]. Since the form 

of coupling is various, there exist different coupled 

neural networks, e.g. coupled term with or without 

time delays, or hybrid both. Some researches on 

stability and synchronization of different coupled 

neural networks are investigated (see [9]-[11]). 

Some global stability criteria for arrays of linearly 

coupled delayed neural networks with 

nonsymmetric coupling are established on the basis 

of linear matrix inequality method, in which the 

coupling configuration matrix may be arbitrary 

matrix with appropriate dimensions in [9]. Since 

there may be some chaotic behaviours as the 

dynamics performance of time-delay neural 

network in certain situations, chaotic neural 

networks are formed (see [12]-[14] and references 

therein). Some researches on stability and 

synchronization of chaotic neural network are 

investigated in [12]-[14]. Furthermore, sufficient 

condition for exponential stability of the 
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equilibrium solution of uncontrolled stochastic 

interval system is also presented in [15]. The 

decentralized continuous adaptive controller can be 

designed to make the solutions of the closed-loop 

system exponentially convergent to a ball, which 

can be rendered arbitrary small by adjusting design 

parameters in [16]. Mostof researches on 

synchronization problem of neural network are also 

based on linear matrix inequality method and 

Lyapunovfunctions. 

Although there are lots of researches for the 

exponential stability or stabilization problems of 

neural networks with time delay, most of them 

concern with the same dimension of the states. If a 

network is constructed by nodes with different state 

dimension, the network will exhibit different 

dynamical behaviours (see [17]-[19] and references 

therein). Dimensions of nodes are actually different 

in many practical situations, so such coupled 

complex networks need more in-depth study. 

Motivated by the above discussion, in this paper 

we consider the exponential stabilization problem 

of the coupled dynamical system. The dimensions 

of states in each isolated network are different, and 

the internal time-delays are different from the 

coupling delays. In Sec.3, the criteria of exponential 

stabilization for the coupled dynamical system are 

given and proved on basis of the linear matrix 

inequality and Lyapunovfunction. In Sec.4, two 

numerical simulation examples are given to 

demonstrate the effectiveness of the proposed 

theoretical results. In Sec.5, some concluding 

remarks are given. 

II. SYSTEM DESCRIPTION AND PRELIMINARIES 

Consider a coupled dynamical system with nodes 

of different dimensions and time delays: 

1

2

1 1

( )
( ) ( ( )) ( ( ))

( ) ( ) ( ),

i

i i i i i i i i i

N N

i ij ij j i ij ij j i i

j j

dx t
D x t A f x t B f x t

dt

g C x t g x t u t

τ

α β τ
= =

= − + + −

+ + Γ − +∑ ∑
(1) 

in which each isolated node network with different 

dimensions and time delays is considered as: 

1

( )
( ) ( ( )) ( ( )),i

i i i i i i i i i

dx t
D x t A f x t B f x t

dt
τ= − + + −  (2) 

where 1,2, ,i N= L ; 
1 2( ) ( ( ), ( ), , ( )) i

i

nT

i i i in
x t x t x t x t= ∈ ℜL

is the state vector of the i th node; , i in n

i i
A B

×∈ℜ  are 

constant matrices that representing the feedback 

matrix without and with time delays respectively; 

1 2( , , , ) 0
ii i i inD diag d d d= >L  is a constant and diagonal 

matrix; ( )if ∗  is the activation function; ( )
ij N N

G g ×=  is 

an outer coupling matrix representing the coupling 

strength and the topological structure of the neural 

networks; , i jn n

ij ij
C

×
Γ ∈ℜ are inner coupling matrices 

respectively representing the inner-linking strengths 

between the cells without and with time 

delays,when 
i j

n n≠ , , i jn n

ij ijC
×

Γ ∈ℜ are arbitrary 

matrices; ,i iα β  are the strengths of the constant 

coupling and delayed coupling, respectively;
1 2,i iτ τ  

are the constant and positive delays, 
1 20, 0i iτ τ> >  

and 
1 2,i iτ τ τ τ< < ; 

1 2( ) ( ( ), ( ), , ( )) i

i

nT

i i i inu t u t u t u t= ∈ℜL  is 

an external input. 

The initial condition associated with (1) is given 

as follows:  

[ ]( )( ) ( ) ,0 ,
ij ij

x s s Cφ τ= ∈ − ℜ ,(3) 

where 1 2max{ , }i i iτ τ τ= , 1 2max{ , , , }Nτ τ τ τ= L ,  

1, 2, ,i N= L , 1, 2, , ij n= L .  

For convenience, the notations are givens as 

follows:  

I denotes M M× identity matrix; 
inI denotes i in n×

identity matrix; T
y y y= denotes the norm of y ;

max ( )λ ∗ and
min ( )λ ∗  respectively denote the maximum 

and minimum eigenvalue of ∗ ;
1 2 NM n n n= + + +L ; 

1 2
( ) ( ( ), ( ), , ( ))T T T T

N
X t x t x t x t= L ， 

1 2
( ) ( ( ), ( ), , ( ))T T T T

N
U t u t u t u t= L ， 

1 1 2 2
( ( )) ( ( ( )), ( ( )), , ( ( )))T T T T

N N
F X t f x t f x t f x t= L ， 

1 1 1 11 2 2 21

1

( ( )) ( ( ( )), ( ( )),

, ( ( )))

T T

T T

N N N

F X t f x t f x t

f x t

τ τ τ

τ

− = − −

−L
， 

2 1 12 2 22 2
( ) ( ( ), ( ), , ( ))T T T T

N N
X t x t x t x tτ τ τ τ− = − − −L ， 

( )diag L denotes a block-diagonal matrix;  

1 2( , , , )ND diag D D D= L ; 
1 2( , , , )NA diag A A A= L ;  

1 2( , , , )NB diag B B B= L ; 1 2( , , , )
ii i i inW diag w w w= L ;  

1 2( , , , )NW diag W W W= L ;  

*

X Y

Z

 
 
 

is defined as a matrix in form of 
T

X Y

Y Z

 
 
 

. 
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In order to study the exponential stabilization of 

the coupled dynamical system (1), the linear 

controller isdesigned as 

( ) ( )U t KX t= − ,i.e., ( ) ( )i i iu t K x t= − , (4) 

where 1 2( , , , )
ii i i inK diag k k k= L , 

1 2( , , , )NK diag K K K= L . 

Hence, equation (1) can be rewritten as  

1

1 2 2

( )
( ) ( ) ( ( )) ( ( ))

( ) ( ),

dX t
D K X t AF X t BF X t

dt

H X t H X t

τ

τ

= − + + + −

+ + −

(5) 

where 

1 11 11 1 12 12 1 1 1

2 21 21 2 22 22 2 2 2

1

1 1 2 2

N N

N N

N N N N N N N NN NN

g C g C g C

g C g C g C
H

g C g C g C

α α α

α α α

α α α

 
 
 =
 
 
 

L

L

M M O M

L

, 

1 11 11 1 12 12 1 1 1

2 21 21 2 22 22 2 2 2

2

1 1 2 2

N N

N N

N N N N N N N NN NN

g g g

g g g
H

g g g

β β β

β β β

β β β

Γ Γ Γ 
 Γ Γ Γ =
 
 

Γ Γ Γ 

L

L

M M O M

L

 . 

Assume that * * * *

1 2( , , , )
T T T T

N
X x x x= L is the 

equilibrium point of the coupled dynamical system 

(1), then itsatisfies 
*

* * * * *

1 2( ) ( ) ( ) ,
dX

D K X Af X Bf X H X H X
dt

= − + + + + + (6) 

i.e., * * * * *

1 2( ) ( ) ( ) 0D K X Af X Bf X H X H X− + + + + + = , 

where * * * *

1 2
( , , , )

i

T

i i i in
x x x x= L .  

Define the linear coordinate transformation
*( ) ( )E t X t X= − , andthe new dynamical systems can 

be described as follows: 

1

2

1 1

( )
( ) ( ( )) ( ( ))

             ( ) ( ) ( )

i

i i i i i i i i i

N N

i ij ij j i ij ij j i i

j j

de t
D e t A e t B e t

dt

g C e t g e t U t

φ φ τ

α β τ
= =

= − + + −

+ + Γ − +∑ ∑
 (7) 

That is, 

1

1 2 2

( )
( ) ( ( )) ( ( ))

( ) ( ) ( )

dE t
DE t A E t B E t

dt

H E t H E t U t

τ

τ

= − + Φ + Φ −

+ + − +

,(8) 

where 

1 2

* * *

1 1 2 2

( ) ( ( ), ( ), , ( ))

( ( ) , ( ) , , ( ) ) ,

i

i i

T

i i i in

T

i i i i in in

e t e t e t e t

x t x x t x x t x

=

= − − −

L

L
 

( ( )) ( ( )) ( ),i i i i i ie t f x t f xφ ∗= − ( ) ( ),i i iU t K e t= −  

1 1( ( )) ( ( )) ( ),i i i i i i i ie t f x t f xφ τ τ ∗− = − − ( ) ( ),U t KE t= −  

1 2( ) ( ( ), ( ), , ( )) ,
T T T T

NE t e t e t e t= L
*( ) ( ) ,E t X t X= −  

1 1 2 2

*

( ( )) ( ( ( )), ( ( )), , ( ( )))

( ( )) ( ),

T T T T

N NE t e t e t e t

F X t F X

φ φ φΦ =

= −

L
 

*

1 1( ( )) ( ( )) ( ),E t F X t F Xτ τΦ − = − −  

2 1 12 2 22 2( ) ( ( ), ( ), , ( )) .T T T T

N NE t e t e t e tτ τ τ τ− = − − −L  

Assumption 1.The activation function 

1 1 2 2
( ( )) ( ( ( )), ( ( )), , ( ( )))

i i

T

i i i i i i in in
f x t f x t f x t f x t= L  

isLipschitz continuous, i.e., there exist constants 

0ilw > , such that  

1 2 1 2( ) ( )il il ilf f wξ ξ ξ ξ− ≤ −  

holdsfor any different 
1 2,ξ ξ ∈ℜ , and 

1 2ξ ξ≠ , where 

1, 2, ,i N= L , 1,2, , il n= L . 

Definition 1[13]For given 0k > , the dynamical 

system (1) is said to be exponential stabilization, if 

there exist constant 0Z >  such that the following 

inequality
2 2

( ) kt
E t Z eϕ −≤ holds for all initial 

conditions ( )( 1, , ; 1, , )ij ie s i N j n= =L L  of system (7) 

and any t T≥ (sufficiently large 0T > ), where 

2

1 10

( )=sup
i

i

n

j

N

i js

e s
τ

ϕ
= =− ≤ ≤

∑∑ . 

Lemma 1 [4] For any ,
n

x y ∈ ℜ  and positive 

definite matrix n nQ ×∈ ℜ , the following matrix 

inequality holds:  
12 T T Tx y x Qx y Q y−≤ + . 

Lemma 2[6]The linear matrix inequality 
( ) ( )

0
( ) ( )

T

Q x S x

S x R x

 
> 

 
, 

where ( ) ( )TQ x Q x= , ( ) ( )TR x R x= , is equivalent to 

( ) 0R x > , and 1( ) ( ) ( ) ( ) 0TQ x S x R x S x−− > .  

Lemma 3 [5]If Q , R are real symmetric matrices, 

and 0Q > , 0R ≥ , then a positive constant σ exist, 

such that the following inequality holds: 

0Q Rσ− + < . 

III. EXPONENTIAL STABILIZATION ANALYSIS 

Theorem 1.Under the assumption 1, the coupled 

dynamical system (1) is exponential stabilization,if 

there exist M M× positive definite diagonal matrices 

P , Q , R and K ,such that the following linear 

matrix inequalities hold: 0Ξ > ,where 
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1 2

* 0 0 0

0* * 0 0

* * * 0

* * * *

PA PB PH PH

Q

R

Q

Q

ψ 
 
 
 Ξ = >
 
 
  

,(9) 

2
T T

PD D P K K WQW WRW Qψ = + + + − − − ， 

1 2 1 2
( , , , ), ( , , , ),

ii i i in N
P diag p p p P diag P P P= =L L  

1 2 1 2( , , , ), ( , , , ),
ii i i in NQ diag q q q Q diag Q Q Q= =L L  

1 2 1 2
( , , , ), ( , , , ),

ii i i in N
R diag r r r R diag R R R= =L L  

1 2 1 2( , , , ), ( , , , ).
ii i i in NW diag w w w W diag W W W= =L L  

Moreover, the gain matrix of a desired controller of 

the form (4) is given by 1K P K−= . 

Proof. From Lemmas 2 and 3, we get the 

following conclusion: there exist a positive constant
λ , such that 

*

1 2

1

* 0 0 0

0* * 0 0

* * * 0

* * * *

PA PB PH PH

Q

R

Q

Q

ψ 
 

− 
 Ξ = <−
 

− 
 − 

, 

where * ( 1)( )P e Q WRWλτψ ψ λ= − + + − +  . 

Consider the Lyapunovfunction as  

1 2 3( ) ( ) ( ) ( )V t V t V t V t= + + ,(10) 

1

1

( ) ( ) ( )
N

t T

i i i

i

V t e e t Pe tλ

=

= ∑  

2

( )

2

1

( ) ( ) ( )
i

N t
s T

i i i
t

i

V t e e s Q e s ds
λ τ

τ

+

−
=

=∑∫  

1

( )

3

1

( ) ( ( )) ( ( ))
i

N t
s T

i i i i i
t

i

V t e e s R e s dsλ τ

τ
φ φ+

−
=

=∑∫ . 

Calculating the time derivatives of 1( )V t , 2 ( )V t and 

3 ( )V t  along the trajectories of system (7), we have  

1

1 1

( ) ( ) ( ) 2 ( ) ( )

       ( ) ( ) 2 ( ) ( )

N N
t T t T

i i i i i i

i i

t T t T

V t e e t Pe t e e t Pe t

e E t PE t e E t PE t

λ λ

λ λ

λ

λ

= =

= +

= +

∑ ∑& &

&

(11) 

2

( )

2

1

( )

2 2

1

( )

2 2

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

i

N
t T

i i i

i

N
t T

i i i i i

i

t T t T

V t e e t Q e t

e e t Q e t

e E t QE t e E t QE t

λ τ

λ τ τ

λ τ λ

τ τ

τ τ

+

=

− +

=

+

=

− − −

≤ − − −

∑

∑

&

(12) 

1

( )

3

1

( )

1 1

1

( )

1 1

( ) ( ( )) ( ( ))

( ( )) ( ( ))

( ( )) ( ( ))

( ( )) ( ( ))

i

N
t T

i i i i i

i

N
t T

i i i i i i i

i

t T

t T

V t e e t R e t

e e t R e t

e E t R E t

e E t R E t

λ τ

λ τ τ

λ τ

λ

φ φ

φ τ φ τ

τ τ

+

=

− +

=

+

=

− − −

≤ Φ Φ

− Φ − Φ −

∑

∑

&

(13)

 

From Lemma 1 and Assumption 1, we obtain  

1

1

2 ( ) ( ( ))

( ) ( ) ( ( )) ( ( ))

( ) ( ) ( ) ( ),

T

T T T

T T T

E t PA E t

E t PAQ A PE t E t Q E t

E t PAQ A PE t E t WQWE t

−

−

Φ

≤ + Φ Φ

≤ +

(14) 

1

1

1 1

2 ( ) ( ( ))

( ) ( ) ( ( )) ( ( )),

T

T T T

E t PB E t

E t PBR B PE t E t R E t

τ

τ τ−

Φ −

≤ + Φ − Φ −
(15) 

2 2

1

2 2 2 2

2 ( ) ( )

( ) ( ) ( ) ( ) ( )

T

T T T

E t PH E t

E t PH Q H PE t E t QE t

τ

τ τ−

−

≤ + − −
(16) 

1

1

1 1

2 ( ) ( )

( ) ( ) ( ) ( ) ( )

T

T T T

E t PH E t

E t PH Q H PE t E t QE t
−≤ +

(17) 

Substituting (11)~(17) into ( )V t& , it yields 

1 1

1 1

1 1 2 2 2

( )

] ( )}

{ ( )[

( ) ( )

t T T

T T

T T

V t e E t P PD D P WQW e Q

e WRW Q PAQ A P PBR B P

PH Q H P P PH K E tQ H P

λ λτ

λτ

λ
− −

− −

≤ − − + +

+ + + +

+ + −

&

(18) 

From Lemma 2, 1
0Ξ <  is equivalent to 

1 1

1 1

1 1 2 2

( ) ( )

( ) ( )

  0

T

T T

T T

P P D K D K P WQW e Q

e WRW Q PAQ A P PBR B P

PH Q H P PH Q H P

λτ

λτ

λ
− −

− −

∆ = − + − + + +

+ + + +

+ +

<

(19) 

It is derived that ( ) 0V t ≤& . Therefore, we know 

( )V t  is decreasing from =0t , and ( ) (0)V t V≤ .  

From the initial conditions (3) of the coupled 

dynamical system (1),we obtain the initial 

conditions of thenew dynamical system (8) are

[ ]( )*
( ) ( ) ( ) ,0 ,

ij ij ij
e s s x s Cϕ τ= − ∈ − ℜ . 

It follows from (10) that 

2

1

2

1

0
0 ( )

1 1

0
( )

1

0
( )

1

0
( )

1

(0) (0) (0) ( ) ( )

( ( )) ( ( ))

(0) (0) ( ) ( )

( ( )) ( ( ))

i

i

i

i

N N
T s T

i i i i i i

i i

N
s T

i i i i i

i

N
T s T

i i i

i

N
s T

i i i i i

i

V e e Pe e e s Q e s ds

e e s R e s ds

E PE e e s Q e s ds

e e s R e s ds

λ τ

τ

λ τ

τ

λ τ

τ

λ τ

τ

φ φ

φ φ

+

−
= =

+

−
=

+

−
=

+

−
=

= +

+

= +

+

∑ ∑∫

∑∫

∑∫

∑∫

(20) 
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2

0
( )

1

0 0
( )

1

0 2 2

max max

( ) ( )

( ) ( ) ( ) ( )

1
( ) ( )

i

N
s T

i i i

i

N
s T s T

i i i

i

s

e e s Q e s ds

e e s Q e s ds e e E s QE s ds

e
e Q e ds Q

λ τ

τ

λ τ λτ λ

τ τ

λτ
λτ λ

τ
λ ϕ λ ϕ

λ

+

−
=

+

− −
=

−

≤ =

−
≤ ⋅ = ⋅

∑∫

∑∫ ∫

∫

(21) 

2

0
( )

1

0

0 2

max

2

max

( ( )) ( ( ))

( ) ( )

( )

1
( )

i

N
s T

i i i i i

i

s T

s

e e s R e s ds

e e E s WRWE s ds

e WRW e ds

e
WRW

λ τ

τ

λτ λ

τ

λτ λ

τ

λτ

φ φ

λ ϕ

λ ϕ
λ

+

−
=

−

−

≤

≤ ⋅

−
= ⋅

∑∫

∫

∫
(22) 

Substituting (21)~(22) into (0)V , we get  

2 2

max max max

2

max max max

1
(0) ( ) [ ( ) ( )]

1
{ ( ) [ ( ) ( )]}

e
V P Q WRW

e
P Q WRW

λτ

λτ

λ ϕ λ λ ϕ
λ

λ λ λ ϕ
λ

−
≤ + ⋅ +

−
= + ⋅ +

(23) 

From
2

min 1( ) ( ) ( ) ( )
t

e P E t V t V t
λ λ⋅ ≤ ≤ and 

( ) (0)V t V≤ ,we have 
2

min ( ) ( ) (0)
t

e P E t V
λ λ⋅ ≤ . (24) 

Combining with (23) and (24), we obtain  
2

max

min

2

max max

2

1
( ) { ( )

( )

1
[ ( ) ( )]} t

t

E t P
P

e
Q WRW e

Z e

λτ
λ

λ

λ
λ

λ λ ϕ
λ

ϕ

−

−

≤ ⋅

−
+ ⋅ + ⋅

=

(25) 

where max max max

min

1 1
{ ( ) [ ( ) ( )]}

( )

e
Z P Q WRW

P

λτ

λ λ λ
λ λ

−
= ⋅ + ⋅ + .  

That is, the coupled dynamical system (1) with 

nodes of different dimensions and time delays is 

exponential stabilization.This completes the proof. 

IV. NUMERICAL EXAMPLES 

Example 1.Consider a coupled dynamical 

system (1) is composed of two isolated node 

networks, in which the parameters are given as 

follows:  
2N = , 1 2n = , 2 3n = , ( ) sin( )il ilf x x= , 1, 2i = , 1,..., il n= , 

1

8 0

0 9
D

 
=  
 

, 1

0.2 -0.1

-0.5 0.9
A

 
=  
 

, 1

-0.9 0.8

0.7 0.6
B

 
=  
 

, 

2

3 0 0

0 7 0

0 0 6

D

 
 =  
  

, 2

0.1 -0.1 -0.2

0.1 0.2 -0.3

-0.5 0.4 0.9

A

 
 =  
  

, 

2

-0.8 0.3 0.7

-0.5 -0.7 0.3

-0.3 0.4 -0.1

B

 
 =  
  

, 21

-0.6 0.6

-0.2 -0.8

0.7 -0.2

C

 
 =  
  

, 

11

0.1 -0.8

-0.1 0.3
C

 
=  
 

, 12

0.4 0.3 0.9

-0.7 0.1 0.3
C

 
=  
 

,  

11

-0.2 -0.4

0.9 0.4

 
Γ =  

 
, 12

0.9 -0.9 0.7

-0.6 0.1 0.3

 
Γ =  

 
, 

22

-0.8 -0.1 0.8

-0.2 -0.3 -0.9

-0.6 0.9 0.5

C

 
 =  
  

, 21

0.3 0.1

-0.2 -0.1

-0.6 -0.7

 
 Γ =  
  

, 

22

0.9 0.1 0.7

0.4 -0.8 0.6

-0.3 0.8 -0.4

 
 Γ =  
  

,
0.2 0.6

0.7 0.1
G

 
=  
 

, 

1 0.1α = , 2 0.2α = , 1 0.9β = , 2 0.1β = , 

11 0.5τ = , 12 0.7τ = , 21 0.6τ = , 22 0.4τ = , 

By calculating, we know that equilibrium points 

of the two isolated node networks (2) are 

( )7

1 10 * 0.0111, 0.0034
T

x
−= −%  

( )7

2 10 * 0.0756, 0.0117,0.1720
T

x
−= −% , 

respectively. Therefore, it is easy to derive that 
1ilw = , and 5W I= , for 1, 2, ,i N= L , 1,2, , il n= L . 

By using the MATLAB LMI Control Toolbox, 

solving the linear matrix inequalities in Theorem 1, 

it yields the following feasible solutions:  

( )3.7960,3.4276,3.9682, 4.5893,5.0527P diag=  

( )20.2148,20.3078,20.4814,20.5548, 20.2048Q diag=  

( )20.2106,20.2726,20.3884, 20.4373,20.2040R diag=  

( )20.1689,19.9210,19.4580,19.2622,20.1957K diag=  

Then, we have 

( )5.3132,5.8119, 4.9035,4.1972,3.9970K diag= . 

According to Theorem 1, given the initial 

condition: 

(0) (0.5,  - 0.2,  - 0.3,  0.2,  0.5)TX = , 

the coupled dynamical system (1) can achieve the 

exponential stabilization, and the equilibrium point 

is 
1010 *(0.0913, 0.0236,0.1704, 0.0514,0.3277)TX ∗ −= − − , 

the simulation results are plotted in Fig. 1. All state 

trajectories converge to the equilibrium point, and 

the equilibrium point of the coupled dynamical 

system (1) is different from that of each isolated 

node network (2).  
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Fig. 1.The state trajectories of coupled 

dynamical system in Example 1. 

Example 2. Consider a coupled dynamical 

system (1) is composed of two isolated node 

networks, in which the parameters are given as 

follows:  
2N = , 1 2n = , 2 3n = , ( ) sin( )+1il ilf x x= , 

1, 2i = , 1,..., il n= , 

1

29 0

0 36
D

 
=  
 

, 1

1 -1

5 -4
A

 
=  
 

, 1

-3 1

4 5
B

 
=  
 

, 

2

33 0 0

0 21 0

0 0 34

D

 
 =  
  

, 2

-3 1 4

1 1 -1

-2 1 1

A

 
 =  
  

, 2

-5 -5 4

1 2 4

2 -4 3

B

 
 =  
  

, 

11

-5 -1

1 -2
C

 
=  
 

, 12

4 -2 -4

-2 -4 2
C

 
=  
 

, 

11

-1 -2

-1 2

 
Γ =  

 
, 12

3 -5 -5

-1 -3 1

 
Γ =  

 
, 

21

1 4

-5 -2

2 4

C

 
 =  
  

, 22

-4 2 1

3 -5 4

-4 4 4

C

 
 =  
  

, 

21

3 -3

2 1

-3 5

 
 Γ =  
  

, 22

-4 3 -3

-5 2 3

-2 4 3

 
 Γ =  
  

,
0.9 0.7

0.1 0.4
G

 
=  
 

, 

1
0.1α = , 2 0.4α = , 1 0.9β = , 2 0.6β = , 

11
0.5τ = , 12 1τ = , 21 0.8τ = , 22 0.4τ = , 

By calculating, we know that equilibrium points 

of the two isolated node networks (2) are  

( )1 0.0645,0.2690
T

x = −%  

( )2 0.3305,0.3848, 0.0039
T

x = − −% , 

respectively. Therefore, it is easy to derive that 
2ilw = , and 52W I= ,for 1, 2, ,i N= L , 1,2, , il n= L . 

By using the MATLAB LMI Control Toolbox, 

solving the linear matrix inequalities 0Ξ >  in 

Theorem 1, it yields the following feasible solutions:  

( )3.5079,2.2782,2.0888,4.6528,3.3211P diag=
 

( )24.8830,23.2186,22.5922,24.6529, 26.5236Q diag=
 

( )24.6942, 22.3220,21.7158, 26.2661, 29.3649R diag=
 

( )44.4094,53.7464,62.1294,47.1680,39.8634K diag=
 

Then, we have 

( )12.6598, 23.5912,29.7447,10.1376,12.0031K diag= . 

Given the initial condition

(0) (1, 1, 2, 2,1)TX = − − ,according to Theorem 1,the 

coupled dynamical system (1) can achieve the 

exponential stabilization and the equilibrium point 

is  

( 0.0376,0.1092, 0.1181,0.1190,0.0145)TX ∗ = − − , 

the simulation results are plotted in Fig. 2. All state 

trajectories converge to the equilibrium point, and 

the equilibrium point of the coupled dynamical 

system (1) is different from that of each isolated 

node network (2).  

 
Fig. 2.The state trajectories of coupled dynamical 

system in Example 2. 

V. CONCLUSION 

In this paper, the exponential stabilization 

problem has been investigated for the coupled 

neural networks. Thedimensions of states in each 

isolated network can be different, and dimensions 

of nodes are actually differentin many practical 
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situations, so the derived results will have wider 

applicability. The criteria of 

exponentialstabilization for the coupled dynamical 

system are established on basis of the linear matrix 

inequality andLyapunovfunction. The effectiveness 

of the proposed theoretical results has been 

demonstrated by two numerical simulation 

examples. In addition, finite-time control could be 

an alternative method for the 

exponentialstabilization of such kind of coupled 

dynamical system, which deserves our further 

investigation. 
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