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Abstract: 
An optimal control advance is used to solve the problem of routing in sensor networks where the goal is 

to maximize the network’s lifetime. In our analysis, the energy sources (batteries) at nodes are not 

assumed to be “ideal” but quite behaving according to a dynamic energy use model, which captures the 

nonlinear behavior of actual batteries. We show that in a permanent topology case there exists an optimal 

policy consisting of time-invariant routing probabilities, which may be obtained by solving a set of 

relatively simple nonlinear programming (NLP) problems. We also show that this optimal policy is, under 

very mild conditions, robust with admiration to the battery model used. Further, we consider a joint 

routing and initial energy allocation problem over the network nodes with the same network lifetime 

maximization objective. We show that the solution to this problem is given by a policy that depletes all 

node energies at the same time and that the Equivalent energy allocation and routing probabilities are 

obtained by solving an NLP problem. Numerical examples are included to display the optimality of the 

time-invariant policy and its robustness with admiration to the battery model used. 
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I.     INTRODUCTION 

A WIRELESS SENSOR NETWORK (WSN) is a 

spatially spread wireless network consisting of low-

cost independent nodes, which are mainly battery 

powered and have sensing and wireless message 

capabilities. Applications of such networks include 

examination, surveillance, and environmental 

monitoring. Power use is a key issue in WSNs,  

since it directly impacts their lifetime in the likely 

nonattendance of human involvement for most 

applications of interest. Since the majority of power 

use is due to the  radio component , nodes rely on  

short-range message and form a multi hop network 

to deliver in order to a base station. Routing 

schemes in WSNs aim to deliver data from the data 

sources (nodes with sensing capabilities) to a data 

sink in an energy-efficient and consistent way. A 

survey of the state-of-the-art routing algorithms is 

provided in [1]. 

    We focus on the problem of routing in a WSN 

with the objective of optimizing presentation 

metrics that reproduce the imperfect energy 

resources of the network while also preventing 

ordinary security vulnerabilities. Most future outing 

Protocols in WSNs are based on straight path 

algorithms. Such algorithms usually need each node 

to maintain a global cost (or state) in order table, 

which is a significant burden for resource-

constrained WSNs. proposed a multipath routing 

algorithm, so that a breakdown on the main path 

can be recovered without initiating a network-wide 

flooding process for path rediscovery.  

On the other hand, judgment multiple paths and 

sending packets through them also consumes 

energy, thus adversely impacting the Life time of 
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the network if there are no failures. The routing 

policies mentioned earlier may indirectly reduce 

energy usage in WSNs, but they do not explicitly 

use energy use models to address optimality of a 

routing policy with admiration to energy-aware 

metrics. Such “energy awareness” has motivated a 

number of minimum-energy routing algorithms, 

which typically seek paths minimizing the energy 

per packet consumed (or maximizing the residual 

node energy) to reach a destination. However, 

seeking a minimum energy path can rapidly deplete 

energy from some nodes and ultimately reduce the 

full network’s lifetime by destroying its 

connectivity. Thus, an alternative presentation 

metric is the network lifetime. The definition of the 

term “life-time” for WSNs varies. Some 

researchers, e.g., [7], define the network lifetime as 

the time until the first node depletes its battery; 

however, this may just as well be defined as the 

time until the data source cannot reach the data sink 

[5]. In what follows, we will adopt the former 

definition, i.e., the time until the first node depletes 

its battery. As our results will show, it is often the 

case that an optimal policy controlling the WSN’s 

resources leads to individual node lifetimes being 

the same or almost the same as those of others, 

 hence this definition is a good characterization of 

the overall network’s lifetime. Along the lines of 

energy-aware routing, Shah and Rabaey proposed 

an Energy Aware Routing (EAR) policy, which 

does not attempt to use a single optimal path, but 

quite a number of suboptimal paths that are 

probabilistically selected with the intent of 

extending the network lifetime by “spreading” the 

traffic and forcing nodes in the network to deplete 

their energies at the same time. In a similar problem 

is studied with the inclusion of uncertainties in 

several WSN parameters. From a network security 

viewpoint, deterministic routing policies  are highly 

vulnerable to attacks that In order to reduce the 

effect of such attacks, probabilistic routing is an 

interesting alternative, since this makes it difficult 

for attackers to identify an “ideal” node to take 

over. In this sense, the EAR policy is attractive 

because of its probabilistic routing structure, even 

though it does not attempt to provide optimal 

routing probabilities for network lifetime 

maximization. It is worth mentioning, however, that 

a routing policy based on probabilities can easily be 

implemented as a deterministic policy as well by 

transforming these probabilities to packet flows 

over links and using simple mechanisms to ensure 

that flows are maintained over time. 

The network lifetime maximization problem 

studied in [7] is based on two assumptions. First, it 

assumes that the energy in a battery depletes 

linearly with admiration to the quantity of informa-

tion forwarded, and does not depend on the physical 

dynamics of the battery itself. Second, it seeks 

permanent routing probabilities over time, even 

though the dynamic behavior of the WSN may in 

fact imply that a time-dependent routing policy may 

be optimal. More generally, routing problems in 

WSNs are based on ideal battery models where a 

battery maintains a stable voltage during the 

discharge process and a stable capacity for all 

discharge profiles, neither of which is generally 

true. This dynamic behavior also leads to the 

conjecture that an optimal routing policy should 

consider the battery state over time and should, 

therefore, be time-dependent quite than permanent. 

Thus, an optimal control problem formulation for 

the network lifetime maximization problem seems 

to be a natural setting. 

We adopt an optimal control setting with the goal 

of determining routing probabilities so as to 

maximize the lifetime of a WSN subject to a 

dynamic energy use model for each node. In 

particular, we will use a Kinetic Battery Model 

(KBM) , which has productivey been applied in 

other power management applications. We will then 

show that in a permanent network topology case 

there exists an optimal policy consisting of time-

invariant routing probabilities. We subsequently 

show that the optimal control problem may be 

converted into a set of relatively simple nonlinear 

programming (NLP) problems. Moreover, under a 

very mild condition, this optimal routing policy is 

in fact robust with admiration to the battery model 

used, the routing probabilities are not affected by 

the battery model used, although naturally the 

estimated WSN lifetime itself is significantly longer 

under a nonideal battery model, primarily due to the 

recovery effect mentioned earlier. We also consider 

an alternative problem where, in addition to routing, 

we allocate a total initial energy over the network 
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nodes with the same network lifetime maximization 

objective; the idea here is that a proper allocation of 

energy can further increase the network lifetime.  

That the solution to this problem is given by a 

policy that depletes all node energies at the same 

time and that the Equivalent energy allocation and 

routing probabilities are obtained by solving again 

an NLP problem. when the battery behavior is 

reduced to a simple idealized model, our setting 

recovers that of and where it was shown that the set 

of NLP sub problems can in fact be transformed 

into the linear programming (LP) formulation in 

[7]. It was also that the initial energy allocation 

problem can be reformulated into a shortest path 

problem on a graph where the arc weights equal the 

link energy costs. 

We formulate the maximum lifetime optimization 

problem using non ideal energy sources at nodes 

that have their own dynamics. We adopt a standard 

energy use model along with the aforementioned 

KBM. That for a permanent network topology there 

exists an optimal routing policy which is time 

invariant and identify a set of NLP problems, which  

can be solved to obtain an explicit permanent 

optimal routing vector and the Equivalent WSN 

lifetime. We also derive sufficient conditions under 

which this optimal policy is robust with admiration 

to the battery model used. It is optimal to set a 

routing vector and initial node energies, so that all 

nodes have the same lifetime. An explicit solution 

can again be obtained by solving an NLP problem. 

Numerical examples are included to display our 

analytical results. 

II.     OPTIMAL CONTROL PROBLEM    

FORMULATION 

In order to simplify our analysis, we will 

consider a WSN with a single source node and one 

base station and will assume a permanent topology. 

It will become clear that our methodology can be 

extended to multiple sources and one base station, 

as well as time-varying topologies, although the 

main permanent optimal routing result will 

obviously no longer hold in general. 

 
A. Network Model: 

Consider a network with  nodes, where 0 and 

 denote the source and destination (base station) 

nodes, respectively. Except for the base station 

whose energy supply is not constrained, a  

imperfect amount of energy is available to all other 

nodes. 

 
B. Energy Use Model: 

Under the assumption that an electrochemical 

battery cell is “ideal,” a stable voltage during the 

discharge process and a stable capacity for all 

discharge profiles are both maintained over time. 

However, in real batteries, the rate capacity effect 

[12] leads to the loss of capacity with increasing 

load current, and the recovery effect  makes the 

battery appear to regain portions of its capacity 

after some resting time. Due to these phenomena, 

the voltage as well as energy amount delivered by 

the battery heavily rest on the discharge profile. 

Therefore, when dealing with energy optimization, 

it is necessary to consider this along with nonlinear 

variations in a battery’s capacity. As a result, there 

are several proposed models to describe a non ideal 

battery; a detailed overview. Accordingly, models 

are broadly classified electro chemical  [12], 

circuit-based  [8], stochastic [10], [9], [11], and 

analytical. Electrochemical models possess the 

highest accuracy, but their complexity makes them 

impractical for most real-time applications. 

Electrical-circuit models are much simpler and, 

therefore, computationally less expensive but their 

accuracy leads to errors, which may be reduced at 

the expense of added complexity [8]. Stochastic 

models use a discrete time Markov chain with  

states to represent the number of charge units 

available in the battery. Since is large (in the 

order of ), these models are also imperfect by 

high computational requirements. Last but not the 

least, analytical models, including diffusion-based 

models [2] and the KBM, use only a few equations 

to capture the battery’s main features. While 

diffusion-based models are hard to combine with a 

presentation model  a KBM combines speed with 

sufficient accuracy, as reported, for instance, in 

embedded system applications. Experimental proof 

for the accuracy of the KBM is also provided in . 

The KBM was productivey used to study problems 

of optimal single and multi battery power control in 
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with results consistent with the use of a more 

elaborate linear state space model  derived from the 

popular RVW diffusion-based model. In what 

follows, we briefly review the KBM. 

The KBM models a battery as two wells of 

charge, as shown in Fig. 1. The available-charge 

well (R-well) directly supplies 

 

 

 

 

 

 

 

 

 

 

 

Electrons to the load, whereas the bound-charge 

well (B-well) only supplies electrons to the R-well. 

The energy levels in the two wells are denoted by 

 and ,respectively. The rate of energy flow 

from the B-well to the R-well is .The 

output  is the workload of the battery at time . 

Three factors (e.g., see [4], [3]): the energy needed 

to sense a bit , the energy needed to receive a bit  

and the energy needed to transmit a bit  . If the 

distance between two nodes is , we have 

 

 

where ,  are given stables dependent on the 

communication and sensing characteristics of 

nodes, and  is a function monotonically 

increasing in ; the most common such function is 

 where ,  are given stables and  

is a stable dependent on the medium involved. Use 

this energy model but ignore the sensing energy, 

i.e., set . Clearly, this is a relatively simple 

energy model that does not consider the channel 

quality or the Shannon capacity of each wireless 

channel. The ensuing optimal control analysis is not 

critically dependent on the exact form of the energy 

use model attributed to message, although the 

ultimate optimal value of  obviously is. Before 

proceeding, it is convenient to define the following 

stables: 

 

 <  <  

 

 

 

where  is the distance between nodes  

and . Note that we may allow these stable to be 

time-dependent if the network topology is not 

permanent, i.e.,  is time-varying. Let us now 

combine the KBM model above with (4). Although 

the ability to recharge a battery offers an interesting 

possibility for routing control, we shall not consider 

it in this paper, i.e., set  in (2) and (3). 

Moreover, for simplicity, we set . Then, 

starting with node 0, the work load  at that 

node. where we have used the fact that 

Similarly, for any node ,  where 

we  

  must include the energy for both receiving and 

transmitting data packets. 

 
C. Optimal Control Problem Formulation: 

Our objective is to maximize the WSN lifetime by 

control-ling the routing probabilities . The 

WSN lifetime is defined as < , 

This is a classic minimum (maximum) time 

optimal control problem except for two 

complicating factors the boundary condition (16), 

which involves the non differentiable  function, 

and 2) the control constraints (15). In what follows, 

we will use  to denote the optimal routing 

vector, which provides a solution to this problem. 

Remark 1: Note that there is an additional state 

constraint imposed by the capacity of every node 

battery, i.e., . However, it is easy to show 

(see [33]) that as long as  < , it is always true 

that  <  <  for all  > , so that this 

nstraint is never active in our problem  Moreover, 

if , then  <  <  as long as 

 >  for all  > .  

observe that when the battery is “at rest,” i.e., 

there is no load in (11), it is easy to show that 

. Therefore, we normally set 

initial conditions, so that .where  are 

the state variables representing node ’s 

instantaneous battery energy level, . 

Control constraints are specified through (15), 

where the first inequality follows from the fact that 

 < . Finally, (16) provides 
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boundary conditions for , , at  

requiring that the terminal time is the earliest 

instant when for any node . 

III. OPTIMAL CONTROL PROBLEM 

SOLUTION 

 
We begin with the Hamiltonian for this optimal 

control problem 

 

 

 

 

To derive explicit expressions for , , it is 

necessary to use boundary conditions , 

. This is complicated by the nature of the 

state  

 

boundary conditions in (16). Thus, we proceed by 

considering each possible case of a node dying first, 

which we will refer to as “scenario ” under which 

 for some permanent node  
 

Analysis of Scenario:  

The property that under a permanent network 

topology, there exists a static optimal routing 

policy, i.e., there exists a vector , which is   

time invariant. Under , we have the terminal time 

constraints  and  for all . 

Consequently, all ,  are unconstrained at 

. The next theorem 

 

Theorem 1: If , , for some  

and the network topology is permanent, i.e.,  

 for all , then  

there exists a time-invariant solution of (10)–(16): 

 

 

 
Algorithm for Solving the Optimal Control Problem: 

 

Based on our analysis thus far, if we focus on a 

permanent scenario , the solution to the optimal 

control problem is simply the solution of the NLP 

problem . However, since we do not know which 

node will die first, determining the value of  such 

that  for all  requires solving all  

problems and find the best policy among them. 

Since not all  problems have feasible solutions, 

we can use (25) to check for feasibility before 

solving the associated NLP problem. The complete 

algorithm, referred to as A1, to solve this optimal 

control problem is as follows. 

 
Algorithm A1: 

 

1) Solve problem  to obtain . 

 

2) For  <  < , if  > , set 

 (no 

 

feasible solution exists); otherwise solve problem 

 and obtain  if it exists. 

 
C. A Robustness Property of the Optimal Routing Policy: 

The optimal routing vector  obtained 

through Algorithm A1 under the ideal battery 

assumption,  in (11) and (12), is often 

unchanged when the non ideal battery model (  >  

) is used. The intuition behind such a robustness 

property lies in the nature of the NLPs   observe  

that the solution depends on the values of 

 and the associated constraints (13)–

(15), while the only effect of the parameter  enters 

through the inequalities ,  

 

 

 

 

 

 

 

 

 

 

 

 

 
Therefore, if a solution is obtained under  (a 

much easier problem which, as we have seen, can 

be reduced to an LP) and these inequalities are still 

satisfied when  > , then there is no need to re-

solve the  NLPs. Naturally, when this property 

holds, the value of the resulting optimal network 

lifetime is generally different, but the actual routing 

policy remains unchanged. Let  denote the 



International Journal of Computer Techniques -– Volume 3 Issue 1, Jan- Feb 2016 

ISSN: 2394-2231                                        http://www.ijctjournal.org                           Page 45 
 

 

solution of problem  when the KBM is invoked 

with parameter , including the ideal battery case 

. The Equivalent node lifetimes are denoted 

by . The robustness property we identify 

rests on the following lemma, which provides 

simple sufficient conditions under which 

 for any  > . 

Consider the NLP  with solution  under 

battery parameter . If the initial conditions for  

the node energies satisfy  for all  

, then 

 

 

Theorem 2: If the initial conditions for all node 

energies satisfy , , then the optimal 

routing policy under an ideal battery model, , is 

unaffected when  > : 

 

 

 

 >  

 

 

D. Simulation Examples: 

display the results of our analysis, let us consider 

a 7-node network The optimal network lifetime in 

this case is 54.55 and  all node lifetimes under the 

optimal routing policy (we do not provide specific 

units in our examples, but based on standard known 

data, distance units in feet and time units in months 

or weeks are reasonable). Note  1–5 die virtually 

simultaneously, whereas the lifetime of node 6 is 

considerably longer. This is because energy 

consumption at each node depends on both the 

inflow rate to that node and the transmitting 

distances to other nodes.  Node 6 is located close to 

the base, hence using little energy in packet 

transmissions. In fact, by relocating node 6 to 

(120,120) and roughly doubling its distance from 

the base, it was observed that all 6 nodes die at the 

same time under the optimal policy. Another 

important observation in this example is that node 2 

receives only 34% of the network inflow and this 

happens because there is no benefit in sending data 

packets to a relatively close relay node. The 

network topology  and all energy model parameter 

values are taken from an example in  where the 

routing problem was solved for the ideal battery 

case. Our results under   recover almost the 

same routing probabilities and the exact same 

lifetimes. Moreover, contains a comparison of the 

WSN lifetime obtained here with the one obtained 

using a locally greedy policy, random routing, and 

the EAR policy it was shown that the former 

provides significant lifetime improvements over all 

three alternatives. Next, we revisit the same 

Problem with the KBM battery dynamics (11) and 

(12). Assuming and using AlgorithmA1, the 

optimal routing Probabilities and node lifetimes are 

respectively. It is interesting to observe that even 

such a small value of results in a lifetime 

improvement of approximately 3%, which is due to 

the recovery effect in the battery dynamics captured 

in (11) and(12). provide the resulting optimal 

routing probabilities and node lifetimes for two 

dditional larger values of showing considerable 

network lifetime improvements. 

    Note that the optimal routing probabilities for the 

ideal and nonideal battery cases are virtually 

identical, thus confirming our result in Theorem 2 . 

As a result, one can adopt in practice a simple ideal 

battery model, leading to a simple optimal routing 

solution through an LP as in [7] and  Similar results 

are obtained for a symmetric network topology with 

the same positions for source and base nodes. As 

one would expect, all nodes die simultaneously due 

to this symmetry. We go a step beyond routing as a 

mechanism through which we can control the WSN 

resources by also controlling the allocation of initial 

energy over its nodes so as to maximize the 

lifetime. An application where this problem arises 

is in a network with rechargeable nodes. In this 

case, solving the joint optimal routing and initial 

energy allocation problem provides optimal 

recharging amounts maximizing the network 

lifetime, which may not correspond to full charges 

for all nodes. Let us define the total initial energy 

available as   and let . From 

Theorem 1, we know that the optimal routing policy 

is fixed unless the topology of the network changes.  

 

IV. A JOINT OPTIMAL ROUTING AND 

INITIAL ENERGY ALLOCATION PROBLEM 
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We go a step beyond routing as a mechanism 

through which we can control the WSN resources 

by also controlling the allocation of initial energy 

over its nodes so as to maximize the lifetime. An 

application where this problem arises is in a 

network with rechargeable nodes. In this case, 

solving the joint optimal routing and initial energy 

allocation problem provides optimal recharging 

amounts maximizing the network lifetime, which 

may not correspond to full charges for all nodes. 

Let us define the total initial energy available as 

 and let . From Theorem 1, we 

know that the optimal routing policy is permanent 

unless the topology of the network changes.  

Recalling Remark 1, we may assume that  

since all batteries are normally initialized at an 

equilibrium state. In this case, (29) holds. 

Otherwise, (29) becomes a condition we need to 

impose so as to ensure that  > , which will be 

used in the result that follows. 

 

If the solution of problem (28) is ( ), 

then  is the solution of (19) under this 

routing vector and initial energy at node . The 

following theorem establishes the fact that this 

optimal solution is such that all nodes deplete their 

energy at the same time. 

 

Proof: See Appendix. 

 

Remark 3: In order to guarantee (30), it is necessary 

that  < . Looking at (19) and recalling 

that  > , this is equivalent to assuming that 

 > , i.e., no node is left unutilized. 

Based on Theorem 3, we can simplify the NLP 

problem (28). In particular, we solve it in two steps. 

In Step 1, assuming a fixed routing policy , we 

determine the corresponding optimal initial energy 

distribution policy by solving the set of equations: 

 

 

 

 

we can simplify the NLP problem (28). In 

particular, we solve it in two steps. Assuming a 

permanent routing policy . 

 defined to be  with an associated lifetime 

. Then, in  

We search over the feasible set of given by (15) 

to determine the optimal  by using a standard 

nonlinear optimization solution procedure. We 

should point out, however, that solving problem 

(31) to obtain parametric solutions for  and 

 is not a simple task and common solvers fail 

to accomplish it. Instead, we can proceed by 

selecting one of the parametric equations for 

 as an objective function and add (31) as 

constraints to a new NLP  

Remark 4: our analysis can recover the ideal 

battery case by setting  in (11) and (12), which 

implies that  . This 

simplifies the solution of (31) as follows. Setting 

 , (31) implies that 

 

 

 

 

 

 

 
A. Simulation Examples: 

 

We consider a numerical example for the joint 

optimal routing and initial energy allocation 

problem.  first the problem is solved for a network 

with ideal node batteries and then using the KBM 

dynamics (11) and (12). Let us consider the same 

network. The source node to ( , ). The 

optimal routing probabilities and initial energies of 

all nodes under different values of , including the 

ideal battery case where  in (11) and (12). Note 

that the WSN lifetime with  is 63.33, which 

considerably exceeds the value 54.55 . Even though 

the distance between the source and base nodes. 

Moreover, once again we observe that both optimal 

initial energies and routing probabilities are the 

same over different values of . Finally, note the 

fact that the network lifetime coincides with all 

individual node lifetimes, which are the same by 

Theorem 3, and provides a strong justification for 

the definition of network lifetime being that of the 

first node to deplete its energy.  

 

V. CONCLUSIONS AND FUTURE WORK 
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That an optimal routing policy for maximizing a 

permanent topology sensor network’s lifetime is 

time invariant even when the batteries used as 

energy sources for the nodes are modeled so as to 

consider “nonideal” phenomena such as the rate 

capacity effect and the recovery effect. The 

associated permanent routing probabilities may be 

obtained by solving a set of relatively simple NLP 

problems. In addition, under very mild conditions, 

this optimal policy is independent of the battery 

parameter , where  for ideal batteries. 

Therefore, one can resort to the case of ideal 

atteries where the optimal routing problem is much 

simpler to solve and can be reduced to an LP 

problem. We have also considered a joint routing 

and initial energy allocation problem over the 

network nodes with the same network lifetime 

maximization objective. In this case, the solu-tion 

to this problem is given by a policy that depletes all 

node energies at the same time and the Equivalent 

energy allocation and routing probabilities are 

obtained by solving an NLP problem. 

Extensions of our analysis to networks with 

multiple sources and base stations are expected to 

be straightforward. The robustness property we 

have identified for the optimal routing policy with 

admiration to the battery dynamics assumed may no 

longer hold if different nodes use different battery 

characteristics (i.e., different parameters ). In 

addition, it remains to investigate whether different 

battery models used can still preserve the time-

invariant nature of the optimal routing policy and 

the robustness property identified in Theorem 2. It 

is also interesting to explore how an optimal routing 

policy may depend on a changing network 

topology. Finally, the solutions we have obtained so 

far are centralized and require global location in 

order, so that an obvious direction to pursue is one 

seeking spread versions of the same optimal routing 

and energy allocation problem advancees. 

 

 

APPENDIX 

Proof of Theorem 1: Since  for all  and 

, the optimal control problem under  is 

state-unconstrained except for . Thus, the 

terminal state constraint function  is 

Preduced to  and the costate boundary 

conditions [6] are given by 

 

 

Observe that the control variables  appear 

only in  and  in the problem 

formulation (10)–(16). Thus, we can set 

 to be the effective 

control variables with , where  nd 

 are, admirationively, the lower bound and upper 

bound of  for all . Note that both are 

stable since their determination depends exclusively 

on (13), (14) subject to (15), independent of the 

states  and . In particular, they depend on 

the permanent network topology and the values of 

the energy parameters ,  in (14). Applying the 

Pontryagin minimum principle to (34): 

 

 

 

 

implies that the optimal control is of bang-bang 

type: 

 

 >  

 <  

 

with the possibility that there is a singular arc on 

the optimal trajectory if . Moreover, the 

optimal solution must satisfy the transversality 

condition [6] , where  and we 

have seen that . Therefore 

 

 

 

and it follows that 

 

 

 

Observing that  and looking at (33), we can  

immediately exclude the singular case . 

Moreover, since  and  >  for all 

, it follows that  <  and (36) implies 

that  < . Therefore, from (33),  <  during 

. Consequently,  for  by (35). We 

conclude that the optimal control problem under  

is reduced to the following optimization problem: 
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When , the solution of this problem is  

and depends only on , , and, as already 

argued, the permanent network topology and the 

values of the permanent energy parameters , 

in(14)    

  

IV. REFERENCES 

[1] K.Akkayaand M.Younis,“A survey of routing 

protocols in wireless sensor networks,” Elsevier 

Ad Hoc Netw. J., vol. 3, no. 3, pp. 325–349, 

2005. 

[2] O. Barbarisi, F. Vasca, and L. Glielmo, “State of 

charge Kalman filter estimator for automotive 

batteries,” Control Eng. Pract., vol. 14, pp. 267–

275, 2006. 

[3] M. Bhardwaj and A. P. Chandrakasan, 

“Bounding the lifetime of sensor networks via 

optimal role assignments,” in Proc. IEEE 

INFOCOM, 2002, pp. 1587–1596. 

[4] M. Bhardwaj, T. Garnett, and A. P. 

Chandrakasan, “Upper bounds on the 

lifetimeofsensornetworks,”inProc.Int.Conf.Com

mun.,2001,pp.785–790. 

[5] M. Bhardwaj and A. P. Chandrakasan, 

“Bounding the lifetime of sensor networks via 

optimal role assignments,” in Proc. IEEE 

INFOCOM, New York, NY, Jun. 23–27, 2002, 

pp. 1587–1596. 

[6] A. E. Bryson and Y. Ho, Applied Optimal 

Control. Washington, DC: Hemisphere Publ. 

Corp., 1975. 

[7] J. H. Chang and L. Tassiulas,“Maximumlifetime 

routing in wireless sensor networks,” 

IEEE/ACMTrans. Netw., vol. 12, no.4, pp. 609–

619,Aug. 2004. 

[8] M. Chen and G. A. Rincon-Mora, “Accurate 

electrical battery model capable of predicting 

runtime and – performance,” IEEE Trans. 

Energy Convers., vol. 21, no. 2, pp. 504–511, 

Jun. 2006. 

[9] C. Chiasserini and R. Rao, “A model for battery 

pulsed discharge with recovery effect,” in Proc. 

Wireless Commun. Netw. Conf., 1999 , pp. 

636–639. 

[10] C. Chiasserini and R. Rao, “Pulsed battery 

discharge in communication devices,” in Proc. 

5th Int. Conf. Mobile Comput. Netw., 1999, pp. 

88–95. 

[11] C. F. Chiasserini and R. Rao, “Energy efficient 

battery management,” IEEE J. Sel. Areas 

Commun., vol. 19, no. 7, pp. 1235–1245, Jul. 

2001. 

[12] M. Doyle and J. S. Newman, “Analysis of 

capacity-rate data for lithium batteries using 

simplified models of the discharge process,” J. 

Appl. Electrochem., vol. 27, no. 7, pp. 846–856, 

1997. 

[13] T. F. Fuller, M. Doyle, and J. S. Newman, 

“Modeling of galvanostatic charge and 

discharge of the lithium polymer insertion cell,” 

J. Electrochem. Soc., vol. 140, pp. 1526–1533, 

1993. 

control of energy-aware systems.  
 


