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ABSTRACT 

A mathematical model of a regulator for the vacuum gauge pressure with the dual mass valve-damper 

system was studied in the article. The differential equation was solved as well as eventual equations that 

simulate the valve and load moving depending on the following parameters: amplitude, oscillation of vacuum 

gauge pressure, load mass, valve diameter, springing of spring, damper environment description. The 

results of theoretical and experimental research of valve and load moving of vacuum gauge pressure 

regulator with the dual weight valve-damper was determined in conditions of different pressure and 

attenuation coefficient and also the characteristic oscillation frequency of the valve and load mass.      

 

РЕЗЮМЕ 

У роботі наведено математичну модель регулятора вакуумметричного тиску з  двомасовою 

клапанно-демпферною системою. Розв'язано диференціальне рівняння та кінцеві рівняння, що 

моделюють переміщення клапана і вантажу залежно від амплітуди, частоти коливання 

вакуумметричного тиску, ваги вантажу, діаметра клапана, пружності пружини, характеристики 

демпферного середовища. Наведено результати теоретичних і експериментальних досліджень 

переміщення клапана і вантажу регулятора вакумметричного тиску з двомасовою клапанно-

демпферною системою за різного тиску і коефіцієнта затухання, а також частоти власних 

коливань клапана і ваги вантажу. 

 

INTRODUCTION 

The stability of the vacuum gauge pressure is one of the basic parameters that provide quality of the 

cow milk ejection process. This index depends on conditions of regulator operating and must exclude the 

possible vibrations and resonant phenomena in the vacuum system under valve operation of the regulator 

and during work of the milking machines. Allowable oscillation of the vacuum gauge pressure must not be 

more than 2.0 kPа (ISO 6690:2006, 2007; ASAE EP445.1, 1996). Stability of the vacuum gauge pressure is 

provided by both the regulator construction and its descriptions that are formed by the construction 

parameters. To ensure the technological parameters it is necessary to have a mathematical tool that does 

possible the simulation of the modes of the vacuum regulator operation.   

The stability of the vacuum gauge pressure has been estimated by the researchers group (Pazzona A. 

et al, 2003) depending on the method of pressure regulation in the vacuum hose. A group of researchers 

note that stabilizing the vacuum by a gravitational type regulator is more dynamic, the time constant is twice 

smaller of the computer-aided system (CAS). In particular, the typical regulator spends on the average 1.69 

seconds on proceeding in stable pressure, while the system of the VSD-controller spends 3.75 seconds 

(Pazzona A. et al, 2003).   

The vacuum gauge pressure is regulated by the rotation frequency of the vacuum pump rotor using 

the PID control digital systems with the amplification factors parameters of the proportion, integral and 

differential links accordingly: Kp = 20, Ki = 0.05, KD = 0.5 at the vacuum gauge pressure of 35, 40, 45 kPа. 

Amplitude of vibrations does not exceed 0.3 kPа, time constant is τ = 5 s, maximal overcontrol is 2 kPа 

(Radu R.,  Petru C., Ioan T., 2013).  
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The research result of the vacuum-gauge pressure oscillations in a milking machine vacuum system 

did not show substantial differences between the regulators with the gravitational and digital control (Pařilova 

M., Stadnik L., Ježkova A., Štolc L., 2011; Reinemann D. J., 2005). 

The vacuum-gauge pressure oscillations have been researched depending on: а) configuration of the 

vacuum and the milk duct systems (the length and diameter of pipelines, other parameters that influence on 

the pressure loss); b) milk flowrates in the milk pipelines; c) rates of air movement in vacuum pipelines 

(Reinemann D.J., Schuring N., Badel R.D., 2007).  

The construction variants of milking machine vacuum regulators (Vagin Yu Т. and other, 2012) differ in 

the load mass that is counted on the set vacuum gauge pressure at the appropriate area of valve seat 

(Dmytriv V.Т., Dmytriv I.V., 2012; Dmytriv V.Т., 2015, 2016). However, the dynamic descriptions of the valve-

damper system are uncoordinated with the vacuum power oscillations and speed parameters of the air 

entering in the milking machine vacuum system. The milking machine caused the pressure oscillation of the 

milker vacuum system (Dmytriv V.Т., Dmytriv I.V., 2017). The oscillation amplitude depends on the 

probability of phase coincidence and frequency of pulsators work. 

Dynamic descriptions of the regulator work must provide the smoothing of pressure oscillations.   

Therefore, researches on the work of vacuum gauge pressure regulators for the milking systems are 

up-to-date.  

 

MATERIAL AND METHODS  

Development of the mathematical model of vacuum gauge pressure regulators with the dual mass 

valve-damper system and research of influence of the regulator construction descriptions and technological 

parameters of a milking machine vacuum system on the dynamic descriptions of pressure adjusting by a 

regulator were the aim of this research work. 

Let us consider the work of the vacuum gauge pressure regulator of spring-gravitational type with a 

hydraulic damper, which was showed in fig. 1.  

The equilibrium of the system is provided (fig.1) when the force is created by the pressure difference 

that added to the valve (1) mass m1 and the spring elastic force (2) equals the load mass m2 (3) and the 

damper plate (4). Let us consider the work of the vacuum regulator as dual mass system, when the 

additional shaking force was applied to the valve. This force appeared as a result of increasing the vacuum-

gage pressure by the size of Δpvp. The scheme of forces applied to the valve as a result of the shaking forces 

is shown in fig. 1. Let us name this mode by the dynamic mode of regulator. During the valve 1 upwards 

movement on the y1 size and the load 3 on the size of y2, the spring will get of y1-y2 additional deformation.   
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Fig. 1 - Scheme of vacuum gauge pressure regulator 

а – equivalent scheme; b – functional scheme of action of forces;  
1 - valve; 2 - spring; 3 - load; 4 – plate in a damper environment; 5 - damper environment;  

Fp - force of the vacuum gauge pressure; Fpr – elasticity force; Fspr – the resistance force of damper environment; Fg  - the force that is 
created by mass of regulator  movable elements; m1, m2 – respectively the weight of the valve and the load with other elements 
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The system of differential equations of the motion and the load of valve should be written down: 
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where: Kspr – the integrated coefficient of resistance of the damping fluid, [N∙s/m];  

           Kpr  – the coefficient of elasticity of spring, [N/m];  

           Skl  – the sectional area of valve seat, [m2];   

           f(t) – characteristic of the applied force changes; 

The notation was proposed: 
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specific amplitude of the forced oscillation force, [m/s2].  

Then, the system of differential equations (1) will be: 
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Let the character of change of the vacuum-gage pressure Δрvp meet the dependence (fig. 2) that is 

analytically described by the next equations: 
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where:  Tn   – aliquot of number T . 

 

 

 

 

 

 

Fig. 2 - Impulse receiving character at vacuum gauge pressure changing Δрvp 

τ – duration of presence of vacuum-gage pressure impulse; Т – impulse receiving period    

 

After two differentiations of the second equation of the system (2), we shall get: 
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Next, we will put the obtained equation (4) in the first equation of the system (2): 
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The characteristic equation that fits the homogeneous equation (5) looks like: 
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The equation (6) is rewritten in the following way: 
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One root of the equation (7) will be λ0 = 0. Other roots will be obtained after solving the cube equation, 

with preliminary defining a discriminant:  
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A discriminant can take on two values, D > 0 and D < 0. To define the roots of the equation, additional 

determinant should be determined: 
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The analysis of previous calculations shows that the difference of values of the expressions (8) and 

(9) is D – q < 0. Then for D > 0 it is necessary that the squares sum values of valve and load free oscillation 

frequency be below the oscillation attenuation coefficient, but a value of q determinant will be always higher 

than the D discriminant.  

In this case the solution of equation (7) will be one actual and two complex roots: 
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On condition of D < 0, the solution of equation (7) will be one actual and two complex roots: 
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To better understand the physical process of pressure adjusting we will point the analytical solution of 

the homogeneous system of equations (2) in view of tt eByeAy   21 ,  (Samoilenko А.М., Кryvosheja 

S.А., Perestiuk N.А., 1989).  

The analytical solution was put in the first equation of (2) the system. Then we get:  
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Taking into account that В=A·(1+λ2/K1
2) from the (12) equation and the values of roots (10) and (11) 

the general solution of the homogeneous system of differential equations (2) is given bellow:  
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The partial decision that satisfies the beginning conditions has been found for t = 0, y10(0) = 0, 

1)0(10 y , 0)0(,0)0( 2020  yy  . On the basis of expressions (13) the system of algebra equations is formed:  
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The coefficients of equations (13) were determined from the system of the equations (14) as follows: 
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The solution of the equation system (2) is the following:  
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The constants of solutions (15) С0, С1, С2, С3 were determined from the initial conditions. If the t = 0, 

0)0()0()0()0( 2211  yyyy  , the constants С0, С1, С2, С3  are zero as well.  

The integral constituents of (16) equations according to the solution are the following:  
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Then, we will write down a (15) decision, taking into account the limitations of the system of (3) the 

function analytical expression and that in (16) the equations of the z = t are:  
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RESULTS  

We studied the regulator valve-damping systems of both the valve and load movement depending on 

the amplitude and frequency of the vacuum pressure oscillation. Initial data for calculating the square of 

characteristic oscillation frequency in accordance with the K1
2 valve and K2

2 load, 2n2 oscillation damper 

factor (attenuation coefficient), Kop resistance coefficient of the damper environment, Kpr spring elasticity 

coefficient were the following: the wire diameter of the regulator springs ddr = 0.0018 [m]; the outer diameter 

of the spring Dpr = 0.021 [m]; the number of spring turns n = 10; elastic shear modulus for steel 

Gpr = 80.5 [GPa]; the diameter of the damper plate Dpl  = 0.0874 [m]; plate shift in the damper environment 

хpl = 0.01 [m]; dynamic viscosity of the damper environment μdm = 0.065 [Pa∙s]; weight of the regulator load 

m2 = 1.4 [kg]; weight of the regulator valve m1 = 0.17 [kg].   

The results of the calculation were the following: resistance coefficient of the damper environment 

Kop = 0.039 [N·s/m]; the spring elasticity coefficient Kпр = 1134 [N/m]; specific amplitude of the forced 

oscillation force h1 = 1,011 [m/s2]; the square of characteristic oscillation frequency of the valve and the load 

is K1
2  = 666.781 [s-2] and K2

2  = 80.966 [s-2] respectively; oscillations attenuation coefficient 2n2 = 2.786 ∙10-3 

[s-1]. The roots of the solution and equation coefficients: λ1 = - 2.461∙10-3; λ2 = - 1.494∙10-4 + j∙27.345;         

λ3 = - 1.494∙10-4 - j∙27.345; A0 = 43.995; A1 = - 43.995; A2 = - 3.564∙10-7 - j∙0.016; A3 = - 3.564∙10-7 + j∙0.016. 

The numerical values of the discriminant at the given factors is D = - 249.249.  
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Taking into account the coefficients and roots of the z = t and t = τ (fig. 2), the values of the (16) 

equations will be: 
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Example of regulator pressure valve and load oscillation for the above-mentioned construction and 

technological parameters of 2.5 [kPa] pressure oscillation and its duration of 0.25 [sec] is shown in fig. 3. The 

maximum movement of the regulator valve for the 45-50 [kPa] of vacuum pressure and 1.0-1.4 [kg] load 

weight is shown in fig. 4.  

Analysis of the regulator movement of the valve-damping system (fig. 3) by the p = 48 [kPa] vacuum 

pressure in the milking machines vacuum pipeline and the Δрvp = 2.5 [kPa] permissible oscillations in vacuum 

pressure and the total weight of the load m = m1 + m2 = 1.57 [kg] shows that the maximum movement of the 

valve is y1(0.112 [s]) = 3.093 [mm] and the total duration of the open state of the valve is tsum = 0.225 [s]. Re-

raising of the valve to a height y1(0.315 [s]) = 0.5292 [mm] lasts ∑t = 0.084 [s]. The τ = 0,225 [s] total duration 

of the pressure impulse is Δрvp = 2.5 [kPa]; that exceeds the working vacuum gauge pressure of р = 48 kPa. 

Load has a single movement for y2(0.08-0.13 [s]) = 0.394 [mm] height lasting tsum = 0.225 [s]. Load is in a 

static state within the damping environment until next pressure impulse.  
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  Fig. 3 - Oscillation of the regulator valve-damping system          Fig. 4 - The maximum valve movement y1 of the 

       by impulse of vacuum pressure of Δрvp = 2.5 kPa                    pressure regulator with spring-damper system 

                                and τ of its duration:                                               depending on the р vacuum gauge pressure 

                 a – τ = 0.25 s; b - τ = 0.15 s; y1(t) – valve oscillations;                    and the load mass m2  for the impulse duration   

                      y2(t) – load oscillations in damping environment                                                                of τ = 0.25 [s] 

  

For the duration of the impulse vacuum pressure of τ = 0.112 [s] the movement character of the valve 

and load has a single oscillation which is equal to the impulse duration. The maximum rise of the valve is 

y1(0.056 [s]) = 1.329 [mm], the maximum movement of load in the damping environment is insignificant – 

y2(0.056 [s]) = 3.101∙10-2 [mm].   

For the load weight of m2 = 10 [N] and impulse pressure duration of τ = 0.15 [s], the maximum valve 

movement is up to y1(t) = 2.783 [mm].   

To confirm the results of theoretical studies the planned experiment was made considering the 

following factors: the K2
2 square of characteristic oscillation frequency of the load mass and the oscillation 

attenuation coefficient 2n2. The square of characteristic oscillation frequency of the load mass was changed 

within K2
2 = 80.966...174.927 [s-2] according to the limits of the m2 = 14…10.8 [N] of the weight load change. 

The oscillation attenuation coefficient was within 2n2 = 1.38·10-3…1.789·10-3 [s-1]. 

 

 

a) 

b) 
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General view of the laboratory setup for the study of vacuum-gage pressure regulators is shown in fig. 

5. 

The graphical representation of the experimental results in a three-dimensional model view is 

described by the regression equation (20) (see fig.6). 
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Fig. 5 - General view of the laboratory setup for the study of vacuum-gage pressure regulators  

1, 2 – vacuum pressure regulators; 3 – vacuum-gage pressure sensor; 4 – vacuum analyser; 5 – vacuum gauge; 6 – vacuum pipeline  
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Fig. 6 – The maximum valve movement y1 of the vacuum regulator with the spring-damper system  

depending on the 2n2 oscillation attenuation coefficient and  

the 2

2K square of the natural oscillations frequency of the regulator load  

 

For the square of characteristic oscillation frequency of 2

2K  = 104.956 [s-2] valve movement amplitude 

is у1 = 3.3 [mm] for the vacuum-gage pressure of р = 50 [kPa]. For the р = 45 [kPa] the oscillation parameters 

are 2

2K = 131.195 [s-2], у1 = 2.8 [mm]. The reduction of the elasticity coefficient causes the lessening of the 

square of characteristic oscillation frequency. For the square of characteristic oscillation frequency of 
2

2K = 80.966 [s-2] the amplitude of the valve movement is у1 = 3.1 [mm] for the vacuum pressure of 

р = 50 [kPa]. For the р = 45 [kPa] the oscillation parameters are the following 2

2K = 101.208 [s-2], 

у1 = 2.7 [mm].  

 

CONCLUSIONS 

The analysis of study results shows that the reduction of the square of characteristic oscillation 

frequency of the regulator load mass increases the amplitude of the regulator valve oscillation. The increase 

of the spring elasticity coefficient leads to increasing the square of characteristic oscillation frequency of the 

regulator load weight, and that increases the valve movement. Increase of the load mass causes the 

reducing of the valve movement and the lifting repeatability (oscillation) of the regulator valve was also 

increased. The lifting repeatability (oscillation) of the regulator valve was increased with the increase of the 

duration of vacuum-gage pressure impulse.  

http://www.multitran.ru/c/M.exe?t=1819879_1_2&s1=%FD%EB%E0%F1%F2%E8%F7%E5%F1%EA%E8%E5%20%F1%E2%EE%E9%F1%F2%E2%E0
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Increase of the load mass reduces the height of valve lifting and the air supply into the vacuum system 

of the milking machine. Rising the vacuum pressure up to 50 [kPa] increases the valve movement and the 

repeatability of its opening. 

The oscillation of the regulator valve with spring-damper system of the valve is damping out. The 

amplitude of the single oscillation depends on the load mass and duration of the vacuum-gage pressure 

impulse. 
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