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ABSTRACT

A mathematical model of a regulator for the vacuum gauge pressure with the dual mass valve-damper
system was studied in the article. The differential equation was solved as well as eventual equations that
simulate the valve and load moving depending on the following parameters: amplitude, oscillation of vacuum
gauge pressure, load mass, valve diameter, springing of spring, damper environment description. The
results of theoretical and experimental research of valve and load moving of vacuum gauge pressure
regulator with the dual weight valve-damper was determined in conditions of different pressure and
attenuation coefficient and also the characteristic oscillation frequency of the valve and load mass.

PE3IOME

Y pobomi HasedeHO Mamemamu4Hy MOOEefb peayrnsamopa eaKyyMMempu4yHO20 MmucKy 3 080Macogor
KnanaHHoO-0emrighepHoo cucmemor. Po3e'szaHo OugbepeHuyianbHe pPIBHSHHS ma KiHUe8i Pi8HSHHS, WO
modenoomb  epeMilyeHHs1 KrnanaHa | eaHmaxy 3anexHo i amnnimydu, 4Yacmomu KOfueaHHs
8aKyyMMempU4YHO20 MUCKY, ea2u saHmaxy, Oiamempa KnarnaHa, fpy>XHocmi npyXuHuU, Xxapakmepucmuku
OemrigpepHozo cepedosuuja. HasedeHo pesynbmamu meopemuyHUX | ekcriepumMeHmarsnbHUX 00CrioxeHb
nepemiweHHs KrarnaHa i eaHmaxy peeaynsmopa 8aKyMMempuyHO20 MmUCKy 3 080Maco80r0 KrarnaHHO-
OeMmrighepHOIO cucmeMoro 3a pIi3HO20 MUCKY i KoegpiuieHma 3amyxaHHs, a makox 4acmomu eracHuUx
KosnueaHb KnaraHa i ga2u 8aHmaxy.

INTRODUCTION

The stability of the vacuum gauge pressure is one of the basic parameters that provide quality of the
cow milk ejection process. This index depends on conditions of regulator operating and must exclude the
possible vibrations and resonant phenomena in the vacuum system under valve operation of the regulator
and during work of the milking machines. Allowable oscillation of the vacuum gauge pressure must not be
more than 2.0 kPa (ISO 6690:2006, 2007; ASAE EP445.1, 1996). Stability of the vacuum gauge pressure is
provided by both the regulator construction and its descriptions that are formed by the construction
parameters. To ensure the technological parameters it is necessary to have a mathematical tool that does
possible the simulation of the modes of the vacuum regulator operation.

The stability of the vacuum gauge pressure has been estimated by the researchers group (Pazzona A.
et al, 2003) depending on the method of pressure regulation in the vacuum hose. A group of researchers
note that stabilizing the vacuum by a gravitational type regulator is more dynamic, the time constant is twice
smaller of the computer-aided system (CAS). In particular, the typical regulator spends on the average 1.69
seconds on proceeding in stable pressure, while the system of the VSD-controller spends 3.75 seconds
(Pazzona A. et al, 2003).

The vacuum gauge pressure is regulated by the rotation frequency of the vacuum pump rotor using
the PID control digital systems with the amplification factors parameters of the proportion, integral and
differential links accordingly: K, = 20, Ki= 0.05, Kp = 0.5 at the vacuum gauge pressure of 35, 40, 45 kPa.
Amplitude of vibrations does not exceed 0.3 kPa, time constant is 7 = 5 s, maximal overcontrol is 2 kPa
(Radu R., Petru C., loan T., 2013).
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The research result of the vacuum-gauge pressure oscillations in a milking machine vacuum system
did not show substantial differences between the regulators with the gravitational and digital control (Pafilova
M., Stadnik L., Jezkova A., Stolc L., 2011; Reinemann D. J., 2005).

The vacuum-gauge pressure oscillations have been researched depending on: a) configuration of the
vacuum and the milk duct systems (the length and diameter of pipelines, other parameters that influence on
the pressure loss); b) milk flowrates in the milk pipelines; c¢) rates of air movement in vacuum pipelines
(Reinemann D.J., Schuring N., Badel R.D., 2007).

The construction variants of milking machine vacuum regulators (Vagin Yu T. and other, 2012) differ in
the load mass that is counted on the set vacuum gauge pressure at the appropriate area of valve seat
(Dmytriv V.T., Dmytriv I.V., 2012; Dmytriv V.T., 2015, 2016). However, the dynamic descriptions of the valve-
damper system are uncoordinated with the vacuum power oscillations and speed parameters of the air
entering in the milking machine vacuum system. The milking machine caused the pressure oscillation of the
milker vacuum system (Dmytriv V.T., Dmytriv I.V., 2017). The oscillation amplitude depends on the
probability of phase coincidence and frequency of pulsators work.

Dynamic descriptions of the regulator work must provide the smoothing of pressure oscillations.

Therefore, researches on the work of vacuum gauge pressure regulators for the milking systems are
up-to-date.

MATERIAL AND METHODS

Development of the mathematical model of vacuum gauge pressure regulators with the dual mass
valve-damper system and research of influence of the regulator construction descriptions and technological
parameters of a milking machine vacuum system on the dynamic descriptions of pressure adjusting by a
regulator were the aim of this research work.

Let us consider the work of the vacuum gauge pressure regulator of spring-gravitational type with a
hydraulic damper, which was showed in fig. 1.

The equilibrium of the system is provided (fig.1) when the force is created by the pressure difference
that added to the valve (1) mass m; and the spring elastic force (2) equals the load mass m; (3) and the
damper plate (4). Let us consider the work of the vacuum regulator as dual mass system, when the
additional shaking force was applied to the valve. This force appeared as a result of increasing the vacuum-
gage pressure by the size of Apy. The scheme of forces applied to the valve as a result of the shaking forces
is shown in fig. 1. Let us name this mode by the dynamic mode of regulator. During the valve 1 upwards
movement on the y: size and the load 3 on the size of y», the spring will get of y;-y» additional deformation.

Fig. 1 - Scheme of vacuum gauge pressure regulator
a — equivalent scheme; b — functional scheme of action of forces;
1 - valve; 2 - spring; 3 - load; 4 — plate in a damper environment; 5 - damper environment;
F, - force of the vacuum gauge pressure; F, — elasticity force; Fqr — the resistance force of damper environment; Fy - the force that is
created by mass of regulator movable elements; m;, m, — respectively the weight of the valve and the load with other elements
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The system of differential equations of the motion and the load of valve should be written down:

ml'Yl :_Kpr '(yl_y2)+Apvp'Skl ) f(t)'

1)
m - YZ = Kpr '(yl_ yz)_ Kspr ’ y2
where: Ky — the integrated coefficient of resistance of the damping fluid, [N-s/m];
Kor — the coefficient of elasticity of spring, [N/m];
Sy — the sectional area of valve seat, [m?];
f(t) — characteristic of the applied force changes;
The notation was proposed: K12 — & , KZZ — & — square of free oscillations frequency
my m,

m, m,
specific amplitude of the forced oscillation force, [m/s?].
Then, the system of differential equations (1) will be:

accordingly the valve and load, [s?]; on. = Kspr — coefficient of oscillation attenuation, [s™]; h = Apvp‘sm -
2 1™

dzyl 2 2
a2 +Ky (Vi =Y2)=h - (1) . (2
d? d

e KLy ) =0

Let the character of change of the vacuum-gage pressure Ap,, meet the dependence (fig. 2) that is
analytically described by the next equations:

1L, nT<t<n- T+
f(t): <Il< T , (3)
0, nT+zr<t<(n+1)-T

where: p = [r/T] — aliquot of number 7/T .

f(t) A

10

Fig. 2 - Impulse receiving character at vacuum gauge pressure changing Apw
7 — duration of presence of vacuum-gage pressure impulse; T — impulse receiving period

After two differentiations of the second equation of the system (2), we shall get:

2 4 2 3
e L k3 D 2n, ) &
dt? K2 { dt dt dt
Next, we will put the obtained equation (4) in the first equation of the system (2):
dty, d’y 2 2\ d?y 2 dy. 2 : 5
ot 2ny =  (KE A KE) S an, 2=kt ) O
The characteristic equation that fits the homogeneous equation (5) looks like:
2a2n, B+(KZ+K2)- 2 +K2.2n,-1=0. (6)
The equation (6) is rewritten in the following way:
A-(B+2n, 2 +(KZ+K2)- 2 +KZ-2n,)=0. @)

One root of the equation (7) will be 4o = 0. Other roots will be obtained after solving the cube equation,
with preliminary defining a discriminant:

C4ny KP+K;
9 3

D ®)
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A discriminant can take on two values, D >0 and D < 0. To define the roots of the equation, additional
determinant should be determined:

3 2 2 2
. 27’12 _27’12 (Kl +K2) 27’12 'Kl (9)
=73 6 B

The analysis of previous calculations shows that the difference of values of the expressions (8) and
(9) is D-q<0. Then for D >0 it is necessary that the squares sum values of valve and load free oscillation
frequency be below the oscillation attenuation coefficient, but a value of g determinant will be always higher
than the D discriminant.

In this case the solution of equation (7) will be one actual and two complex roots:

2n
Ay ==2-5gn(q) /|| -ch(@) - =2
A :sgn(q)-ﬁ-ch(a)—zgzi j-¥3- D] sh(@) (10)
where: 1 ‘Q‘ 1 q q i :
==- Arch == -1
R Dj 3| Vo' WD
On condition of D < 0, the solution of equation (7) will be one actual and two complex roots:
2n
Ay ==2:5gn(a) D] -sh(e) - =2
o =san(@) D] sh(e) - 222 & 43+ [D]-chi(@) ay
where:
1 q
=—- Arsh
o 3 ‘D‘3/2

To better understand the physical process of pressure adjusting we will point the analytical solution of
the homogeneous system of equations (2) in view of = A-e}",yz = B.¢M (Samoilenko A.M., Kryvosheja

S.A., Perestiuk N.A., 1989).
The analytical solution was put in the first equation of (2) the system. Then we get:

Mo (4-02+k2)-B-K?)=0 (12)
Taking into account that B=4-(1+1%/K;?) from the (12) equation and the values of roots (10) and (11)
the general solution of the homogeneous system of differential equations (2) is given bellow:
ylo = AO + Al ‘e}\‘lt + A2 'e}\’zt +A3 'ek3t
1 (2 Mt | 22 Aot | 22 At (13)
Y20 =y10+2-(7»1 et NG Ay et A Ay e )
K
1

The partial decision that satisfies the beginning conditions has been found for t=0, yi0(0) =0,
V1, (0) =1+ y,,(0)=0,y,,(0) =0- On the basis of expressions (13) the system of algebra equations is formed:

Ay+ A4 +A4,+4;=0

MA +A Ay + 343 =1 . (14)
WA +2054, +2534; =0

A+ 2054 + 054 = —K}
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The coefficients of equations (13) were determined from the system of the equations (14) as follows:
1 H A +A; Ay A, As

A : _Da2. -3
A=-SECER ASTL A =T AT

wherer A=y hy k(g =4) (ks =2)- (ks =2p)7 Ay =2y -Ay-(As —7\2)'(7&2 A3 _Klz)
Ay =y A (=Ao)- (- Aa=KES Ay =22y (g =2)- (b -y - K7 )

The solution of the equation system (2) is the following:

t
Y1) =Cy+C, -6 +C, e +Cy-e™ +h, - [yt —2)- f(2)dz (15)
0
i 2 G |
V() =Co +|1+ L |-C-e™ 4|1+ 22 |-C,-e™ + |1+ 2 |-Cy-e™ 4+ h - [y, (t—2)- f(z)dz
Kl K1 Kl 0
The constants of solutions (15) Co, Ci, C2, C; were determined from the initial conditions. If the t =0,
y,(0) =y,(0)=y,(0)=y,(0)=0. the constants Cy, C1, Co, C3 are zero as well.

The integral constituents of (16) equations according to the solution are the following:

¥i(2) = hiiylo(t -27)-dz=h, -(Ao -z —z-em-n _Z.eut—z) _i,ew—z))

y2(2) = Hl(z)—}:'lz-(/s& Dy €D A g, @D A ek D)

Then, we will write down a (15) decision, taking into account the limitations of the system of (3) the
function analytical expression and that in (16) the equations of the z=t are:

(16)

V() - () + X (v (NT +7)— y,(nT)), nT<t<nT+z a
yl(t) = n ° ’
Y(y,(0 T +7)—y,(nT)), nT+r<t<(n+T
V(0= v, (") + 3 (v,(0T +7) = y,(nT)), nT<t<nT+7
Y,(t) = ° | o

an(yz(nT +7)—Y,(nT)), nT+z<t<(n+1)T

RESULTS

We studied the regulator valve-damping systems of both the valve and load movement depending on
the amplitude and frequency of the vacuum pressure oscillation. Initial data for calculating the square of
characteristic oscillation frequency in accordance with the K;? valve and K;? load, 2n; oscillation damper
factor (attenuation coefficient), Kqp resistance coefficient of the damper environment, K, spring elasticity
coefficient were the following: the wire diameter of the regulator springs d¢- = 0.0018 [m]; the outer diameter
of the spring Dpr = 0.021 [m]; the number of spring turns n = 10; elastic shear modulus for steel
Gpr = 80.5 [GPa]; the diameter of the damper plate Dy = 0.0874 [m]; plate shift in the damper environment
xpi = 0.01 [m]; dynamic viscosity of the damper environment ugm = 0.065 [Pa-s]; weight of the regulator load
m, = 1.4 [kg]; weight of the regulator valve m; = 0.17 [kg].

The results of the calculation were the following: resistance coefficient of the damper environment
Kop = 0.039 [N-s/m]; the spring elasticity coefficient K,, = 1134 [N/m]; specific amplitude of the forced
oscillation force hy = 1,011 [m/s?]; the square of characteristic oscillation frequency of the valve and the load
is K12 = 666.781 [s2] and K2? = 80.966 [s?] respectively; oscillations attenuation coefficient 2n, = 2.786 -103
[s1]. The roots of the solution and equation coefficients: i1=-2.461-103; 1,=-1.494-10*+ |-27.345;
A3=-1.494-104- J-27.345; A¢ = 43.995; A; = - 43.995; A; = - 3.564:107 - j-0.016; A3 =-3.564-107 + j-0.016.
The numerical values of the discriminant at the given factors is D = - 249.249.
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Taking into account the coefficients and roots of the z=t and t=r (fig. 2), the values of the (16)
equations will be:

43995 -e_2'461'1073‘(7_t)— (_3564 '10_7 - 10016) %
2.461-10°° (—1.494 .10 + j27.345)

Xe(71.494-10’4+j27.345)-(r7t)_ (—3-564 1077 + j0-016) .e(—1.494-10’4—j27.345)~(r—t)
(1494 -10* — j27.345) ’

y,(t)=1.011- (43.995 i

(19)
1.011

)= y,(t) =
Y, (1) =y, (t) 666781

x (~1.494 -107* + j27.345) . e("1494107+]21309)(=0) |
+(-3.564-10"" + j0.016) - (~1.494 -10* — j27.345) - e<*1-494'1°"’*127-345>'<f*‘>)

-(43.995 :2.461-107% . g 240107 _(3 564.1077 + j0.016) x

Example of regulator pressure valve and load oscillation for the above-mentioned construction and
technological parameters of 2.5 [kPa] pressure oscillation and its duration of 0.25 [sec] is shown in fig. 3. The
maximum movement of the regulator valve for the 45-50 [kPa] of vacuum pressure and 1.0-1.4 [kg] load
weight is shown in fig. 4.

Analysis of the regulator movement of the valve-damping system (fig. 3) by the p = 48 [kPa] vacuum
pressure in the milking machines vacuum pipeline and the Ap,, = 2.5 [kPa] permissible oscillations in vacuum
pressure and the total weight of the load m = m; + m, = 1.57 [kg] shows that the maximum movement of the
valve is y1(0.112 [s]) = 3.093 [mm] and the total duration of the open state of the valve is tum= 0.225 [s]. Re-
raising of the valve to a height y;(0.315 [s]) = 0.5292 [mm)] lasts >t = 0.084 [s]. The z = 0,225 [s] total duration
of the pressure impulse is Apy, = 2.5 [kPa]; that exceeds the working vacuum gauge pressure of p = 48 kPa.
Load has a single movement for y,(0.08-0.13 [s]) = 0.394 [mm] height lasting twm = 0.225 [s]. Load is in a
static state within the damping environment until next pressure impulse.

y.m
41073
a3 —

0 e NN 7
B s 2 I N N
0 \_,/"\

0 0,2 a) 04 ts
y.m
4107 yi(f
2107 lb\_f“‘\_
% Y g b)ﬂ\ 04 ts
Fig. 3 - Oscillation of the regulator valve-damping system Fig. 4 - The maximum valve movement y: of the
by impulse of vacuum pressure of Apy = 2.5 kPa pressure regulator with spring-damper system
and r of its duration: depending on the p vacuum gauge pressure
a-1=0.25s; b-7r=0.15 s; y,(t) — valve oscillations; and the load mass mz for the impulse duration
y»(t) — load oscillations in damping environment of 7=0.25 [s]

For the duration of the impulse vacuum pressure of z = 0.112 [s] the movement character of the valve
and load has a single oscillation which is equal to the impulse duration. The maximum rise of the valve is
y1(0.056 [s]) = 1.329 [mm], the maximum movement of load in the damping environment is insignificant —
y2(0.056 [s]) = 3.101:10-2 [mm].

For the load weight of mz = 10 [N] and impulse pressure duration of = 0.15 [s], the maximum valve
movement is up to yi(t) = 2.783 [mm].

To confirm the results of theoretical studies the planned experiment was made considering the
following factors: the K;? square of characteristic oscillation frequency of the load mass and the oscillation
attenuation coefficient 2n,. The square of characteristic oscillation frequency of the load mass was changed
within Kz% = 80.966...174.927 [s2] according to the limits of the m;, = 14...10.8 [N] of the weight load change.
The oscillation attenuation coefficient was within 2n, = 1.38-103...1.789-10-3 [s1].
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General view of the laboratory setup for the study of vacuum-gage pressure regulators is shown in fig.

The graphical representation of the experimental results in a three-dimensional model view is
described by the regression equation (20) (see fig.6).

Fig. 5 - General view of the laboratory setup for the study of vacuum-gage pressure regulators
1, 2 — vacuum pressure regulators; 3 — vacuum-gage pressure sensor; 4 — vacuum analyser; 5 — vacuum gauge; 6 — vacuum pipeline

y; =1.1147 +0.0351 - KZ + 4350.5645 - 2n, +6.484 -10° - K; —0.293- K2 -2n, —8.0338 -10° - 2n2-  (20)

Fig. 6 — The maximum valve movement y1 of the vacuum regulator with the spring-damper system
depending on the 2n; oscillation attenuation coefficient and
the K22 square of the natural oscillations frequency of the regulator load

For the square of characteristic oscillation frequency of K? = 104.956 [s?] valve movement amplitude

is y1 = 3.3 [mm] for the vacuum-gage pressure of p = 50 [kPa]. For the p = 45 [kPa] the oscillation parameters
are KZ2=131.195 [s], y1 = 2.8 [mm]. The reduction of the elasticity coefficient causes the lessening of the

square of characteristic oscillation frequency. For the square of characteristic oscillation frequency of
KZ =80.966 [s? the amplitude of the valve movement is yi1=3.1[mm] for the vacuum pressure of

p=50[kPa]. For the p=45 [kPa] the oscillation parameters are the following K’ =101.208 [s7],
y1 = 2.7 [mm].

CONCLUSIONS

The analysis of study results shows that the reduction of the square of characteristic oscillation
frequency of the regulator load mass increases the amplitude of the regulator valve oscillation. The increase
of the spring elasticity coefficient leads to increasing the square of characteristic oscillation frequency of the
regulator load weight, and that increases the valve movement. Increase of the load mass causes the
reducing of the valve movement and the lifting repeatability (oscillation) of the regulator valve was also
increased. The lifting repeatability (oscillation) of the regulator valve was increased with the increase of the
duration of vacuum-gage pressure impulse.
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Increase of the load mass reduces the height of valve lifting and the air supply into the vacuum system

of the milking machine. Rising the vacuum pressure up to 50 [kKPa] increases the valve movement and the
repeatability of its opening.

The oscillation of the regulator valve with spring-damper system of the valve is damping out. The

amplitude of the single oscillation depends on the load mass and duration of the vacuum-gage pressure
impulse.
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