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Abstract

In this paper we describe the parameter estimation of the beta-binomial distribution using the procedure NLMIXED of the SAS
software. The beta-binomial distribution is a discrete mixture distribution which can capture overdispersion in the data. The
estimation of parameters of the beta-binomial distribution can lead to computational problems, since it does not belong to the
exponential family and there are not explicit solutions for the maximum likelihood estimation. Using a real dataset, we show that
the SAS software can be satisfactorily used for the estimation of the parameters. We also consider the possibility of including a
covariate in the model. The SAS codes used in this paper are given in an Appendix.
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Resumo

Neste artigo nós descrevemos a estimação dos parâmetros da distribuição beta-binomial usando o procedimento NLMIXED do
software SAS. A distribuição beta-binomial é uma distribuição de misturas discreta capaz de capturar a superdispersão dos dados.
A estimação dos parâmetros de uma distribuição beta-binomial pode oferecer problemas computacionais, dado que ela não pertence
a uma família exponencial e não há soluções explícitas para o método da máxima verossimilhança. Usando dados reais, nós
mostramos que o software SAS pode ser satisfatoriamente usado para a estimação dos parâmetros. Nós também consideramos a
possibilidade de incluir uma covariável no modelo. As linhas de comando SAS usadas neste artigo não disponibilizadas em um
anexo.

Palavras-chave: distribuição beta-binomial, modelo de regressão, análise de dados.

∗Corresponding author: edson@fmrp.usp.br
Received: 31/03/2015 Reviewed: 06/05/2015 Accepted: 11/05/2015

http://dx.doi.org/10.5902/2179460X17512
mailto:edson@fmrp.usp.br


13 Martinez et al: Beta-binomial distribution

1 Introduction

In some applications of Bernoulli trials, the underly-
ing success probability could change from one trial to
another, that is, likelihood based techniques should be
modified. This is common in situations where there are
unmodeled influences that affect all the components of
the binomial sum which count the number of successes
in a fixed number n of Bernoulli trials. This happens, for
example, in biological or agriculture applications, when
we have batch effects (see for example, Kleinman (1978);
Williams (1975); Crowder (1978); Haseman and Kupper
(1979) or Morgan (1992)). A litter effect is related to the
tendency that members of a group respond in a more
similar way to some treatment than members of other
groups. These random effects should be included in the
modelling of the data set besides the usual covariates to
account for this overdispersion.

The beta-binomial model was introduced by Pearson
(1925) and more formally described by Skellam (1948).
It is a popular method for explicitly account for the
overdispersion. We can find several applications of this
model in various areas, such as Chatfield and Goodhardt
(1976), who described the buying behaviour of the con-
sumer, and Gange et al. (1996), who studied the effect
of policy changes on appropriateness of hospital admis-
sions. In addition, Aeschbacher et al. (1977) showed that
a beta-binomial distribution provided a better fit than
the usual distributions in biological experiments using
mices when the data used were based on a large number
of counts of dead.

The parameter estimation of the beta-binomial model
using the maximum likelihood method brings some chal-
lenges, since there are not explicit solutions for the max-
imum likelihood estimation (MLE) and it is necessary
to use iteration methods. In addition, this distribution
is not a member of an exponential family. Thus, the
main objective of this study is present an application
of the SAS software to estimate the parameters of the
beta-binomial model. The SAS software is widely used
in many general purpose applications in academia, in-
dustry and health literacy studies. It provides powerful
tools for data analysis including linear and generalized
linear models, and random and mixed effects models.
We also consider the possibility of including a covariate
in the model. A real dataset illustrate the methodology.

2 The beta-binomial distribution

Let y be the number of occurrences of a random variable
Y in n Bernoulli trials with success probability p (0 <
p < 1). Thus,

P(Y = y|n,p) =
(

n
y

)
py(1− p)n−y, y = 0,1, . . . ,n,

where n is known. The mean and variance of Y|n,p are
given, respectively, by E(Y|n,p) = np and Var(Y|n,p) =
np(1− p). Using the principles of Bayesian inference,
let us suppose that p is a random variable that follows a
beta distribution with parameters a and b. Thus,

f (p|a,b) =
1

B(a,b)
pa−1(1− p)b−1,

where a > 0, b > 0 and B(a,b) is the beta function. From
these expressions, we have

P(Y = y|n,a,b) =
∫ 1

0
P(Y = y|n,p) f (p|a,b)dp

=

(
n
y

)
1

B(a,b)

∫ 1

0
py+a−1(1− p)n−y+b−1dp

=

(
n
y

)
B(y + a,n− y + b)

B(a,b)
.

This expression is the probability function of a beta-
binomial distribution. When a random variable Y is
distributed according a beta-binomial distribution, we
write Y|n,a,b ∼ betabin(n,a,b). The mean and the vari-
ance of this random variable are given by

E(Y|n,a,b) = E [E(Y|n,a,b,p)] = nE(p|a,b) =
na

a + b
(1)

and

Var(Y|n,a,b) = E [Var(Y|n,a,b,p)] + Var [E(Y|n,a,b,p)]
= nE(p|a,b)− nE(p2|a,b) + n2Var(p|a,b)

=
nab (a + b + n)

(a + b)2 (a + b + 1)
, (2)

respectively. Graphs of the probability mass function
of a beta-binomial distribution for n = 10 and some
values of a and b are shown in Figure 1. These graphs
show that the probability function can assume different
shapes.

A vector of covariates X = (X1, . . . ,Xk)
′ can be in-

cluded in the model by replacing the parameter a by a
function a(x) given by

a(x) = exp(a0 + a1x1 + · · ·+ akxk),

where a0, a1, . . ., ak are unknown parameters.
An useful parametrization of this model considers

a = θτ−1 and b = (1− θ)τ−1, where τ > 0 and 0 < θ <
1. Under this condition, the mean and the variance of
Y|n,θ,τ are given by

E (Y|n,θ,τ) = nθ (3)

and

Var (Y|n,θ,τ) = nθ(1− θ)

[
1 + (n− 1)

τ

1 + τ

]
, (4)
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Figure 1: Graphs of the probability mass function of a
beta-binomial distribution with n = 10 and (a) a = 5,
b = 10, (b) a = 5, b = 1 and (c) a = 5, b = 5.

respectively. The parameter τ is interpreted as an overdis-
persion parameter, so that when τ = 0 the variance (4)
is equivalent to the variance of a random variable that
follows a binomial distribution. The probability function
is now given by

P(Y = y|n,θ,τ) =
(

n
y

)B
(

y +
θ

τ
,n− y +

1− θ

τ

)
B
(

θ

τ
,
1− θ

τ

)

=

(
n
y

)Γ
(

y +
θ

τ

)
Γ
(

n− y +
1− θ

τ

)
Γ
(

1
τ

)
Γ
(

θ

τ

)
Γ
(

1− θ

τ

)
Γ
(

1
τ
+ n

) . (5)

Note that, given c > 0, d > 0 and k integer and

greater than zero, is valid the relation

k

∏
j=0

(d + jc) = ck+1
Γ
(

k +
d
c
+ 1
)

Γ
(

d
c

) .

Thus,

∏
y−1
j=0 (θ + jτ)∏

n−y−1
j=0 (1− θ + jτ)

∏n−1
j=0 (1 + jτ)

=

Γ
(

y +
θ

τ

)
Γ
(

n− y +
1− θ

τ

)
Γ
(

1
τ

)
Γ
(

θ

τ

)
Γ
(

1− θ

τ

)
Γ
(

1
τ
+ n

) ,

and the expression (5) is rewritten in the form

P(Y = y|n,θ,τ) =
(

n
y

)∏
y−1
j=0 (θ + jτ)∏

n−y−1
j=0 (1− θ + jτ)

∏n−1
j=0 (1 + jτ)

(see, for example, Williams (1975) or Smith (1983)). Given
N independent random variables Y1, . . . ,YN , the loga-
rithm of the likelihood function for θ and τ is given
by

l (θ,τ) =
N

∑
i=1

ln
(

n
yi

)
+

N

∑
i=1

yi−1

∑
j=0

ln (θ + jτ)

+
N

∑
i=1

n−yi−1

∑
j=0

ln (1− θ + jτ)

−N
n−1

∑
j=0

ln (1 + jτ) .

The derivatives of the log likelihood function l (θ,τ)
with respect to θ and τ are given by

∂

∂θ
l (θ,τ) =

N

∑
i=1

yi−1

∑
j=0

1
θ + jτ

−
N

∑
i=1

n−yi−1

∑
j=0

1
1− θ + jτ

and

∂

∂τ
l (θ,τ) =

N

∑
i=1

yi−1

∑
j=0

j
θ + jτ

+
N

∑
i=1

n−yi−1

∑
j=0

j
1− θ + jτ

− N
n−1

∑
j=0

j
1 + jτ

,

respectively. Maximum-likelihood estimates of θ and
τ require numerical iteration and, thus, the Newton-
Raphson method can be used (Griffiths, 1973; Smith,
1983). The SAS NLMIXED procedure minimizes the
function −l (θ,τ) over θ and τ numerically in order to es-
timate these parameters. Note that NLMIXED procedure
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Table 1: Counts of points in IR subscale for female and male individuals.

Number of points
Sex 6 7 8 9 10 11 12 13 14 15 16 17 18
Women 3 2 3 1 3 2 5 12 21 24 55 31 40
Men 4 3 4 2 4 1 4 5 8 8 12 10 6
Total 7 5 7 3 7 3 9 17 29 32 67 41 46

is used to fit nonlinear models with random and fixed
effects. However, due to its flexibility in accommodating
different structures of the conditional distribution of the
data and its versatility of numerical methods for esti-
mating parameters in nonlinear models, the NLMIXED
procedure can also be used to fit models without random
effects when they are not specified by the programmer.
The inverse Hessian matrix at the estimates is used to
provide an approximate variance-covariance matrix for
the estimation of the parameters. The Hessian matrix
is the square matrix of second-order partial derivatives
of the likelihood with respect to the parameters. Many
different algorithms for optimizing general nonlinear
functions are available in SAS NLMIXED procedure.
In the present article, we used the dual quasi-Newton
algorithm, which updates the Cholesky factor of an ap-
proximate Hessian (Littell et al., 2006).

As an alternative to the maximum likelihood method,
moment estimators were introduced by Tamura and
Young (1987) and Yamamoto and Yanagimoto (1992).
However, a discussion of the moment-method estimation
is outside the scope of this article and interested readers
can refer to these authors.

A vector of covariates X = (X1, . . . ,Xk)
′ can be in-

cluded in the model by replacing the parameter θ by a
function θ(x) given by

θ(x) =
exp(θ0 + θ1x1 + · · ·+ θkxk)

1 + exp(θ0 + θ1x1 + · · ·+ θkxk)
, (6)

where θ0, θ1, . . . , θk are unknown parameters (Forcina
and Franconi, 1988). This link function is defined to
ensure that the parameter θ remains bounded in the
interval (0,1).

3 An example: the intrinsic religios-
ity index

To illustrate the use of the model, we consider a research
conducted at the Faculty of Medicine of Ribeirão Preto
(University of São Paulo) which used the Portuguese
version of the Duke Religion Index (P-DUREL) in a sam-
ple of 202 female postgraduate students and 71 male
students (Martinez et al., 2012). The P-DUREL is a five-
item measure of religious involvement, that assesses the

three major dimensions of religiosity: organizational
religious activity, non-organizational religious activity,
and intrinsic religiosity (Koenig and Büssing, 2010). In-
trinsic religiosity (IR) is measured by the God’s presence
experienced in the lives of people, the relation between
religious beliefs and approach to life, and the effort to
live the religion in all aspects of life (Koenig and Büss-
ing, 2010). The greater the number of points in the IR
subscale, the greater the quantification of the intrinsic
religiosity of the individual. The maximum number of
points in IR subscale is n = 18. Table 1 shows the counts
of points in IR subscale for female and male individu-
als. Table 2 shows descriptive statistics for the intrinsic
religiosity (IR) measures.

Table 2: Descriptive statistics.

Sex Total Mean SD1 Variance
Women 202 15.42 2.523 6.364
Men 71 13.54 3.621 13.109
Both sexes 273 14.93 2.960 8.759

1SD: Standard deviation.

The method was implemented in the SAS NLMIXED
procedure and the likelihood function was maximized
using a dual quasi-Newton algorithm. Akaike’s infor-
mation criterion (AIC) was considered for comparison
between models (Burnham and Anderson, 2003). Gener-
ally, the lower the AIC value the better is the model fit.
The SAS syntax is given in Appendix.

4 Results

Considering the data in Table 1, we have n = 18. Firstly,
we consider a model that assumes that the number of
points obtained by each subject in the IR dimension
follows a beta-binomial distribution with parameters a
and b. After this, we consider a model that assumes the
parametrization a = θτ−1 and b = (1− θ)τ−1.
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4.1 Model not considering the proposed par-
ametrization

Initially, we fitted two models to the data considering
the beta-binomial distribution, one which considers the
number of points obtained in the IR scale considering
both sexes (labeled as Model 1, without the inclusion of
covariates) and another which considers a regression in
the parameter a (labeled as Model 2), such that

a =

{
exp(a0), if men

exp(a0 + a1), if women
. (7)

Table 3 shows the results obtained from these models
and their respective AIC values. Considering the results
from Model 2, we note that the 95% confidence interval
(95% CI) for a1 does not contain the value 0, containing
only positive values, which evidences a difference of IR
mean scores between the sexes (we can conclude that
there is evidence that women have higher IR scores). The
mean and variance of the IR subscale were obtained from
equations (1) and (2), respectively. The SAS NLMIXED
procedure considers the mean and variance as additional
parameters and their standard errors are approximated
using the delta method.

Figure 2 compares the estimated frequencies ob-
tained from Model 1 with the observed frequencies ob-
tained from Table 1. We observe that the estimated
frequencies are in good agreement with those obtained
directly from the sample (Table 1).
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Figure 2: Observed frequencies of the IR scores com-
pared to the predicted frequencies from the Model 1.

4.2 Model considering the proposed param-
etrization

Table 4 shows the maximum-likelihood results obtained
from the model considering the parametrization a =

θτ−1 and b = (1− θ)τ−1. A third model do not consid-
ers the inclusion of covariates (labeled as Model 3) and
a fourth model (Model 4) considers the variable sex, so
that the link function θ(x) is given by

θ(x) =


exp(θ0)

1+exp(θ0)
, if men

exp(θ0+θ1)
1+exp(θ0+θ1)

, if women
. (8)

We note in Table 4 that the AIC values for the Models
3 and 4 are quite similar to those from Models 1 and 2,
respectively. Thus, the advantage of the parametrization
used in these models is not necessarily a better fit to the
data, but it is that in this case the mean of the variable
of interest is a function of an unique parameter (see
expression (3)), which makes the model more suitable
for introducing a vector of covariates. This can be done
by using the link function (6). On the other hand, when
the parametrization is not considered, a model which
considers a regression only in one of the parameters (a
or b) can be arbitrary.

4.3 A comparison between models based on
other distributions

It was fitted a model for the data of Table 1, assuming
that the number of points obtained in IR subscale fol-
lows a binomial distribution with parameters n = 18
and p unknown. The mean obtained by this model was
14.93 points, exactly the value observed directly from
the data (Table 2). However, the variance was estimated
by 2.549, a value smaller than those described in Table
1. In this way we understand that the beta-binomial
model is more appropriated to the data presented, as it
is able to describe a dispersion higher than that of the
binomial model. On the other hand, when it was fitted
a model based on the negative binomial distribution,
the mean was estimated by 14.93 and variance equals
to 27.30. That is, the variance obtained by this model is
much higher than that obtained from the beta-binomial
model. In addition, the obtained AIC values from the
beta-binomial model, binomial and negative binomial
are given , respectively, 1231.1, 1535.9 and 1508.2, indi-
cating a better fit of the data by a beta-binomial model.
Observe that smaller values of AIC indicates better mod-
els.

5 Conclusion

Although there is no explicit solution to score functions
obtained from the application of the maximum likeli-
hood method, this study suggests that SAS program
is efficient for the estimation of the model parameters,
given that we have not problems of convergence for the
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Table 3: Maximum likelihood estimates for the beta-binomial model.

Parameter Estimate Standard error 95%CI 1 AIC
Model 1 1231.1
a 5.7759 0.1470 (5.487 , 6.064)
b 1.2029 0.0651 (1.074 , 1.331)
Mean 14.898 0.1723 (14.558 , 15.236)
Variance 8.039 0.3886 (7.275 , 8.802)

Model 2 1211.0
a0 1.4158 0.0731 (1.2722 , 1.5594)
a1 0.6714 0.1137 (0.4480 , 0.8949)
b 1.3636 0.0617 (1.2423 , 1.4848)
Mean, women 15.396 0.1375 (15.126 , 15.666)
Variance, women 5.859 0.3884 (5.095 , 6.622)
Mean, men 13.524 0.3272 (12.881 , 14.167)
Variance, men 12.181 0.9360 (10.342 , 14.020)

195%CI: 95% confidence interval.

Table 4: Maximum likelihood estimates for the beta-binomial model, considering the proposed parametrization.

Parameter Estimate Standard error 95%CI 1 AIC
Model 3 1231.1
τ 0.1433 0.0098 (0.1241 , 0.1625)
θ 0.8276 0.0091 (0.8098 , 0.8455)
Mean 14.897 0.1639 (14.575 , 15.220)
Variance 8.039 0.5027 (7.050 , 9.026)

Model 4 1215.1
θ0 1.1503 0.1273 (0.9001 , 1.4004)
θ1 0.5942 0.1272 (0.3443 , 0.8442)
τ 0.1283 0.0116 (0.1054 , 0.1512)
Mean, women 15.323 0.2128 (14.904 , 15.741)
Variance, women 6.685 0.7036 (5.302 , 8.068)
Mean, men 13.672 0.4186 (12.849 , 14.494)
Variance, men 9.642 0.9478 (7.780 , 11.504)

195%CI: 95% confidence interval.

numerical algorithm (dual quasi-Newton) chosen to ob-
tain the estimates and their standard errors. When it
was added a covariate in the model, we observed that
the same allowed us to estimate the mean and variance
(see Table 3) close to those obtained directly from the
data (Table 1). In addition, we note that an advantage
of using the beta-binomial distribution for the data of
Table 1 is in its adjustment for the dispersion of data
(overdispersion), since the variance obtained from the
model is closer to that obtained directly from the data
than the the variances obtained from usual models based
on the binomial and the negative binomial distributions.
Thus, we conclude that the model based on the beta-
binomial distribution can be used in the analysis of real
data, whose dispersion is not satisfactorily estimated
by binomial and negative binomial models, the usual

models considered in the health area.
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Appendix

The SAS procedure NLMIXED was designed for fitting
nonlinear and generalized linear models with random
effects (Littell et al., 2006). If the random effects are not
reported, they are not included in the model. PROC
NLMIXED specifies a conditional distribution for the
dependent variable having a usual form (as normal, bi-
nomial or Poisson distributions) or specifies a general
log likelihood function using SAS programming state-
ments.

The SAS code for Model 1 is the following.

proc nlmixed data=example df=500;
y=IR;
parms a=6 b=1;
bounds a>0, b>0;
n = 18;
L = fact(n)/(fact(y)*fact(n-y))
*beta(y+a,n-y+b)/beta(a,b);
logL = log(L);
m=n*a/(a+b);
v=n*a*b*(a+b+n)/((a+b)*(a+b)*(a+b+1));
model y ∼ general(logL);
estimate "Mean" m;
estimate "Variance" v;
run; .

In this SAS code, L is the likelihood function and
logL is its logarithm. The option df in the first line spec-
ifies the degrees of freedom to be used in computing
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asymptotic confidence intervals based on the Student
t distribution. We set df=500 to consider confidence
intervals based on the normal distribution. The PARMS
statement describes the names of parameters and spec-
ifies initial values. In order to avoid problems of con-
vergence or a Hessian matrix with negative eigenvalues,
reasonable initial values should be specified for each
parameter. This can be a trial-and-error process; if the
initial values are far from the solution, this method can
suffer from convergence problems. The ESTIMATE state-
ment enables additional estimates that is a function of
the parameter values, and their approximate standard
errors are obtained from the delta method. Note that in
the SAS code above, we used the ESTIMATE statement
to obtain inferences about the mean and the variance of
the beta-binomial distribution.

The SAS code for Model 2 is

proc nlmixed data=example df=500;
y=IR;
parms a0=1.4 a1=0.5 b=1.3;
bounds b>0;
if sex="M" then a=exp(a0);
if sex="F" then a=exp(a0+a1);
n = 18;
L = fact(n)/(fact(y)*fact(n-y))
*beta(y+a,n-y+b)/beta(a,b);
logL = log(L);
m1=n*exp(a0)/(exp(a0)+b);
v1=n*exp(a0)*b*(exp(a0)+b+n)
/((exp(a0)+b)*(exp(a0)+b)*(exp(a0)+b+1));
m2=n*exp(a0+a1)/(exp(a0+a1)+b);
v2=n*exp(a0+a1)*b*(exp(a0+a1)+b+n)
/((exp(a0+a1)+b)*(exp(a0+a1)+b)
*(exp(a0+a1)+b+1));
model y ∼ general(logL);
estimate "Mean M" m1;
estimate "Variance M" v1;
estimate "Mean F" m2;
estimate "Variance F" v2;
run; .

The SAS code for Model 3 is

proc nlmixed data=example df=500;
y=IR;
parms theta=0.5 tau=0.1;
bounds theta>0, tau>0;
n = 18;
a = theta/tau;
b = (1-theta)/tau;
L = fact(n)/(fact(y)*fact(n-y))*
beta(y+a,n-y+b)/beta(a,b);
logL = log(L);

m=n*theta;
v=n*theta*(1-theta)*(1+(n-1)*tau/(1+tau));
model y ∼ general(logL);
estimate "Mean" m;
estimate "Variance" v;
run; .
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