
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Vol. 8(2018), 401–412
DOI: 10.7251/BIMVI1802401K

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

SCATTERING NUMBER AND CARTESIAN PRODUCT
OF GRAPHS

Burak Kaval and Alpay Kirlangic

Abstract. In a communication network, the vulnerability is the resistance of

the network to disruption of operation after the failure of certain stations or
communication links. If a communication network was modelled by a graph,

then the scattering number measures vulnerability of the graph. The scattering

number of an arbitrary graph G = (V,E) is defined to be sc(G) = max{ω(G−
S)− |S| : S ⊆ V (G) and ω(G− S) 6= 1}, where ω(G− S) denotes the number

of connected components of G − S. In this paper the scattering number of

graphs K1,m ×K1,n,K1,m × Pn,K1,m × Cn and K2 × Cn is obtained.

1. Introduction

A communication network consists of some centers and links which connect these
centers. In a communication network, the vulnerability measures the resistance of
the network to disruption of operation after the failure of certain stations or com-
munication links. A communication network is modelled by a graph to measure
the vulnerability as centers corresponding to the vertices of a graph and communi-
cation links corresponding to the edges of a graph. To measure vulnerability of a
graph G, we have some parameters which are connectivity [6], toughness [4], scat-
tering number [7], integrity [1]. In this paper, we discuss the scattering number of
a graph. The scattering number of a graph was defined by Jung.

Definition 1.1. [7] The scattering number sc(G) is sc(G) = max{ω(G −
S) − |S| : S ⊆ V (G) and ω(G − S) 6= 1}, where ω(G − S) denotes the number of
connected components of G− S.
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A scatter set is an S which achieves this maximum. The scattering number
of a graph is closely related to the toughness of a graph. Jung calls the scattering
number the additive dual of the toughness. Moreover this parameter can take on
both positive and negative values. Note that the scattering number of a complete
graph Kn is 2-n [7]. On the other hand, Zhang et al.[9] prove that the problem
of computing the scattering number of a graph is NP-complete. Now we list the
following some known results.

For a graph G, let α(G), β(G), κ(G), λ(G) and δ(G) denote the independence
number, covering number, connectivity, edge-connectivity and minimum degree of
G, respectively.

Theorem 1.1. [8] Let G be a noncomplete connected graph of order n. Then

2α(G)− n 6 sc(G) 6 α(G)− κ(G).

Theorem 1.2. [8] Let G be a noncomplete connected graph of order n (n > 3).
Then

(a) 2− κ(G) 6 sc(G) 6 n− 2κ(G);
(b) 2− λ(G) 6 sc(G) 6 n− 2λ(G);
(c) 2− δ(G) 6 sc(G) 6 n− 2δ(G).

Theorem 1.3. [8] Let G be a noncomplete connected graph of order n (n > 4)
and the length of a longest path is p. Then

sc(G) 6 n− p.

Theorem 1.4. [9] Let H be a spanning subgraph of a noncomplete connected
graph G. Then

sc(H) > sc(G).

Definition 1.2. [6] To define the product G1 × G2, consider any two points
u = (u1, u2) and v = (v1, v2) in V = V1×V2. Then u and v are adjacent in G1×G2

whenever [u1 = v1 and u2 adj v2] or [u2 = v2 and u1 adj v1].

Next we give the following theorem between scattering number and cartesian
product.

Theorem 1.5. [9] Suppose that n1, n2, n3, ..., nk are k integers not less than 2.
Then

(1) sc(Pn1
× Pn2

× Pn3
× ...× Pnk

) = 1, when all ni are odd;
(2) sc(Pn1

× Pn2
× Pn3

× ...× Pnk
) = 0, when some ni is even.

To design of interconnection networks in multiprocessor computing systems,
graphs as hypercubes, grids are used. These graphs are obtained by using carte-
sian product. Consequently, these considerations motivated us to investigate the
scattering number of some graphs which are obtained by using cartesian product.

We use Bondy and Murty [3] for terminology and notation not defined here
and consider only finite, connected and undirected graphs.
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2. Scattering Number and Cartesian Product

In this chapter we consider the scattering number of cartesian product of two
complete bipartite graphs.

2.1. Scattering Number of K1,m ×K1,n.

Firstly we start with a well known Lemma.

Lemma 2.1. Let m,n ∈ Z+ (m > 2, n > 2) and m 6 n. Then α(K1,m ×
K1,n) = mn+ 1 and β(K1,m ×K1,n) = m+ n.

Theorem 2.1. Let m,n ∈ Z+ (m > 2, n > 2) and m 6 n. Then

sc(K1,m ×K1,n) = α(K1,m ×K1,n)− β(K1,m ×K1,n) = mn+ 1− (m+ n).

Proof. By Theorem 1.1

(2.1) sc(K1,m ×K1,n) > α(K1,m ×K1,n)− β(K1,m ×K1,n) = mn+ 1− (m+ n).

Now we prove that sc(K1,m ×K1,n) 6 α(K1,m ×K1,n)− β(K1,m ×K1,n).

Let Aα be independent set ofK1,m×K1,n and Bβ be covering set ofK1,m×K1,n.
Let vertices of K1,m ×K1,n be A = A1 ∪A2 and B = B1 ∪B2 (Figure 1).

If we remove |S|=r vertices where S = {X ∪Y |X ⊆ Aα or/and Y ⊆ Bβ}, then
we have three cases.

Case 1: Let 1 6 |S| = r 6 α(K1,m ×K1,n) and S ⊆ X.

• If we remove some/all vertices of A2, then remaining graph is connected.
• If we remove single vertex of A1, then remaining graph is connected.
• If we remove both single vertex of A1 and some/all vertices of A2 in one

copy of K1,m (or K1,n), then the remaining graph is disconnected while
m+1 6 r 6 α(K1,m×K1,n) and so ω((K1,m×K1,n)−S) 6 m+n. Thus

(2.2)
sc(K1,m×K1,n) 6 max{m+n−(m+1)} = n−1 6 α(K1,m×K1,n)−β(K1,m×K1,n).

Case 2: Let 1 6 |S| = r 6 β(K1,m ×K1,n) and S ⊆ Y . In this case we have two
subcases.

Subcase 1: Let b r2c < m.

• If r is even, then ω((K1,m ×K1,n)− S) 6 r2

4 + 1 and so

(2.3) sc(K1,m ×K1,n) 6 max{r
2

4
+ 1− r} < (2m− 2)2

4
= (m− 1)2.

On the other hand, m 6 n ⇒ m(m − 1) 6 n(m − 1) ⇒ m2 − m 6 mn − n ⇒
m2 − 2m+ 1 6 mn+ 1− (n+m).
By Lemma 2.1,

(2.4) (m− 1)2 6 α(K1,m ×K1,n)− β(K1,m ×K1,n).
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Figure 1. Vertices of K1,m ×K1,n

By (2.3) and (2.4), we have

(2.5) sc(K1,m ×K1,n) < α(K1,m ×K1,n)− β(K1,m ×K1,n).

• If r is odd, then ω((K1,m ×K1,n)− S) 6 r2+3
4 and so

(2.6) sc(K1,m×K1,n) 6 max{r
2 + 3

4
− r} < (2m)2 − 4(2m) + 3

4
= m2− 2m+

3

4
.

On the other hand, m 6 n ⇒ m(m − 1) 6 n(m − 1) ⇒ m2 − m 6 mn − n ⇒
m2 − 2m+ 3

4 6 mn+ 1− (n+m).
By Lemma 2.1,

(2.7) m2 − 2m+
3

4
6 α(K1,m ×K1,n)− β(K1,m ×K1,n).

By (2.6) and (2.7), we have

(2.8) sc(K1,m ×K1,n) < α(K1,m ×K1,n)− β(K1,m ×K1,n).

By (2.5) and (2.8), we have

(2.9) sc(K1,m ×K1,n) < α(K1,m ×K1,n)− β(K1,m ×K1,n).
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Subcase 2: Let b r2c > m, then ω((K1,m ×K1,n)− S) 6 mr −m2 + 1. So

sc(K1,m ×K1,n) 6 max{mr −m2 + 1} = max{(m− 1)(r − 1−m)}.

Since r 6 β(K1,m ×K1,n) = m+ n,

(2.10) sc(K1,m ×K1,n) 6 (m− 1)(m+ n− 1−m) 6 mn+ 1− n−m.

By Lemma 2.1,

(2.11) (m− 1)(m+ n− 1−m) 6 α(K1,m ×K1,n)− β(K1,m ×K1,n).

By (2.10) and (2.11), we have

(2.12) sc(K1,m ×K1,n) < α(K1,m ×K1,n)− β(K1,m ×K1,n).

By (2.9) and (2.12), we have

(2.13) sc(K1,m ×K1,n) < α(K1,m ×K1,n)− β(K1,m ×K1,n).

Case 3: Let 1 6 |S| = r 6 α(K1,m × K1,n) + β(K1,m × K1,n) and S ⊆ X ∪ Y .
Now we have two subcases.

Subcase 1: If b r2c < m then ω((K1,m ×K1,n)− S) <

{
r2

4 + 1, if r is even
r2+3
4 , if r is odd

.

Subcase 2: If b r2c > m then ω((K1,m ×K1,n)− S) < mr −m2 + 1.

The rest of the proof is very similar to that of Case 2. Thus in either of these two
subcases, we have

(2.14) sc(K1,m ×K1,n) 6 α(K1,m ×K1,n)− β(K1,m ×K1,n).

By (2.2), (2.13) and (2.14), the proof is completed. �

2.2. Scattering Number of K1,m × Pn.

Now we give the following Theorem for sc(K1,m × Pn).

Theorem 2.2. Let m,n ∈ Z+ (m > 2, n > 2). Then

sc(K1,m × Pn) =

{
m− 1, if n is even

m− 2, if n is odd
.

Proof. Let the vertices of K1,m and Pn be vi(1 6 i 6 m+ 1) and uj(1 6 j 6
n), respectively. Hence the vertices of K1,m × Pn is denoted by (vi, uj). We shall
abbreviate (vi, uj) as wi,j for 1 6 i 6 m + 1 and 1 6 j 6 n. It is obvious that

2 6 |S| = r 6 β(K1,m × Pn) = n(m+1)
2 + 1−m.

For the proof we have four cases according to m and n.

Case 1: Let m > n and n be odd. Let |S| = r be the number of removing vertices
of graph K1,m × Pn.
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• If 2 6 r 6 n−1, then let S1 = {wi,2|2 6 i 6 m+1} and S2 = {wi,n−1|2 6
i 6 m+ 1}. If S consist of vertices w1,1 and at least one element of S1 or
consist of vertices w1,n and at least one element of S2, then

(2.15) ω((K1,m × Pn)− S) 6 r and so sc(K1,m × Pn) 6 max{r − r} = 0.

Otherwise ω((K1,m × Pn)− S) < α(K1,m × Pn) and so

(2.16) sc(K1,m × Pn) < max{α(K1,m × Pn)− β(K1,m × Pn)} = m− 1.

• If n 6 r 6 β(K1,m×Pn)−1, then let S3 = {vj,k|(j, k) ∈ I×J, I = {2, ,m+
1} and J = {2, 4, 6, , n− 2}}. If S consist of all vertices of w1,i(1 6 i 6 n)
or consist of all vertices of w1,i(1 6 i 6 n) and at least one element of S3,
then ω((K1,m × Pn)− S) 6 r +m− n. So

(2.17) ω((K1,m × Pn)− S) 6 max{r +m− n− r} = m− n.
Otherwise ω((K1,m × Pn)− S) < α(K1,m × Pn) and so

(2.18) sc(K1,m × Pn) < max{α(K1,m × Pn)− β(K1,m × Pn)} = m− 1.

• Let r = β(K1,m × Pn). If S is the minimum covering set of K1,m × Pn,
then ω((K1,m × Pn)− S) = α(K1,m × Pn). Therefore

(2.19) sc(K1,m × Pn) = max{α(K1,m × Pn)− β(K1,m × Pn)} = m− 1.

Otherwise ω((K1,m × Pn)− S) < α(K1,m × Pn) and so

(2.20) sc(K1,m × Pn) < max{α(K1,m × Pn)− β(K1,m × Pn)} = m− 1.

By (2.15), (2.16), (2.17), (2.18), (2.19) and (2.20), we have

(2.21) sc(K1,m × Pn) = m− 1.

The proofs of Case 2, Case 3 and Case 4 are done similar to the proof in Case 1.
The values |S|, ω(K1,m × Pn) and sc(K1,m × Pn) required for Case 2 are given in
Table 1. Similarly, the values in Table 2 and Table 3 are given for the proof of Case
3 and Case 4, respectively.

From Table 1, we have

(2.22) sc(K1,m × Pn) = m− 2.

From Table 2, we have

(2.23) sc(K1,m × Pn) = m− 1.

From Table 3, we have

(2.24) sc(K1,m × Pn) = m− 2.

By (2.21), (2.22), (2.23) and (2.24), the proof is completed.
�
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Table 1. Case 2

Table 2. Case 3

2.3. Scattering Number of K1,m × Cn.

In this section, to obtain the sc(K1,m × Cn) we need the following Theorems.

Theorem 2.3. [2] Let G = T × Cn be the cartesian product of an n-cycle Cn
and a tree T with the maximum degree ∆(T ) > 2. Then G possesses a Hamiltonian
cycle if and only if ∆(T ) > n.
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Table 3. Case 4

Theorem 2.4. [4] Let G = (V,E) be a graph. If G is hamiltonian then τ(G) >
1.

Theorem 2.5. [5] Let G = (V,E) be a graph. If τ(G) > 1 then sc(G) 6 0.

Theorem 2.6. Let m,n ∈ Z+ (m > 2, n > 2). Then

sc(K1,m × Cn) =


0, if m 6 n and n is even

− 1, if m < n and n is odd

m− n, if m > n

.

Proof. To prove the Theorem we have three cases.

Case 1: Let m 6 n and n be even.

By Theorem 1.2, since α(K1,m × Cn) = β(K1,m × Cn) = n(m+1)
2 , then

(2.25) sc(K1,m × Cn) > 0.

Now we prove that sc(K1,m × Cn) 6 0. If we choose T ∼= K1,m in Theorem
2.4, then ∆(T ) = ∆(K1,m) = m, m > 2 and m 6 n. Therefore K1,m × Cn is
hamiltonian. By Theorem 2.5 we have τ(K1,m × Cn) > 1 and by Theorem 2.6

(2.26) sc(K1,m × Cn) 6 0.

By (2.25) and (2.26),

sc(K1,m × Cn) = 0.
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Case 2: Let m < n and n be odd. K1,m×Cn consists of (m+ 1) copies of Cn and
n copies of K1,m (Figure 2).

Figure 2. K1,m × Cn

Let A = {v1,1, v1,2, v1,3, ..., v1,n} and B = V (K1,m×Cn)rA. Let S = S0 ∪S1,
where S ⊂ V (K1,m × Cn), S0 ⊆ A and S1 ⊆ B. Since S is a cut set, we have two
cases.

• |S0| > 1 and |S1| > 2

or

• S0 = A and |S1| > 0.

Subcase 1: Let |S0| > 1 and |S1| > 2. Then δ(K1,m×Cn) = κ(K1,m×Cn) = 3
and so deg(v) = 3 for every vertex v in B. Therefore if we remove three vertices
that incident with vertex v (one in A and two in B), then the remaining graph
have two components C0 and C1, such that C0 is a isolated vertex and C1 is a
connected graph. Thus |S| = 3 and ω((K1,m × Cn)− S) = 2. For each vertex v of
C1, deg(v) > 2.

Consider a vertex v1 of C1 where deg(v1) = 2. If we remove two vertices that are
incident with v1 then the remaining graph have two isolated vertices and a con-
nected graph C2. Therefore, |S| = 5 and ω((K1,m × Cn)− S) = 3.

Now we consider the graph C2. For each vertex v in C2, deg(v) > 2. Let v2 be a
vertex of C2 where deg(v2) = 2. If we remove two vertices that are incident with v2
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then the remaining graph have three isolated vertices and a connected graph C3.
Therefore, |S| = 7 and ω((K1,m × Cn)− S) = 4.

Similarly, if we continue removing vertices from the every components Cn(n > 4),
we obtain ω((K1,m × Cn)− S) 6 r − 1, where |S| = r. Hence

(2.27) sc(K1,m × Cn) 6 max{r − 1− r} = −1.

Subcase 2: Let S0 = A and |S1| > 0. Therefore, |S| > n+ k and ω((K1,m ×
Cn)− S) 6 m+ k (k ∈ Z+),

(2.28) sc(K1,m × Cn) 6 max{m+ k − (n+ k)} = m− n.
On the other hand,

(2.29) if m < n then m− n 6 −1.

By (2.27), (2.28) and (2.29), we have

(2.30) sc(K1,m × Cn) 6 −1.

Also, if we choose G ∼= K1,m × Cn in Theorem 1.3(a), we have

(2.31) sc(K1,m × Cn) > 2− κ(K1,m × Cn) = 2− 3 = −1.

By (2.30) and (2.31), we have

(2.32) sc(K1,m × Cn) = −1.

Case 3: Let m > n. The proof follows directly from Case 2. Thus we have

(2.33) sc(K1,m × Cn) 6 m− n.
Now we can choose S = A, where S ⊂ V (K1,m×Cn), |S| = n and ω((K1,m×Cn)−
S) = m. Hence

(2.34) sc(K1,m × Cn) = max{ω((K1,m × Cn)− S)− |S|} = m− n.
Therefore by (2.33) and (2.34), we have

sc(K1,m × Cn) = m− n.
The proof is completed. �

2.4. Scattering Number of K2 × Cn.

Theorem 2.7.

sc(K2 × Cn) =

{
0, if n is even

−1, if n is odd
.

Proof. Since K2 × Pn is a spanning subgraph of K2 × Cn, we have sc(K2 ×
Pn) > sc(K2 ×Cn) by Theorem 1.5. On the other hand, since sc(K2 × Pn) 6 0 by
Theorem 1.4, then

(2.35) sc(K2 × Cn) 6 0.

Now we have two cases according to the parity of n.
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Case 1: Let n be even. Then α(K2 × Cn) = β(K2 × Cn) = n. By Theorem 1.2,

(2.36) sc(K2 × Cn) > 2α(K2 × Cn)− 2n = 2n− 2n = 0.

By (2.35) and (2.36), we have sc(K2 × Cn) = 0.

Case 2: Let n be odd. If we remove r vertices fromK2×Cn then ω((K2×Cn)−S) 6
r − 1. Thus

(2.37) sc(K2 × Cn) 6 max{r − 1− r} = −1.

On the other hand, by Theorem 1.3, we have

(2.38) sc(K2 × Cn) > 2− δ(K2 × Cn) = 2− 3 = −1.

By (2.37) and (2.38), we have

sc(K2 × Cn) = −1.

The proof is completed.
�

3. CONCLUSION

When the obtained results are examined, it can be seen that the scattering
number is equal to α− β in the following graphs.

• The graph K1,m ×K1,n while n is odd.
• The graph K1,m × Pn while n is odd.
• The graph K1,m × Cn while m < n and n is even.
• The graph K2 × Cn while n is even.

In addition, the scattering number of K2×Cn is −1 and α−β = −2. Further-
more, the difference of scattering number and α− β depends on m in the following
graphs.

• The graph K1,m × Pn while n is even.
• The graph K1,m × Cn while m < n and n is odd.
• The graph K1,m × Cn while m > n.

In other words, we observe that the scattering number approachs (equals in
some cases) the lower bound in Theorem 1.2 while the value of m decrease and
distancing otherwise.
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