SCATTERING NUMBER AND CARTESIAN PRODUCT OF GRAPHS

Burak Kaval and Alpay Kirlangic

Abstract

In a communication network, the vulnerability is the resistance of the network to disruption of operation after the failure of certain stations or communication links. If a communication network was modelled by a graph, then the scattering number measures vulnerability of the graph. The scattering number of an arbitrary graph $G=(V, E)$ is defined to be $s c(G)=\max \{\omega(G-$ $S)-|S|: S \subseteq V(G)$ and $\omega(G-S) \neq 1\}$, where $\omega(G-S)$ denotes the number of connected components of $G-S$. In this paper the scattering number of graphs $K_{1, m} \times K_{1, n}, K_{1, m} \times P_{n}, K_{1, m} \times C_{n}$ and $K_{2} \times C_{n}$ is obtained.

1. Introduction

A communication network consists of some centers and links which connect these centers. In a communication network, the vulnerability measures the resistance of the network to disruption of operation after the failure of certain stations or communication links. A communication network is modelled by a graph to measure the vulnerability as centers corresponding to the vertices of a graph and communication links corresponding to the edges of a graph. To measure vulnerability of a graph G, we have some parameters which are connectivity [6], toughness [4], scattering number $[\mathbf{7}]$, integrity $[\mathbf{1}]$. In this paper, we discuss the scattering number of a graph. The scattering number of a graph was defined by Jung.

Definition 1.1. [7] The scattering number $\operatorname{sc}(\mathrm{G})$ is $\operatorname{sc}(G)=\max \{\omega(G-$ $S)-|S|: S \subseteq V(G)$ and $\omega(G-S) \neq 1\}$, where $\omega(G-S)$ denotes the number of connected components of $G-S$.

[^0]A scatter set is an S which achieves this maximum. The scattering number of a graph is closely related to the toughness of a graph. Jung calls the scattering number the additive dual of the toughness. Moreover this parameter can take on both positive and negative values. Note that the scattering number of a complete graph K_{n} is 2-n [7]. On the other hand, Zhang et al.[9] prove that the problem of computing the scattering number of a graph is NP-complete. Now we list the following some known results.

For a graph G, let $\alpha(G), \beta(G), \kappa(G), \lambda(G)$ and $\delta(G)$ denote the independence number, covering number, connectivity, edge-connectivity and minimum degree of G, respectively.

Theorem 1.1. [8] Let G be a noncomplete connected graph of order n. Then

$$
2 \alpha(G)-n \leqslant s c(G) \leqslant \alpha(G)-\kappa(G) .
$$

Theorem 1.2. [8] Let G be a noncomplete connected graph of order $n(n \geqslant 3)$. Then
(a) $2-\kappa(G) \leqslant s c(G) \leqslant n-2 \kappa(G)$;
(b) $2-\lambda(G) \leqslant s c(G) \leqslant n-2 \lambda(G)$;
(c) $2-\delta(G) \leqslant s c(G) \leqslant n-2 \delta(G)$.

Theorem 1.3. [8] Let G be a noncomplete connected graph of order $n(n \geqslant 4)$ and the length of a longest path is p. Then

$$
s c(G) \leqslant n-p .
$$

Theorem 1.4. [9] Let H be a spanning subgraph of a noncomplete connected graph G. Then

$$
s c(H) \geqslant s c(G) .
$$

Definition 1.2. [6] To define the product $G_{1} \times G_{2}$, consider any two points $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$. Then u and v are adjacent in $G_{1} \times G_{2}$ whenever [$u_{1}=v_{1}$ and u_{2} adj v_{2}] or [$u_{2}=v_{2}$ and u_{1} adj v_{1}].

Next we give the following theorem between scattering number and cartesian product.

Theorem 1.5. [9] Suppose that $n_{1}, n_{2}, n_{3}, \ldots, n_{k}$ are k integers not less than 2. Then
(1) $\operatorname{sc}\left(P_{n_{1}} \times P_{n_{2}} \times P_{n_{3}} \times \ldots \times P_{n_{k}}\right)=1$, when all n_{i} are odd;
(2) $s c\left(P_{n_{1}} \times P_{n_{2}} \times P_{n_{3}} \times \ldots \times P_{n_{k}}\right)=0$, when some n_{i} is even.

To design of interconnection networks in multiprocessor computing systems, graphs as hypercubes, grids are used. These graphs are obtained by using cartesian product. Consequently, these considerations motivated us to investigate the scattering number of some graphs which are obtained by using cartesian product.

We use Bondy and Murty [3] for terminology and notation not defined here and consider only finite, connected and undirected graphs.

2. Scattering Number and Cartesian Product

In this chapter we consider the scattering number of cartesian product of two complete bipartite graphs.
2.1. Scattering Number of $K_{1, m} \times K_{1, n}$.

Firstly we start with a well known Lemma.
Lemma 2.1. Let $m, n \in Z^{+}(m \geqslant 2, n \geqslant 2)$ and $m \leqslant n$. Then $\alpha\left(K_{1, m} \times\right.$ $\left.K_{1, n}\right)=m n+1$ and $\beta\left(K_{1, m} \times K_{1, n}\right)=m+n$.

Theorem 2.1. Let $m, n \in Z^{+}(m \geqslant 2, n \geqslant 2)$ and $m \leqslant n$. Then
$s c\left(K_{1, m} \times K_{1, n}\right)=\alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right)=m n+1-(m+n)$.
Proof. By Theorem 1.1
(2.1) $s c\left(K_{1, m} \times K_{1, n}\right) \geqslant \alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right)=m n+1-(m+n)$.

Now we prove that $s c\left(K_{1, m} \times K_{1, n}\right) \leqslant \alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right)$.
Let A_{α} be independent set of $K_{1, m} \times K_{1, n}$ and B_{β} be covering set of $K_{1, m} \times K_{1, n}$. Let vertices of $K_{1, m} \times K_{1, n}$ be $A=A_{1} \cup A_{2}$ and $B=B_{1} \cup B_{2}$ (Figure 1).

If we remove $|S|=\mathrm{r}$ vertices where $S=\left\{X \cup Y \mid X \subseteq A_{\alpha}\right.$ or/and $\left.Y \subseteq B_{\beta}\right\}$, then we have three cases.

Case 1: Let $1 \leqslant|S|=r \leqslant \alpha\left(K_{1, m} \times K_{1, n}\right)$ and $S \subseteq X$.

- If we remove some/all vertices of A_{2}, then remaining graph is connected.
- If we remove single vertex of A_{1}, then remaining graph is connected.
- If we remove both single vertex of A_{1} and some/all vertices of A_{2} in one copy of $K_{1, m}$ (or $K_{1, n}$), then the remaining graph is disconnected while $m+1 \leqslant r \leqslant \alpha\left(K_{1, m} \times K_{1, n}\right)$ and so $\omega\left(\left(K_{1, m} \times K_{1, n}\right)-S\right) \leqslant m+n$. Thus
$s c\left(K_{1, m} \times K_{1, n}\right) \leqslant \max \{m+n-(m+1)\}=n-1 \leqslant \alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right)$.
Case 2: Let $1 \leqslant|S|=r \leqslant \beta\left(K_{1, m} \times K_{1, n}\right)$ and $S \subseteq Y$. In this case we have two subcases.

Subcase 1: Let $\left\lfloor\frac{r}{2}\right\rfloor<m$.

- If r is even, then $\omega\left(\left(K_{1, m} \times K_{1, n}\right)-S\right) \leqslant \frac{r^{2}}{4}+1$ and so

$$
\begin{equation*}
s c\left(K_{1, m} \times K_{1, n}\right) \leqslant \max \left\{\frac{r^{2}}{4}+1-r\right\}<\frac{(2 m-2)^{2}}{4}=(m-1)^{2} . \tag{2.3}
\end{equation*}
$$

On the other hand, $m \leqslant n \Rightarrow m(m-1) \leqslant n(m-1) \Rightarrow m^{2}-m \leqslant m n-n \Rightarrow$ $m^{2}-2 m+1 \leqslant m n+1-(n+m)$.
By Lemma 2.1,

$$
\begin{equation*}
(m-1)^{2} \leqslant \alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right) \tag{2.4}
\end{equation*}
$$

Figure 1. Vertices of $K_{1, m} \times K_{1, n}$

By (2.3) and (2.4), we have

$$
\begin{equation*}
s c\left(K_{1, m} \times K_{1, n}\right)<\alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right) . \tag{2.5}
\end{equation*}
$$

- If r is odd, then $\omega\left(\left(K_{1, m} \times K_{1, n}\right)-S\right) \leqslant \frac{r^{2}+3}{4}$ and so
(2.6) $s c\left(K_{1, m} \times K_{1, n}\right) \leqslant \max \left\{\frac{r^{2}+3}{4}-r\right\}<\frac{(2 m)^{2}-4(2 m)+3}{4}=m^{2}-2 m+\frac{3}{4}$.

On the other hand, $m \leqslant n \Rightarrow m(m-1) \leqslant n(m-1) \Rightarrow m^{2}-m \leqslant m n-n \Rightarrow$ $m^{2}-2 m+\frac{3}{4} \leqslant m n+1-(n+m)$.
By Lemma 2.1,

$$
\begin{equation*}
m^{2}-2 m+\frac{3}{4} \leqslant \alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right) . \tag{2.7}
\end{equation*}
$$

By (2.6) and (2.7), we have

$$
\begin{equation*}
s c\left(K_{1, m} \times K_{1, n}\right)<\alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right) . \tag{2.8}
\end{equation*}
$$

By (2.5) and (2.8), we have

$$
\begin{equation*}
s c\left(K_{1, m} \times K_{1, n}\right)<\alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right) . \tag{2.9}
\end{equation*}
$$

Subcase 2: Let $\left\lfloor\frac{r}{2}\right\rfloor \geqslant m$, then $\omega\left(\left(K_{1, m} \times K_{1, n}\right)-S\right) \leqslant m r-m^{2}+1$. So

$$
s c\left(K_{1, m} \times K_{1, n}\right) \leqslant \max \left\{m r-m^{2}+1\right\}=\max \{(m-1)(r-1-m)\}
$$

Since $r \leqslant \beta\left(K_{1, m} \times K_{1, n}\right)=m+n$,

$$
\begin{equation*}
s c\left(K_{1, m} \times K_{1, n}\right) \leqslant(m-1)(m+n-1-m) \leqslant m n+1-n-m \tag{2.10}
\end{equation*}
$$

By Lemma 2.1,

$$
\begin{equation*}
(m-1)(m+n-1-m) \leqslant \alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right) \tag{2.11}
\end{equation*}
$$

By (2.10) and (2.11), we have

$$
\begin{equation*}
s c\left(K_{1, m} \times K_{1, n}\right)<\alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right) . \tag{2.12}
\end{equation*}
$$

By (2.9) and (2.12), we have

$$
\begin{equation*}
s c\left(K_{1, m} \times K_{1, n}\right)<\alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right) . \tag{2.13}
\end{equation*}
$$

Case 3: Let $1 \leqslant|S|=r \leqslant \alpha\left(K_{1, m} \times K_{1, n}\right)+\beta\left(K_{1, m} \times K_{1, n}\right)$ and $S \subseteq X \cup Y$. Now we have two subcases.

Subcase 1: If $\left\lfloor\frac{r}{2}\right\rfloor<m$ then $\omega\left(\left(K_{1, m} \times K_{1, n}\right)-S\right)<\left\{\begin{array}{ll}\frac{r^{2}}{4}+1, & \text { if } r \text { is even } \\ \frac{r^{2}+3}{4}, & \text { if } \mathrm{r} \text { is odd }\end{array}\right.$.
Subcase 2: If $\left\lfloor\frac{r}{2}\right\rfloor \geqslant m$ then $\omega\left(\left(K_{1, m} \times K_{1, n}\right)-S\right)<m r-m^{2}+1$.
The rest of the proof is very similar to that of Case 2. Thus in either of these two subcases, we have

$$
\begin{equation*}
s c\left(K_{1, m} \times K_{1, n}\right) \leqslant \alpha\left(K_{1, m} \times K_{1, n}\right)-\beta\left(K_{1, m} \times K_{1, n}\right) . \tag{2.14}
\end{equation*}
$$

By (2.2), (2.13) and (2.14), the proof is completed.

2.2. Scattering Number of $K_{1, m} \times P_{n}$.

Now we give the following Theorem for $s c\left(K_{1, m} \times P_{n}\right)$.
THEOREM 2.2. Let $m, n \in Z^{+}(m \geqslant 2, n \geqslant 2)$. Then

$$
s c\left(K_{1, m} \times P_{n}\right)=\left\{\begin{array}{ll}
m-1, & \text { if } n \text { is even } \\
m-2, & \text { if } n \text { is odd }
\end{array} .\right.
$$

Proof. Let the vertices of $K_{1, m}$ and P_{n} be $v_{i}(1 \leqslant i \leqslant m+1)$ and $u_{j}(1 \leqslant j \leqslant$ n), respectively. Hence the vertices of $K_{1, m} \times P_{n}$ is denoted by $\left(v_{i}, u_{j}\right)$. We shall abbreviate $\left(v_{i}, u_{j}\right)$ as $w_{i, j}$ for $1 \leqslant i \leqslant m+1$ and $1 \leqslant j \leqslant n$. It is obvious that $2 \leqslant|S|=r \leqslant \beta\left(K_{1, m} \times P_{n}\right)=\frac{n(m+1)}{2}+1-m$.

For the proof we have four cases according to m and n.
Case 1: Let $m>n$ and n be odd. Let $|S|=r$ be the number of removing vertices of graph $K_{1, m} \times P_{n}$.

- If $2 \leqslant r \leqslant n-1$, then let $S_{1}=\left\{w_{i, 2} \mid 2 \leqslant i \leqslant m+1\right\}$ and $S_{2}=\left\{w_{i, n-1} \mid 2 \leqslant\right.$ $i \leqslant m+1\}$. If S consist of vertices $w_{1,1}$ and at least one element of S_{1} or consist of vertices $w_{1, n}$ and at least one element of S_{2}, then

$$
\begin{equation*}
\omega\left(\left(K_{1, m} \times P_{n}\right)-S\right) \leqslant r \text { and so } s c\left(K_{1, m} \times P_{n}\right) \leqslant \max \{r-r\}=0 . \tag{2.15}
\end{equation*}
$$

Otherwise $\omega\left(\left(K_{1, m} \times P_{n}\right)-S\right)<\alpha\left(K_{1, m} \times P_{n}\right)$ and so

$$
\begin{equation*}
s c\left(K_{1, m} \times P_{n}\right)<\max \left\{\alpha\left(K_{1, m} \times P_{n}\right)-\beta\left(K_{1, m} \times P_{n}\right)\right\}=m-1 . \tag{2.16}
\end{equation*}
$$

- If $n \leqslant r \leqslant \beta\left(K_{1, m} \times P_{n}\right)-1$, then let $S_{3}=\left\{v_{j, k} \mid(j, k) \in I \times J, I=\{2, m+\right.$ $1\}$ and $J=\{2,4,6,, n-2\}\}$. If S consist of all vertices of $w_{1, i}(1 \leqslant i \leqslant n)$ or consist of all vertices of $w_{1, i}(1 \leqslant i \leqslant n)$ and at least one element of S_{3}, then $\omega\left(\left(K_{1, m} \times P_{n}\right)-S\right) \leqslant r+m-n$. So

$$
\omega\left(\left(K_{1, m} \times P_{n}\right)-S\right) \leqslant \max \{r+m-n-r\}=m-n .
$$

Otherwise $\omega\left(\left(K_{1, m} \times P_{n}\right)-S\right)<\alpha\left(K_{1, m} \times P_{n}\right)$ and so

$$
\begin{equation*}
s c\left(K_{1, m} \times P_{n}\right)<\max \left\{\alpha\left(K_{1, m} \times P_{n}\right)-\beta\left(K_{1, m} \times P_{n}\right)\right\}=m-1 \tag{2.18}
\end{equation*}
$$

- Let $r=\beta\left(K_{1, m} \times P_{n}\right)$. If S is the minimum covering set of $K_{1, m} \times P_{n}$, then $\omega\left(\left(K_{1, m} \times P_{n}\right)-S\right)=\alpha\left(K_{1, m} \times P_{n}\right)$. Therefore

$$
\begin{equation*}
s c\left(K_{1, m} \times P_{n}\right)=\max \left\{\alpha\left(K_{1, m} \times P_{n}\right)-\beta\left(K_{1, m} \times P_{n}\right)\right\}=m-1 . \tag{2.19}
\end{equation*}
$$

Otherwise $\omega\left(\left(K_{1, m} \times P_{n}\right)-S\right)<\alpha\left(K_{1, m} \times P_{n}\right)$ and so
(2.20) $\quad s c\left(K_{1, m} \times P_{n}\right)<\max \left\{\alpha\left(K_{1, m} \times P_{n}\right)-\beta\left(K_{1, m} \times P_{n}\right)\right\}=m-1$.

By (2.15), (2.16), (2.17), (2.18), (2.19) and (2.20), we have

$$
\begin{equation*}
s c\left(K_{1, m} \times P_{n}\right)=m-1 . \tag{2.21}
\end{equation*}
$$

The proofs of Case 2, Case 3 and Case 4 are done similar to the proof in Case 1. The values $|S|, \omega\left(K_{1, m} \times P_{n}\right)$ and $s c\left(K_{1, m} \times P_{n}\right)$ required for Case 2 are given in Table 1. Similarly, the values in Table 2 and Table 3 are given for the proof of Case 3 and Case 4, respectively.

From Table 1, we have

$$
\begin{equation*}
s c\left(K_{1, m} \times P_{n}\right)=m-2 . \tag{2.22}
\end{equation*}
$$

From Table 2, we have

$$
\begin{equation*}
s c\left(K_{1, m} \times P_{n}\right)=m-1 \tag{2.23}
\end{equation*}
$$

From Table 3, we have

$$
\begin{equation*}
s c\left(K_{1, m} \times P_{n}\right)=m-2 \tag{2.24}
\end{equation*}
$$

By (2.21), (2.22), (2.23) and (2.24), the proof is completed.

Table 1. Case 2

Case 2: Let $\mathrm{m}>\mathrm{n}$ and n be even.					
\|S		S	$\omega\left(\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)-\mathrm{S}\right)$		$\mathrm{sc}\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$
$2 \leq \mathrm{r} \leq \mathrm{n}-1$	- $w_{1,1}$ and at least one of $\mathrm{w}_{\mathrm{i}, 2}(\mathrm{i}=2, \ldots, \mathrm{~m}+1)$	$=\mathrm{r}$	$\leq \mathrm{r}$	≤ 0	
	- $\mathrm{w}_{1, \mathrm{n}}$ and at least one of $\mathrm{w}_{\mathrm{i}, \mathrm{n}-1}(\mathrm{i}=2, \ldots, \mathrm{~m}+1)$	$=\mathrm{r}$			
	- Otherwise	$<\mathrm{r}$			
$\mathrm{n} \leq \mathrm{r}<\frac{\mathrm{n} \cdot(\mathrm{~m}+1)}{2}+1-\mathrm{m}$	- All vertices of $\mathrm{w}_{1, \mathrm{i}}$ $(\mathrm{i}=1, \ldots, \mathrm{n})$	$=\mathrm{r}+\mathrm{m}-\mathrm{n}$	$\leq \mathrm{r}+\mathrm{m}-\mathrm{n}$	$\leq \mathrm{m}-\mathrm{n}$	
	- All vertices of $\mathrm{w}_{1, \mathrm{i}}$ ($\mathrm{i}=1, \ldots, \mathrm{n}$) and at least one of $S_{1}=\left\{w_{j, k} \mid(j, k) \in I x\right.$ $\mathrm{J}, \mathrm{I}=\{2, \ldots, \mathrm{~m}+1\}$ and $\mathrm{J}=\{2,4, \ldots, \mathrm{n}-2\}$ vertices	$=\mathrm{r}+\mathrm{m}-\mathrm{n}$			
	- Otherwise	< $\mathrm{r}+\mathrm{m}$-n			
$\frac{\mathrm{n}(\mathrm{~m}+1)}{2}+1-\mathrm{m}_{\leq \mathrm{r}} \leq \beta\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)-1$	- All vertices of $\mathrm{w}_{1, i}(\mathrm{i}=1, \ldots, \mathrm{n})$ and $\mathrm{S}_{1}=\left\{\mathrm{w}_{\mathrm{j}, \mathrm{k}} \mid(\mathrm{j}, \mathrm{k}) \in \mathrm{I} \times \mathrm{J}\right.$, $\mathrm{I}=\{2, \ldots, \mathrm{~m}+1\}$ and $\mathrm{J}=\{2,4, \ldots, \mathrm{n}-2\}\}$	$=\frac{\mathrm{n} \cdot(\mathrm{~m}+1)}{2}-1$	$\leq \frac{\mathrm{n} \cdot(\mathrm{~m}+1)}{2}-1$	$\leq \mathrm{m}-2$	
	- Otherwise	$<\frac{\mathrm{n}(\mathrm{~m}+1)}{2}-1$			
$\mathrm{r}=\beta\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$	- Minimum covering set of $\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}$	$=\alpha\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$	$\leq \alpha\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$	≤ 0	
	- Otherwise	$<\alpha\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{If}}\right)$			

Table 2. Case 3

Case 3: Let $\mathrm{m} \leq \mathrm{n}$ and n be odd.					
\|S		S	$\omega\left(\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{Pr}_{\mathrm{n}}\right)-\mathrm{S}\right)$		$\mathbf{s c}\left(\mathrm{K} 1, \mathrm{~m} \times \mathrm{Pan}_{1}\right)$
$2 \leq \mathrm{r} \leq \beta\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{z}}\right)-1$	- $w_{1,1}$ and at least one of $\mathrm{w}_{\mathrm{i}, 2}$ ($\mathrm{i}=2, \ldots, \mathrm{~m}+1$) vertices	$=\mathrm{r}$	$\leq \mathrm{r}$	≤ 0	
	- $w_{1, n}$ and one of $w_{i, n-1}$ ($\mathrm{i}=2, \ldots, \mathrm{~m}+1$) vertices	$=\mathrm{r}$			
	- Otherwise	$<\mathrm{r}$			
$\mathrm{r}=\beta\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$	- Minimum covering set of $\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}$	$=\alpha\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$	$\leq \alpha\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$	$\leq \mathrm{m}-1$	
	- Otherwise	$<\alpha\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$			

2.3. Scattering Number of $K_{1, m} \times C_{n}$.

In this section, to obtain the $s c\left(K_{1, m} \times C_{n}\right)$ we need the following Theorems.
Theorem 2.3. [2] Let $G=T \times C_{n}$ be the cartesian product of an n-cycle C_{n} and a tree T with the maximum degree $\Delta(T) \geqslant 2$. Then G possesses a Hamiltonian cycle if and only if $\Delta(T) \geqslant n$.

Table 3. Case 4

Case 4: Let $\mathrm{m} \leq \mathrm{n}$ and n be even.					
\|S		S	$\omega\left(\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)-\mathrm{S}\right)$		$\mathrm{sc}\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$
$2 \leq \mathrm{r} \leq \frac{\mathrm{n} \cdot(\mathrm{~m}+1)}{2}+1-\mathrm{m}$	- $\mathrm{w}_{1,1}$ and one of $\mathrm{w}_{\mathrm{i}, 2}$ ($\mathrm{i}=2, \ldots, \mathrm{~m}+1$) vertices	$=\mathrm{r}$	≤ 1	≤ 0	
	- $\mathrm{w}_{1, \mathrm{n}}$ an done of $\mathrm{w}_{\mathrm{i}, \mathrm{n}-1}$ ($\mathrm{i}=2, \ldots, \mathrm{~m}+1$) vertices	$=\mathrm{r}$			
	- Otherwise	< 1			
$\frac{\mathrm{n}(\mathrm{~m}+1)}{2}+1-\mathrm{m} \leq \mathrm{r} \leq \beta\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)-1$	- All vertices of \quad $\mathrm{w}_{1, \mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{n})$ and $\mathrm{S}_{1}=\left\{\mathrm{w}_{\mathrm{j}, \mathrm{k}} \mid(\mathrm{j}, \mathrm{k}) \in \mathrm{I}\right.$ $\mathrm{x} \quad \mathrm{J}$, $\mathrm{I}=\{2, \ldots, \mathrm{~m}+1\} \quad$ and $\mathrm{J}=\{2,4, \ldots, \mathrm{n}-2\}\}$ - Otherwise	$=\frac{\mathrm{n} \cdot(\mathrm{~m}+1)}{2}-1$ $<\frac{\mathrm{n} \cdot(\mathrm{~m}+1)}{2}-1$	$\leq \frac{\mathrm{n} \cdot(\mathrm{~m}+1)}{2}-1$	$\leq \mathrm{m}-2$	
$\mathrm{r}=\beta\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$	- Minimum covering set of $K_{1, m} \times P_{n}$	$=\alpha\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$	$\leq \alpha\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$	≤ 0	
	- Otherwise	$<\alpha\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right)$			

Theorem 2.4. [4] Let $G=(V, E)$ be a graph. If G is hamiltonian then $\tau(G) \geqslant$ 1.

Theorem 2.5. [5] Let $G=(V, E)$ be a graph. If $\tau(G) \geqslant 1$ then $s c(G) \leqslant 0$.
Theorem 2.6. Let $m, n \in Z^{+}(m \geqslant 2, n \geqslant 2)$. Then

$$
s c\left(K_{1, m} \times C_{n}\right)=\left\{\begin{array}{cl}
0, & \text { if } m \leqslant n \text { and } n \text { is even } \\
-1, & \text { if } m<n \text { and } n \text { is odd } . \\
m-n, & \text { if } m \geqslant n
\end{array} .\right.
$$

Proof. To prove the Theorem we have three cases.
Case 1: Let $m \leqslant n$ and n be even.
By Theorem 1.2, since $\alpha\left(K_{1, m} \times C_{n}\right)=\beta\left(K_{1, m} \times C_{n}\right)=\frac{n(m+1)}{2}$, then

$$
\begin{equation*}
s c\left(K_{1, m} \times C_{n}\right) \geqslant 0 \tag{2.25}
\end{equation*}
$$

Now we prove that $s c\left(K_{1, m} \times C_{n}\right) \leqslant 0$. If we choose $T \cong K_{1, m}$ in Theorem 2.4 , then $\Delta(T)=\Delta\left(K_{1, m}\right)=m, m \geqslant 2$ and $m \leqslant n$. Therefore $K_{1, m} \times C_{n}$ is hamiltonian. By Theorem 2.5 we have $\tau\left(K_{1, m} \times C_{n}\right) \geqslant 1$ and by Theorem 2.6

$$
\begin{equation*}
s c\left(K_{1, m} \times C_{n}\right) \leqslant 0 \tag{2.26}
\end{equation*}
$$

By (2.25) and (2.26),

$$
s c\left(K_{1, m} \times C_{n}\right)=0 .
$$

Case 2: Let $m<n$ and n be odd. $K_{1, m} \times C_{n}$ consists of $(m+1)$ copies of C_{n} and n copies of $K_{1, m}$ (Figure 2).

Figure 2. $K_{1, m} \times C_{n}$
Let $A=\left\{v_{1,1}, v_{1,2}, v_{1,3}, \ldots, v_{1, n}\right\}$ and $B=V\left(K_{1, m} \times C_{n}\right) \backslash A$. Let $S=S_{0} \cup S_{1}$, where $S \subset V\left(K_{1, m} \times C_{n}\right), S_{0} \subseteq A$ and $S_{1} \subseteq B$. Since S is a cut set, we have two cases.

- $\left|S_{0}\right| \geqslant 1$ and $\left|S_{1}\right| \geqslant 2$
or
- $S_{0}=A$ and $\left|S_{1}\right| \geqslant 0$.

Subcase 1: Let $\left|S_{0}\right| \geqslant 1$ and $\left|S_{1}\right| \geqslant 2$. Then $\delta\left(K_{1, m} \times C_{n}\right)=\kappa\left(K_{1, m} \times C_{n}\right)=3$ and so $\operatorname{deg}(v)=3$ for every vertex v in B. Therefore if we remove three vertices that incident with vertex v (one in A and two in B), then the remaining graph have two components C_{0} and C_{1}, such that C_{0} is a isolated vertex and C_{1} is a connected graph. Thus $|S|=3$ and $\omega\left(\left(K_{1, m} \times C_{n}\right)-S\right)=2$. For each vertex v of $C_{1}, \operatorname{deg}(v) \geqslant 2$.

Consider a vertex v_{1} of C_{1} where $\operatorname{deg}\left(v_{1}\right)=2$. If we remove two vertices that are incident with v_{1} then the remaining graph have two isolated vertices and a connected graph C_{2}. Therefore, $|S|=5$ and $\omega\left(\left(K_{1, m} \times C_{n}\right)-S\right)=3$.

Now we consider the graph C_{2}. For each vertex v in $C_{2}, \operatorname{deg}(v) \geqslant 2$. Let v_{2} be a vertex of C_{2} where $\operatorname{deg}\left(v_{2}\right)=2$. If we remove two vertices that are incident with v_{2}
then the remaining graph have three isolated vertices and a connected graph C_{3}. Therefore, $|S|=7$ and $\omega\left(\left(K_{1, m} \times C_{n}\right)-S\right)=4$.

Similarly, if we continue removing vertices from the every components $C_{n}(n \geqslant 4)$, we obtain $\omega\left(\left(K_{1, m} \times C_{n}\right)-S\right) \leqslant r-1$, where $|S|=r$. Hence

$$
\begin{equation*}
s c\left(K_{1, m} \times C_{n}\right) \leqslant \max \{r-1-r\}=-1 \tag{2.27}
\end{equation*}
$$

Subcase 2: Let $S_{0}=A$ and $\left|S_{1}\right| \geqslant 0$. Therefore, $|S| \geqslant n+k$ and $\omega\left(\left(K_{1, m} \times\right.\right.$ $\left.\left.C_{n}\right)-S\right) \leqslant m+k\left(k \in Z^{+}\right)$,

$$
\begin{equation*}
s c\left(K_{1, m} \times C_{n}\right) \leqslant \max \{m+k-(n+k)\}=m-n . \tag{2.28}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\text { if } m<n \text { then } m-n \leqslant-1 \text {. } \tag{2.29}
\end{equation*}
$$

By (2.27), (2.28) and (2.29), we have

$$
\begin{equation*}
s c\left(K_{1, m} \times C_{n}\right) \leqslant-1 . \tag{2.30}
\end{equation*}
$$

Also, if we choose $G \cong K_{1, m} \times C_{n}$ in Theorem 1.3(a), we have

$$
\begin{equation*}
s c\left(K_{1, m} \times C_{n}\right) \geqslant 2-\kappa\left(K_{1, m} \times C_{n}\right)=2-3=-1 . \tag{2.31}
\end{equation*}
$$

By (2.30) and (2.31), we have

$$
\begin{equation*}
s c\left(K_{1, m} \times C_{n}\right)=-1 \tag{2.32}
\end{equation*}
$$

Case 3: Let $m \geqslant n$. The proof follows directly from Case 2. Thus we have

$$
\begin{equation*}
s c\left(K_{1, m} \times C_{n}\right) \leqslant m-n \tag{2.33}
\end{equation*}
$$

Now we can choose $S=A$, where $S \subset V\left(K_{1, m} \times C_{n}\right),|S|=n$ and $\omega\left(\left(K_{1, m} \times C_{n}\right)-\right.$ $S)=m$. Hence

$$
\begin{equation*}
s c\left(K_{1, m} \times C_{n}\right)=\max \left\{\omega\left(\left(K_{1, m} \times C_{n}\right)-S\right)-|S|\right\}=m-n . \tag{2.34}
\end{equation*}
$$

Therefore by (2.33) and (2.34), we have

$$
s c\left(K_{1, m} \times C_{n}\right)=m-n .
$$

The proof is completed.

2.4. Scattering Number of $K_{2} \times C_{n}$.

Theorem 2.7.

$$
s c\left(K_{2} \times C_{n}\right)=\left\{\begin{array}{cl}
0, & \text { if } n \text { is even } \\
-1, & \text { if } n \text { is odd }
\end{array} .\right.
$$

Proof. Since $K_{2} \times P_{n}$ is a spanning subgraph of $K_{2} \times C_{n}$, we have $s c\left(K_{2} \times\right.$ $\left.P_{n}\right) \geqslant s c\left(K_{2} \times C_{n}\right)$ by Theorem 1.5. On the other hand, since $s c\left(K_{2} \times P_{n}\right) \leqslant 0$ by Theorem 1.4, then

$$
\begin{equation*}
s c\left(K_{2} \times C_{n}\right) \leqslant 0 \tag{2.35}
\end{equation*}
$$

Now we have two cases according to the parity of n.

Case 1: Let n be even. Then $\alpha\left(K_{2} \times C_{n}\right)=\beta\left(K_{2} \times C_{n}\right)=n$. By Theorem 1.2,

$$
\begin{equation*}
s c\left(K_{2} \times C_{n}\right) \geqslant 2 \alpha\left(K_{2} \times C_{n}\right)-2 n=2 n-2 n=0 \tag{2.36}
\end{equation*}
$$

By (2.35) and (2.36), we have $s c\left(K_{2} \times C_{n}\right)=0$.
Case 2: Let n be odd. If we remove r vertices from $K_{2} \times C_{n}$ then $\omega\left(\left(K_{2} \times C_{n}\right)-S\right) \leqslant$ $r-1$. Thus

$$
\begin{equation*}
s c\left(K_{2} \times C_{n}\right) \leqslant \max \{r-1-r\}=-1 \tag{2.37}
\end{equation*}
$$

On the other hand, by Theorem 1.3, we have

$$
\begin{equation*}
s c\left(K_{2} \times C_{n}\right) \geqslant 2-\delta\left(K_{2} \times C_{n}\right)=2-3=-1 . \tag{2.38}
\end{equation*}
$$

By (2.37) and (2.38), we have

$$
s c\left(K_{2} \times C_{n}\right)=-1
$$

The proof is completed.

3. CONCLUSION

When the obtained results are examined, it can be seen that the scattering number is equal to $\alpha-\beta$ in the following graphs.

- The graph $K_{1, m} \times K_{1, n}$ while n is odd.
- The graph $K_{1, m} \times P_{n}$ while n is odd.
- The graph $K_{1, m} \times C_{n}$ while $m<n$ and n is even.
- The graph $K_{2} \times C_{n}$ while n is even.

In addition, the scattering number of $K_{2} \times C_{n}$ is -1 and $\alpha-\beta=-2$. Furthermore, the difference of scattering number and $\alpha-\beta$ depends on m in the following graphs.

- The graph $K_{1, m} \times P_{n}$ while n is even.
- The graph $K_{1, m} \times C_{n}$ while $m<n$ and n is odd.
- The graph $K_{1, m} \times C_{n}$ while $m \geqslant n$.

In other words, we observe that the scattering number approachs (equals in some cases) the lower bound in Theorem 1.2 while the value of m decrease and distancing otherwise.

References

1. C. A. Barefoot, R. C. Entringer and H. Swart. Vulnerability in graphs - A comparative survey. J. Combin. Math. Combin. Comput., 1(1987), 13-22.
2. V. Batagelj and T. Pisanski. Hamiltonian cycles in the cartesian product of a tree and a cycle. Discrete Math., 38(2-3)(1982), 311-312.
3. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York, NY 1976.
4. V. Chvatal. Tough graphs and Hamiltonian circuits. Discrete Math., 5(1973), 215-228.
5. P. Dankelmann, W. Goddard, C. A. McPillan and H. C. Swart. A note on extremal values of the scattering number. Taiwanese J. Math., 17(5)(2013), 1651-1658.
6. F. Harary. Graph theory. Reading, Mass.: Addison-Wesley Pub. Co. (1969).
7. H. A. Jung. On a class of posets and the corresponding comparability graphs. J. Combin. Theory, Ser. B, 24(2)(1978), 125-133.
8. S. Zhang, and Z. Wang. Scattering number in graphs. Networks, 37(2)(2001), 102-106.
9. S. Zhang, X. Li. and X. Han. Computing the scattering number of graphs. Int. J. Comput. Math., 79(2)(2002), 179-187.

Received by editors 09.10.2017; Revised version 17.02.2018; Available online 12.03.2018.
Department of Mathematics, Ege University, Izmir, Turkey
E-mail address: burakaval@gmail.com
Department of Mathematics, Ege University, Izmir, Turkey
E-mail address: alpay.kirlangi@ege.edu.tr

[^0]: 2010 Mathematics Subject Classification. 05C40, 68M10, 68R10.
 Key words and phrases. Graph Vulnerability, Scattering Number, Connectivity, Cartesian Product.

