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ON FIELD Γ-SEMIRING AND

COMPLEMENTED Γ-SEMIRING WITH IDENTITY

Marapureddy Murali Krishna Rao

Abstract. In this paper we study the properties of structures of the semi-
group (M,+) and the Γ−semigroup M of field Γ−semiring M , totally ordered

Γ−semiring M and totally ordered field Γ−semiring M satisfying the identity
a + aαb = a for all a, b ∈ M,α ∈ Γand we also introduce the notion of com-
plemented Γ−semiring and totally ordered complemented Γ−semiring. We
prove that, if semigroup (M,+) is positively ordered of totally ordered field

Γ−semiring satisfying the identity a + aαb = a for all a, b ∈ M,α ∈ Γ, then
Γ-semigroup M is positively ordered and study their properties.

1. Introduction

In 1995, Murali Krishna Rao [5, 6, 7] introduced the notion of a Γ-semiring as a
generalization of Γ-ring, ring, ternary semiring and semiring. The set of all negative
integers Z− is not a semiring with respect to usual addition and multiplication but
Z− forms a Γ-semiring where Γ = Z. Historically semirings first appear implicitly in
Dedekind and later in Macaulay, Neither and Lorenzen in connection with the study
of a ring. However semirings first appear explicitly in Vandiver, also in connection
with the axiomatization of Arithmetic of natural numbers. Semirings have been
studied by various researchers in an attempt to broaden techniques coming from
semigroup theory, ring theory or in connection with applications. The concept of
semirings was first introduced by Vandiver [13] in 1934. However the developments
of the theory in semirings have been taking place since 1950. Semirings abound in
the Mathematical world around us. A universal algebra (S,+, ·) is called a semiring
if and only if (S,+), (S, ·) are semigroups which are connected by distributive laws,
i.e.,

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc, for all a, b, c ∈ S.
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A semiring is one of the fundamental structures in Mathematics. Indeed the first
Mathematical structure we encounter the set of natural numbers is a semiring.
The theory of semirings and ordered semirings have wide applications in linear and
combinatorial optimization problems such as path problems, transformation and
assignment problems, matching problems and Eigen value problems. The theory
of ordered semirings is very popular since it has wide applications in the theory of
computer sciences, optimization theory and theoretical physics. Satyanaraya [11]
studied additive semigroup structure of semiring and ordered semiring. Comple-
mented elements play an important role in the study of lattices. Such elements
play an important part in the semiring representation of the semantics of computer
programmes. In structure, semirings lie between semigroups and rings. Vasanthi et
al. [14, 15] studied semiring satisfying the identity Hanumanthachari and Venuraju
[4] studied the additive semigroup structure of semiring. Additive and multiplica-
tive structures of a semiring play an important role in determining the structure
of a semiring. Semirings are useful in the areas of theoretical computer science
as well as in the solutions of graph theory and optimization theory in particular
for studying automata, coding theory and formal languages. Semiring theory has
many applications in other branches.

As a generalization of ring, the notion of a Γ-ring was introduced by Nobusawa
[10] in 1964. In 1981 Sen [12] introduced the notion of Γ−semigroup as a general-
ization of semigroup. The notion of Ternary algebraic system was introduced by
Lehmer [2] in 1932, Lister [3] introduced ternary ring. Dutta & Kar [1] introduced
the notion of ternary semiring which is a generalization of ternary ring and semir-
ing. Also as a generalization of Γ−ring, ring, ternary semiring and semiring, The
important reason for the development of Γ−semiring is a generalization of results
of rings, Γ−rings, semirings, semigroups and ternary semirings. Murali Krishna
Rao and Venkateswarlu [8, 9] introduced the notion Γ−incline, zero divisors free
Γ−semiring and field Γ−semiring and studied properties of regular Γ−incline and
field Γ−semiring.

In this paper we study the properties of additive structure (M,+) and Γ -
semigroup structure of field Γ-semiring M satisfying the identity a + aαb = a, for
all a, b ∈ M , α ∈ Γ and we also introduce the notion of complemented Γ-semiring
and totally ordered complemented Γ-semiring and study their properties.

2. Preliminaries

In this section we recall some important definitions introduced by pioneers in
this field earlier that will be required to this paper.

Definition 2.1. A semigroup M is a non-empty set equipped with a binary
operation ′ · ′, which is associative.

Definition 2.2. A semigroup (M,+) is said to be band if a+a = a, for all a ∈
M.

Definition 2.3. A semigroup (M,+) is said to be rectangular band if a+b+a =
a, for all a, b ∈ M.
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Definition 2.4. A semigroup (M, ·) is said to be partially ordered if there exist
a relation 6 on M satisfying the following.

(i). a 6 a, for all a ∈ M
(ii). a 6 b, b 6 a ⇒ a = b, for all a, b ∈ M
(iii). a 6 b, b 6 c ⇒ a 6 c
(iv). a 6 b ⇒ ac 6 bc and ca 6 cb, for all a, b, c ∈ M.

Partially ordered semigroup may also be denoted by (M, ·,6).

Definition 2.5. A partially ordered semigroup in which every two elements
are comparable is said to be totally ordered semigroup .

Definition 2.6. A totally ordered semigroup (M, ·) is said to be non-negatively
ordered (non-positively ordered) if x2 > x ( x2 6 x), for all x ∈ M.

Definition 2.7. A totally ordered semigroup (M,+) is said to be non-negatively
ordered (non-positively ordered) if x+ x > x (x+ x 6 x), for all x ∈ M.

Definition 2.8. A semigroup (M, ·) is said to be positively ordered (negatively
ordered)if xy > x and xy > y (xy 6 x and xy 6 x), for all x, y ∈ M.

Definition 2.9. A semiring (M,+, ·) is an algebra with two binary opera-
tion ′ + ′ and ′ · ′ such that (M,+) and (M, ·) are semigroups and the following
distributive laws hold

x(y + z) = xy + xz, (x+ y)z = xz + yz,

for all x, y, z ∈ M.

Definition 2.10. A semiring (M,+, ·) is said to be totally ordered semiring if
there exists a partial order 6 on M such that

(i). (M,+) is a totally ordered semigroup
(ii). (M, ·) is a totally ordered semigroup

It is usually denoted by (M,+, ·,6).

Definition 2.11. A semiring (M,+, ·) is said to be mono semiring if a+ b =
ab, for all a, b ∈ M

Definition 2.12. Let M and Γ be two non-empty sets. Then M is called a
Γ−semigroup if it satisfies

(i) xαy ∈ M
(ii) xα(yβz) = (xαy)βz for all x, y, z ∈ M,α, β ∈ Γ.

Definition 2.13. A Γ−semigroup M is said to be commutative if aαb =
bαa, for all a, b ∈ M and α ∈ Γ.

Definition 2.14. Let M be a Γ−semigroup. An element a ∈ M is said to be
idempotent of M if there exists α ∈ Γ such that a = aαa and a is also said to be
α idempotent.

Definition 2.15. Let M be a Γ−semigroup. If every element of M is an
idempotent of M then Γ−semigroup M is said to be band



192 MARAPUREDDY MURALI KRISHNA RAO

Definition 2.16. A Γ−semigroup M is called a rectangular band if for every
pair a, b ∈ M there exist α, β ∈ Γ such that aαbβa = a.

Definition 2.17. A totally ordered Γ−semigroup M is said to be positively
ordered (negatively ordered)if xαy > x and xαy > y (xαy 6 x and xαy 6
x), for all x, y ∈ M,α ∈ Γ.

Definition 2.18. A Γ−semigroup M is called Γ−semiring M if (M,+), (Γ,+)
are semigroups and satisfies the following conditions.

(i) aα(b+ c) = aαb+ aαc
(ii) (a+ b)αc = aαc+ bαc
(iii) a(α+ β)b = aαb+ aβb,for all a, b, c ∈ M,α, β ∈ Γ.

Example 2.1. Let S be a semiring and Mp,q(S) denote the additive semigroup
of all p× q matrices whose entries are from S. Then Mp,q(S) is a Γ−semiring with
Γ = Mp,q(S) and the ternary operation defined by the usual matrix multiplication
as xαy = x(αt)y, where αt denotes the transpose of the matrix α; for all x, y and
α ∈ Mp,q(S).

Definition 2.19. A Γ−semiring M is said to have zero element if there exists
an element 0 ∈ M such that 0+ x = x = x+0 and 0αx = xα0 = 0, for all x ∈ M.
and α ∈ Γ.

Definition 2.20. A Γ−semiring M is said to be commutative Γ−semiring if
xαy = yαx, x+ y = y + x for all x, y ∈ M and α ∈ Γ.

Definition 2.21. Let M be a Γ−semiring. An element 1 ∈ M is said to be
unity if for each x ∈ M there exists α ∈ Γ such that xα1 = 1αx = x.

Definition 2.22. In a Γ−semiring M with unity 1, an element a ∈ M is
said to be left invertible (right invertible) if there exist b ∈ M,α ∈ Γ such that
bαa = 1(aαb = 1).

Definition 2.23. In a Γ−semiring M with unity 1, an element a ∈ M is said
to be invertible if there exist b ∈ M,α ∈ Γ such that aαb = bαa = 1.

Definition 2.24. Let M be a Γ−semiring is said to satisfy left(right)cancelation
law if and only if r, s, t ∈ M, r ̸= 0, α ∈ Γ such that rαs = rαt (sαr = tαr ) then
s = t.

Definition 2.25. A Γ−semiring M is called an ordered Γ−semiring if it ad-
mits a compatible relation 6, i.e. 6 is a partial ordering on M satisfying the
following conditions. If a 6 b and c 6 d then

(i) a+ c 6 b+ d
(ii) aαc 6 bαd
(iii) cαa 6 dαb, for all a, b, c, d ∈ M and α ∈ Γ.

Example 2.2. Let M = [0, 1], Γ = N and ′ + ′ and tbe ternary operation
defined by

x+ y = max{x, y}, xγy = min{x, γ, y} for all x, y ∈ M and γ ∈ Γ.
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Then M is an ordered Γ−semiring with respect to usual ordering.

Definition 2.26. An ordered Γ−semiring in which every two elements are
comparable is said to be totally ordered Γ−semiring. .

Definition 2.27. A Γ−semiring M is said to be field Γ−semiring if M is a
commutative Γ−semiring with unity 1 and every nonzero element of M is invertible.

Example 2.3. Let M be a set of all rational numbers and Γ = M be a
commutative semigroup with respect to usual addition. If define the mapping
M × Γ×M → M by aαb as usual multiplication for all a, b ∈ M and α ∈ Γ, then
M is a field Γ-semiring.

Definition 2.28. A Γ−semiring M is said to be mono Γ−semiring if M is
a commutative Γ−semiring with unity 1 and for every pair a, b ∈ M there exists
γ ∈ Γ such that aγb = a+ b.

Definition 2.29. Let M be a Γ−semiring. An element a ∈ M is said to be
idempotent of M if there exists α ∈ Γ such that a = aαa and a is also said to be
α - idempotent.

Definition 2.30. Let M be a Γ−semiring.If every element of M is an idem-
potent of M then M is said to be idempotent Γ−semiring M.

Definition 2.31. A Γ−semiring M with zero element is said to be zero sum
free Γ−semiring if x+ x = 0, for all x ∈ M.

3. Field Γ-semiring and totally ordered Γ-semiring

In this section, we study the properties of additive semigroup structure and
Γ−semigroup structure of field Γ-semiring, totally ordered Γ-semiring and totally
ordered field Γ-semiring satisfying the identity.

Definition 3.1. In a totally ordered Γ-semiring M we define

(i) Semigroup (M,+) is said to be positively ordered (negatively ordered) if

a+ b > a, b(a+ b 6 a, b) for all α ∈ Γ, a, b ∈ M.

(ii) Γ−Semigroup M is said to be positively ordered (negatively ordered) if

aαb > a, b(aαb 6 a, b) for all α ∈ Γ, a, b ∈ M.

Definition 3.2. In a totally ordered Γ-semiring M we define

(i) Semigroup (M,+) is said to be non-negatively ordered(non-positively or-
dered) if holds

a+ a > a (a+ a 6 a) for all α ∈ Γ and a ∈ M.

(ii) Γ-semigroup M is said to be non positively ordered (non-negatively or-
dered) if holds

aαa > a (aαa 6 a) for all α ∈ Γ and a ∈ M.

Definition 3.3. An element x in a totally ordered Γ-semiring M is said to be
minimal (maximal) if x 6 a (x > a) holds for all a ∈ M.



194 MARAPUREDDY MURALI KRISHNA RAO

Theorem 3.1. Let M be a field Γ-semiring satisfying the identity a+ aαb = a
for all 0 ̸= a, b ∈ M and α ∈ Γ. Then 1 + a = a for all 0 ̸= a ∈ M .

Proof. Let M be a field Γ-semiring satisfying the identity a+ aαb = a for all
0 ̸= a, b ∈ M . Then there exists α ∈ Γ such that aαa−1 = 1. Thus aαa−1 + a = a
and 1 + a = a. Hence the theorem. �

Theorem 3.2. Let M be a field Γ-semiring satisfying the identity and a+aαa =
a for all 0 ̸= a ∈ M and α ∈ Γ. Then 1 + a = a, and for all 0 ̸= a ∈ M. and for
each b ∈ M there exists δ ∈ Γ such that b+ aδb = b.

Proof. Let M be a Γ-semiring satisfying a + aαa = a for all a ∈ M and
α ∈ Γ. Then there exists γ ∈ Γ such that aγ1 = a and there exists δ ∈ Γ such that
1δb = b. For all a ∈ M and α ∈ Γ we have

a+ aαa = a ⇒ aγ1 + aγa = a

⇒ aγ(1 + a) = aγ1

⇒ 1 + a = 1

⇒ 1δb+ aδb = 1δb

⇒ b+ aδb = b.

Hence the theorem. �
Theorem 3.3. Let M be a field Γ−semiring satisfying the identity a+aαb = a

for all 0 ̸= a, b ∈ M and α ∈ Γ. Then Γ−semigroup M is a band.

Proof. Let M be a field Γ−semiring. By Theorem 3.1 we have 1 + a = a for
all a ∈ M. Since a ∈ M there exists α ∈ Γ such that aα1 = a.

aαa = aα(1 + a) = aα1 + aαa = a+ aαa = a.

Hence the theorem. �
Theorem 3.4. Let M be a field Γ−semiring satisfying the identity a+ aαb =

a, for all 0 ̸= a, b ∈ M,α ∈ Γ. Then additive semigroup (M,+) is a band.

Proof. Let M be a field Γ−semiring. By Theorem 3.1 we have a+ 1 = a for
all 0 ̸= a ∈ M. Let 0 ̸= a ∈ M. Then there exists α ∈ Γ such that aα1 = a. Further
on

a = aα1 = aα(1 + 1) = aα1 + aα1 = a+ a.

Hence an additive semigroup (M,+) of Γ−semiring M is a band. �
Theorem 3.5. Let M be a field Γ−semiring satisfying the identity a+aαb = a

for all a, b ∈ M and α ∈ Γ. Then a + aγb + b = a for all a, b ∈ M and for some
γ ∈ Γ.

Proof. Let M be a field Γ−semiring. By Theorem 3.1 we have a + 1 =
a, for all a ∈ M. Suppose b ∈ M. Since b ∈ M there exists γ ∈ Γ such that 1γb = b.
Now we have

a+ aγb+ b = a+ aγb+ 1γb = a+ (a+ 1)γb = a+ aγb = a.
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Hence a+ aγb+ b = a, for all a, b ∈ M. �

Theorem 3.6. Let M be a field Γ−semiring satisfying the identity aαb+a = a
for all a ∈ M and α ∈ Γ. Then a = a+ aαxβa for all α, β ∈ Γ and x ∈ M.

Proof. Let M be a field Γ−semiring. By Theorem 3.1 we have a+ 1 = a for
all 0 ̸= a ∈ M. Let a, x ∈ M and α, β ∈ Γ. Since a ∈ M , there exists δ ∈ Γ such
that aδ1 = a.

a+ aαxβa = aδ1 + aδ1αxβa = aδ(1 + 1αxβa) = aδ1 = a.

Hence a = a+ aαxβa, for all α, β ∈ Γ, x ∈ M. �

Theorem 3.7. Let M be a field Γ−semiring satisfying a + aαb = a for all
0 ̸= a, b ∈ M and α ∈ Γ. If for every pair a, b ∈ M there exists γ ∈ Γ such that
1γa = a and 1γb = b then M is mono Γ−semiring.

Proof. By Theorem 3.1 we have 1 + a = a for all a ∈ M since M is a field
Γ−semiring. Let a, b ∈ M.. Then there exists γ ∈ Γ such that 1γa = a and
1γb = b.

aγb =(1 + a)γ(1 + b)

aγb =1γ1 + aγ1 + 1γb+ aγb

⇒ aγb =1γ1 + 1γa+ 1γb+ aγb

=1γ(1 + a) + b+ aγb

=1γa+ b+ aγb

= a+ b+ bγa

= a+ b.

Hence M is a mono Γ−semiring. �

Theorem 3.8. If M is a Γ−semiring with unity satisfying the identity aαb+a =
a for all a ∈ M and α ∈ Γ for all a ∈ M and suppose (M,+) is right cancellative,
then | M |= 1.

Proof. Let a ∈ M. Then a + 1 = 1 ⇒ a + 1 = 1 + 1 ⇒ a = 1. Hence
| M |= 1. �

Theorem 3.9. Let M be a totally ordered Γ−semiring with unity 1. Then
additive semigroup (M,+) is non negatively ordered or non positively ordered .

Proof. Let M be a totally ordered Γ−semiring with unity 1 and x ∈ M. Then
1 + 1 > 1 or 1 + 1 6 1. Thus

xα(1 + 1) > xα1 or xα(1 + 1) 6 xα1, for all α ∈ Γ

⇒ xα1 + xα1 > xα1 or xα1 + xα1 6 xα1, for all α ∈ Γ

⇒ x+ x > x or x+ x 6 x.

Hence additive semigroup (M,+) is non negatively ordered or non positively or-
dered. �
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Theorem 3.10. Let M be a totally ordered Γ−semiring satisfying aαa + a =
a, for all a ∈ M,α ∈ Γ. If (M,+) is non-negatively ordered then Γ−semigroup M
is non-positively ordered.

Proof. Suppose semigroup (M,+) of Γ−semiring M is non-negatively or-
dered. We have aαa+ a = a, for all a ∈ M,α ∈ Γ. Now a = aαa+ a > aαa ⇒ a >
aαa. Hence Γ−semigroup M is non-positively ordered. �

Proof of the following theorem is similar to above theorem.

Theorem 3.11. Let M be a totally ordered Γ−semiring satisfying aαa + a =
a, for all a, b ∈ M,α ∈ Γ. If (M,+) is a non-positively ordered then Γ−semigroup
M is non-negatively ordered.

Theorem 3.12. Let M be a totally ordered Γ−semiring satisfying the identity
aαa+ a = a, for all a ∈ M,α ∈ Γ.
(i). If (M,+) is positively ordered then Γ−semigroup M is negatively ordered.
(ii). If (M,+) is negatively ordered then Γ−semigroup M is positively ordered.

Proof. (i). Let M be a totally ordered Γ−semiring satisfying the identity
aαb+ a = a for all a, b ∈ M and α ∈ Γ and let (M,+) be positively ordered. Then

a = aαb+ a > aαb ⇒ a > aαb.

Suppose aαb > b. Then

⇒ aαb+ a > b+ a

⇒ a > b+ a

which is a contradiction to semigroup (M,+) is positively ordered. Hence aαb 6 b.
There fore aαb 6 a, b. Hence Γ−semigroup M is negatively ordered.
(ii). Proof is similar to (i). �

Theorem 3.13. Let M be a totally ordered Γ−semiring with unity satisfying
a+ aαb = a, for all a, b ∈ M,α ∈ Γ. If semigroup (M,+) is positively ordered then
1 is the maximal element.

Proof. Let semigroup (M,+) be positively ordered semigroup of totally or-
dered Γ−semiring with a+ aαb = a, for all a, b ∈ M,α ∈ Γ.

⇒1 + 1αa = 1, for all a ∈ M,α ∈ Γ

⇒1 + a = 1

⇒1 = 1 + a > a, for all a ∈ M.

Hence 1 is the maximal element. �

Theorem 3.14. Let M be a totally ordered Γ−semiring with unity satisfying
a + aαb = a, for all a, b ∈ M,α ∈ Γ. If semigroup (M,+) is negatively ordered
semigroup then 1 is the minimal element of a totally ordered Γ−semiring M.
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Proof. Let M be a totally ordered Γ−semiring with a + aαb = a, for all
a, b ∈ M,α ∈ Γ. Suppose (M,+) is negatively ordered. We have a + aαb = a, for
all a, b ∈ M,α ∈ Γ. Since b ∈ M there exists γ ∈ Γ such that bγ1 = 1γb = b.

⇒1 + 1αb = 1, for all α ∈ Γ, b ∈ M

⇒1 + 1γb = 1

⇒1 + b = 1

Therefore 1 = 1 + b 6 b for all b ∈ M . Hence 1 is the minimal element of a
Γ−semiring M. �

Theorem 3.15. Let M be a totally ordered Γ−semiring satisfying the identity
a+ aαb = a, for all a, b ∈ M,α ∈ Γ. If semigroup (M,+) is positively ordered then
Γ−semigroup M is negatively ordered.

Proof. Let M be a totally ordered Γ−semiring satisfying the identity a +
aαb = a, for all a, b ∈ M,α ∈ Γ. Suppose (M,+) is positively ordered. We have a =
a+aαb > aαb, for all a, b ∈ M,α ∈ Γ. Similarly we can prove b > aαb, for all a, b ∈
M,α ∈ Γ. Hence Γ−semigroup M is negatively ordered. �

Theorem 3.16. If M is a totally ordered mono Γ−semiring with a + aαb =
a, for all a, b ∈ M,α ∈ Γ and semigroup (M,+) is positively ordered then semigroup
(M,+) is left singular.

Proof. Suppose M is a totally ordered mono Γ−semiring. We have a+aαb =
a, for all a, b ∈ M,α ∈ Γ.

a = a+ aαb > aαb ⇒ a > a+ b,

since M is a mono Γ−semiring. Since (M,+) is positively ordered, then a+ b > a.
Therefore a = a+ b. Hence the Theorem. �

Theorem 3.17. Let M be a totally ordered idempotent Γ− semiring with unity
1 and zero element 0. satisfying the identity a + aαb = a, for all a, b ∈ M,α ∈ Γ.
and Γ−semigroup M is negatively ordered. If a, b ∈ M,a 6 b and a+b = b then
there exists α ∈ Γ such that a = aαb = bαa = aαa.

Proof. Let a, b ∈ M and a 6 b. Since M is a totally ordered idempotent Γ−
semiring, there exists α ∈ Γ such that aαa = a

a 6 b ⇒ a+ b = b

⇒ aα(a+ b) = aαb

⇒ aαa+ aαb = aαb

⇒ a+ aαb = aαb

⇒ a = aαb

and a 6 b ⇒ aαa 6 bαa

⇒ a 6 bαa 6 a

⇒ a = bαa

Hence a = aαb = bαa = aαa. �



198 MARAPUREDDY MURALI KRISHNA RAO

Theorem 3.18. If M is a field Γ− semiring satisfying the identity aαb+ a =
a, for all a, b ∈ M,α ∈ Γ. with unity 1. If semigroup (M,+) is a negatively ordered
then 1 is the greatest element of M.

Proof. Let M be a field Γ− semiring satisfying the identity aαb + a =
a, for all a, b ∈ M,α ∈ Γ. and x ∈ M. Then there exists α ∈ Γ such that
x = xα1 6 1. Hence 1 is the greatest element of M. �

Theorem 3.19. Let M be a totally ordered field Γ−semiring satisfying the
identity aαb+ a = a, for all a, b ∈ M,α ∈ Γ.
(i). If semigroup (M,+) is a negatively ordered then 1 is the maximal element.
(ii). If semigroup (M,+) is a positively ordered then 1 is the minimal element.

Proof. (i). Suppose semigroup (M,+) is a negatively ordered. We have aαb+
a = a, for all a, b ∈ M,α ∈ Γ. Since a ∈ M there exists a−1 ∈ M there exists such
that aαa−1 = 1. Then

aαa−1 = 1 ⇒ aαa−1 + a = a

⇒ 1 + a = a

⇒ a = 1 + a 6 1

⇒ a 6 1.

Hence 1 is the maximal element.
(ii). Proof is similar to (i) �

Theorem 3.20. Let M be a totally ordered field Γ−semiring and satisfying the
identity aαb+ a = a, for all a, b ∈ M,α ∈ Γ.
(i). If semigroup (M,+) is a non-negatively ordered then Γ−semigroup M is a non-
negatively ordered.
(ii). If semigroup (M,+) is a non-positively ordered then Γ−semigroup M is a
non-positively ordered.

Proof. (i). Let M be a field Γ−semiring. We have 1 + a = a, for all a ∈ M.
Let a ∈ M. Since a ∈ M there exists γ ∈ Γ such that aγ1 = a.

1 + a = a ⇒ aγ1 + aγa = aγa

⇒ a+ aγa = aγa.

Suppose (M,+) is a non-negatively totally ordered. Then aγa = a + aγa >
a ⇒ aγa > a.

Hence Γ−semigroup M is a non-negatively ordered.
(ii) Proof is similar to (i). �

Theorem 3.21. Let M be a totally ordered field Γ−semiring and satisfying the
identity aαb+ a = a, for all a, b ∈ M,α ∈ Γ.

(i). If semigroup (M,+) is positively ordered then Γ−semigroup M is positively
ordered.

(ii). If semigroup (M,+) is negatively ordered then Γ−semigroup M is a neg-
atively ordered.
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Proof. (i). Let M be a field Γ−semiring. We have 1 + b = b, for all b ∈ M.
Let a ∈ M. Since a ∈ M there exists γ ∈ Γ such that aγ1 = a.

1 + b = b ⇒ aγ1 + aγb = aγb

⇒ a+ aγb = aγb.

Suppose that (M,+) is a positively ordered. Then

aγb = a+ aγb > a ⇒ aγb > a.

Similarly we can prove aγb > b. Hence Γ−semigroup M is a positively ordered.
(ii) Proof is similar to (i). �

4. Complemented Γ−semiring

In this section, we introduce the notion of complemented Γ−semiring and to-
tally ordered complemented Γ−semiring and study their properties.

Definition 4.1. An element a of Γ−semiring M is said to be complemented
if there exists an element b ∈ M such that a+ b = 1, bαa = 0 and aαb = 0, for all
α ∈ Γ.

Definition 4.2. A Γ−semiring M is said to be complemented if for every
element of M is complemented.

Theorem 4.1. Let M be a Γ−semiring. If b is a complement of a and a+c = 1
then there exists α ∈ Γ such that bαc = cαb = bαb = b.

Proof. Let b be the complement of a and c ∈ M such that a + c = 1.Then
there exists a α ∈ Γ such that b = bα1 = 1αb, b+ a = 1, and bγa = aγb = 0, for all
γ ∈ Γ.

b = bα(1) = bα(a+ c) = bαa+ bαc = 0 + bαc = bαc.

b = 1αb = (a+ c)αb = aαb+ cαb = 0 + cαb = cαb.

b+ a = 1

bγ(b+ a) = bγ1, for all γ ∈ Γ

⇒ bγb+ bγa = bγ1, for all γ ∈ Γ

⇒ bαb+ bαa = bα1

⇒ bαb+ 0 = bα1

Therefore bαb = b. Hence bαc = cαb = bαb = b. �

Theorem 4.2. Let M be a zero sum free Γ−semiring. If a, b ∈ M are comple-
mented elements of M then aαbβc = 0, for all β ∈ Γ, for some α ∈ Γ, where c is
the complement of a.
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Proof. Let M be a zero sum free Γ−semiring and c, d be complements of a
and b respectively and β ∈ Γ. Since 1 is the unity, there exists α ∈ Γ such that
aα1 = a.

aαbβc+ aαdβc = aα(b+ d)βc = aα1βc = aβc = 0.

Hence aαbβc = 0. �

Theorem 4.3. Let M be an idempotent Γ−semiring. If a is a complement of
b then there exists γ ∈ Γ such that a+ bγb = bγb+ a.

Proof. Let M be an idempotent Γ−semiring. Suppose a is a complement of
b.Then a + b = 1 and aαb = bαa = 0, for all α ∈ Γ and there exists γ ∈ Γ such
that aγa = a.

(a+ b)α(b+ a) = aα(b+ a) + bα(b+ a), for all α ∈ Γ

= aαb+ aαa+ bαb+ bαa, for all α ∈ Γ

= a+ bγb

(a+ b)α(b+ a) =(a+ b)αb+ (a+ b)αa, for all α ∈ Γ

= aαb+ bαb+ aαa+ bαa, for all α ∈ Γ

= bγb+ a.

Hence a+ bγb = bγb+ a. �

Definition 4.3. Let M be a Γ−semiring. An element a ∈ M is said to be
strongly idempotent if a = aαa; for all α ∈ Γ.

Definition 4.4. Let M be a Γ−semiring.If every element of M is a strongly
idempotent of M then M is said to be strongly idempotent Γ−semiring M.

Corollary 4.1. If M is a strongly idempotent complemented Γ−semiring then
semigroup (M,+) is commutative .

Theorem 4.4. If Γ−semigroup of complemented Γ−semiring M holds cancel-
lation law then every element in M has an unique complement.

Proof. Let Γ−semigroup of complemented Γ−semiring M holds cancellation
law. Suppose b and c are complements of a then a+b = 1, a+c = 1, aαb = 0, aαc =
0, for all α ∈ Γ. Then

aαb = 0 = aαc ⇒ aαb = aαc

⇒ b = c.

Hence the Theorem. �

Theorem 4.5. If M is a complemented Γ−semiring then M is an idempotent
Γ−semiring.
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Proof. Suppose M is a complemented Γ−semiring and a ∈ M. Then there
exists α ∈ Γ such that aα1 = a, a+ b = 1 and aγb = 0, for all γ ∈ Γ.

a+ b = 1 ⇒ aγ(a+ b) = aγ1, for all γ ∈ Γ

⇒ aα(a+ b) = aα1

⇒ aαa+ aαb = aα1

⇒ aαa+ 0 = aα1

⇒ aαa = a.

Therefore a is an α−idempotent. Hence M is an idempotent Γ−semiring. �
Theorem 4.6. Let M be a totally ordered complemented Γ−semiring. If semi-

group (M,+) is a positively ordered semigroup then 0 is the minimal element of M
and Γ−semigroup M is negatively ordered.

Proof. Let M be a totally ordered complemented Γ−semiring. Let a, c ∈ M.
There exists b ∈ M such that a+b = 1, bαa = aαb = 0, for all α ∈ Γ. Now a+0 = a
and a+ 0 > 0. So, a > 0. Therefore 0 is the minimal element.

Suppose Γ−semigroup M is a positively ordered. Then

aαc > c, a ⇒ bα(aαc) > bαc and (bαa)αc) > bαc ⇒ 0 > bαc,

which is a contradiction. Therefore Γ−semigroup M is negatively ordered. Hence
the Theorem. �

Theorem 4.7. Let M be a totally ordered complemented Γ - semiring. If Γ -
semigroup M is a positively ordered then 1 is the minimal element of M and (M,+)
is negatively ordered .

Proof. Let M be a totally ordered complemented Γ - semiring .Suppose Γ
- semigroup M is a positively ordered and a ∈ M. There exists β ∈ Γ such that
aβ1 = a ⇒ a = aβ1 > 1. Therefore 1 is the minimal element of M. Suppose (M,+)
is a positively ordered semigroup and a ∈ M. Then there exists c ∈ M such that
a + c = 1 ⇒ 1 > a and a > 1. Therefore a = 1, which is a contradiction. Hence
(M,+) is negatively ordered. �

Theorem 4.8. Let M be a totally ordered complemented Γ−semiring. If
Γ−semigroup M is a positively ordered then semigroup (M,+) is a band.

Proof. Let M be a totally ordered complemented Γ−semiring. Suppose
Γ−semigroup M is positively ordered. Then by Theorem 4.7, (M,+) is negatively
ordered and 1 is the minimal element of M and 1 + 1 > 1 since 1 is the minimal
element. Thus xα(1 + 1) > xα1 for all x ∈ M and α ∈ Γ since x ∈ M . So, there
exists γ ∈ Γ such that xγ1 = x and

xγ(1 + 1) > xγ1 ⇒ xγ1 + xγ1 > xγ1

⇒ x+ x > x.

We have x+x 6 x, since (M,+) is negatively ordered. Hence x+x = x. Therefore
(M,+) is a band. �
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5. Conclusion:

We studied the properties of structures of the semigroup (M,+) and the Γ
-semigroup M of field Γ−semiring M , totally ordered field Γ−semiring M com-
plemented Γ−semiring M and totally ordered complemented Γ−semiring M .We
proved,if (M,+) is negatively ordered ( positively ordered ) of totally ordered
Γ−semiring (field Γ−semiring) satisfying the identity a + aαb = a, for all a, b ∈
M,α ∈ Γ then Γ−semigroup M is positively ordered (positively ordered).
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