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CO-IDEALS AND CO-FILTERS

IN ORDERED SET UNDER CO-QUASIORDER

Daniel Abraham Romano

Abstract. In this paper, basing our consideration on the sets with the apart-
ness relation, we analyze characteristics of some special relations to these sets

such as co-order and co-quasiorder and coequality relations. In addition, we
analyze two special classes of subsets, co-filters and co-ideals, of ordered set
under a co-quasiorder relation. This investigation is into the Bishop’s Con-
structive mathematics.

1. INTRODUCTION

In this paper, we present a small portion of the theory of sets with apartness
from a constructive point of view. The focus is on Bishops approach to constructive
mathematics. Since the appearance of Bishops monograph [2] in 1967, there have
been significant developments in Bishop-style analysis (see, for example [3, 4, 10]).
The main goal of this paper is to provide a constructive definition of coquasiorder
and other relations (co-order and coequality relations) concerning to this coqua-
siorder for an arbitrary set with apartness.

Our setting is Bishop’s constructive mathematics [2, 3, 11, 19], mathematics
developed with Constructive logic (or Intuitionistic logic [19]) - logic without the
Law of the Excluded Middle P ∨ ¬P . We have to note that ‘the crazy axiom’
¬P =⇒ (P =⇒ Q) is included in Constructive logic. Precisely in Constructive
logic, the ‘Double Negation Law’ P ⇐⇒ ¬¬P does not hold, but the following
implication P =⇒ ¬¬P holds even in Minimal logic. In Constructive logic, the
Weak Law of the Excluded Middle ¬P ∨ ¬¬P does not hold. It is interesting, in
Constructive logic the following deduction principle A ∨B,¬A ⊢ B holds, but this

2010 Mathematics Subject Classification. 03F65, 04A05, 06A11, 06A12.
Key words and phrases. Bishop’s constructive mathematics, set with apartness, coequality,

co-order and co-quasiorder relations, co-filter and co-ideal.

177



178 D.A.ROMANO

is impossible to prove without ‘the crazy axiom’. One advantage of working in this
manner is that proofs and results have more interpretations. On the one hand,
Bishop’s constructive mathematics is consistent with traditional mathematics. On
the other hand, the results can be interpreted recursively or intuitionistically. If we
are working constructively, the first problem is to obtain appropriate substitutes
for the classical definitions. The classical theory of partially ordered sets is based
on the negative concept of partial order. Unlike the classical case, an affirmative
concept, introduced in the author’s papers [8, 9, 13, 14, 15, 16] and similar to
von Plato’s [20] and Baroni’s [1] excess relation, will be used as a primary relation.

Let (S,=, ̸=) be a constructive set in the sense of Mines et all. [10] and Troelstra
and van Dalen [19]. The relation ̸= is a binary relation on S with the following
properties:

¬(x ̸= x), x ̸= y =⇒ y ̸= x, x ̸= z =⇒ x ̸= y ∨ y ̸= z,

x ̸= y ∧ y = z =⇒ x ̸= z.

It is called apartness (Heyting). Let S and T be two sets with apartness, then the
relation ̸= on S × T is defined by

(x, y) ̸= (u, v) ⇐⇒ (x ̸= u ∨ y ̸= v)

for any x, u ∈ S and any y, v ∈ T .
Let Y be a subset of S. Following [8], [9] we define a subset

Y ◃ = {x ∈ S : x◃ Y }

of S called the complement of Y in S, where ◃ is a relation bettween an element
x ∈ S and subset Y

x◃ Y ⇐⇒ (∀y ∈ Y )( x ̸= y).

(In all our earlier texts we used notation ’◃▹’ instead notation ’◃’.)

Co-notions of relations are frequent in Brouwer’s and Heyting’s work on in-
tuitionistic mathematics, to some extent occur in Bishop’s writings, and have re-
appeared in and around formal topology, especially in the theory of apartness rela-
tions studied at length by Bridges, Vita ([6]) and others. Co-notions of predicates,
subsets and substructures have proved useful for doing intuitionistic algebra.

As we have already pointed out, our primary objective is to show some char-
acteristics of coequality, co-order and coquasiorder relations on set with apartness.
Our work is based on applications of ideas and notions coming from [11, 12, 13,
14, 15, 16]. The paper is organized in the following way. A set with apartness
together with a co-order and a coquasiorder relations, an equivalence and its dual
coequivalence is the subject of section 2. The main results of this section are The-
orem 2.1, Theorem 2.2 Theorem 2.3 and Theorem 2.4 and several corollaries in
which we show that families of all coquasiorders and all coequalences on set with
apaerness are lattices. Two important subsets, co-filters and co-ideals, of ordered
set S with apartness under a co-quasiorder are studied in Section 3. The main
results are given in Theorem 3.3 and Corollary 3.1 in which we prove that family
of all co-filters (co-ideals) forms a lattice.
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For undefined notions and notation, cf. [8, 9, 11, 12, 13, 14, 15, 16, 17].
Other general references for constructive mathematics are in books [2, 3, 4, 6, 10,
19].

Why study sets with apartness, relations and substructures on such sets? One
can give an answer similar to the one given in [4]: ...doing constructive mathematics,
in this case, sets with apartness and corresponding characteristics relations and
subsets, is intellectually interesting and challenging...

Our next research should be on lattices mentioned relations and their interre-
lationships.

2. SOME IMPORTANT RELATIONS

2.1. Co-order relations. We will briefly recall the constructive definition of
linear order and we will use a generalization of von Plato’s [20] and Baroni’s [1]
excess relation for the definition of a partially ordered set. Let S be a nonempty
set. A binary relation < (less than) on S is called a linear order if the following
axioms are satisfied for all elements x and y:

¬(x < y ∧ y < x),

x < y =⇒ (∀z ∈ S)(x < z ∨ z < y).

An example is the standard strict order relation < on R, as described in [2]. For
an axiomatic definition of the real number line as a constructive ordered field, the
reader is referred to [2, 3, 5, 7]. A detailed investigation of linear orders in lattices
can be found in [20]. The binary relation 
 on S is called an excess relation if it
satisfies the following axioms:

¬(x 
 x),

x 
 y =⇒ (∀z ∈ S)(x 
 z ∨ z 
 y).

We say that x exceeds y whenever x 
 y. Clearly, each linear order is an excess
relation. As shown in [16], we obtain an apartness relation ̸= and a partial order
6 on X by the following definitions:

x ̸= y ⇐⇒ (x 
 y ∨ y 
 x) ,

x 6 y ⇐⇒ ¬(x 
 y).

Note that the statement ¬(x 6 y) =⇒ x 
 y does not hold in general.
As in [13, 14, 15, 16], we define our notion of co-order (in our earlier texts

[13, 14, 15, 16] we used term ’anti-order’): a relation α on a set (S,=, ̸=) is a
co-order on S if and only if

α ⊆ ̸=, α ⊆ α ∗ α, α ∪ α−1 = ̸=.

Here, ∗ is the filed product between relations defined by the following way: If α
and β are relations on set S, then filed product β ∗ α of relation α and β is the
relation given by {(x, z) ∈ X ×X : (∀y ∈ X)((x, y) ∈ α ∨ (y, z) ∈ β)}.

Our first proposition gives us an explanation of what kind of relation is a
complement of a co-order relation.
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Lemma 2.1. Let α be a co-order relation on the set (S,=, ̸=). Then the relation
α◃ is a partial order relation on (S,¬ ̸=, ̸=). If the apartness ̸= is tight, then α◃

is a partial order relation on the set S.

Proof. (1) Let (u, v) be an arbitrary element of α and let x be an element
of S. Then, from (u, x) ∈ α ∨ (x, v) ∈ α it follows that u ̸= x ∨ x ̸= v, i.e.,
(u, v) ̸= (x, x). So, the relation α◃ is reflexive.

(2) Let (x, y) ∈ α◃ and (y, x) ∈ α◃ and suppose that x ̸= y. Then by linearity
of α, we have (x, y) ∈ α or (y, x) ∈ α, which is impossible. So, we must have
¬(x ̸= y) and x = y if the relation ̸= is tight.

(3) Now, let suppose that (x, y) ∈ α◃ and (y, z) ∈ α◃ and let (u, v) be an
arbitrary element of α . Then, by cotransitivity of α, from (u, x) ∈ α or (x, y) ∈ α
or (y, z) ∈ α or (z, v) ∈ α we have (u, x) ∈ α or (z, v) ∈ α because (x, y) ∈ α◃ and
(y, z) ∈ α◃. Therefore, u ̸= x or z ̸= v. So, (x, z) ̸= (u, v) ∈ α. �

The reader can see some examples of this relation in our articles [8, 9, 14, 15,
16].

2.2. Co-quasiorder relations. Let S be a set. A relation ρ on S is a quasi-
order if

= ⊆ ρ, ρ ◦ ρ ⊆ ρ.

where he notation ’◦’ is the standard mark for product of relations α and β: For
elements x and z of set S holds

(x, z) ∈ β ◦ α⇐⇒ (∃y ∈ S)((x, y) ∈ α ∧ (y, z) ∈ β).

Then the relation e on S, defined by e = ρ ∩ ρ−1, is an equivalence on S. The
constructive notion of a co-quasiorder relation is the parallel notion to the classical
notion of a quasi-order relation. Let (S,=, ̸=) be a set with apartness. A consistent
and cotransitive relation τ defined on S is called a coquasiorder :

τ ⊆ ̸=, τ ⊆ τ ∗ τ .
(In our texts [13, 14, 15, 16] we used term ’quasi-antiorder’.) We accept that
the empty set ∅ is also a co-quasiorder relation on set S. In this paper and some
other papers (for example, in [8, 9, 13, 14, 15, 16, 17]) we try to research the
properties of co-quasiorders.

The strong complement σ◃ of a quasi-antiorder σ has the well known property.

Lemma 2.2. If σ is a co-quasiorder on S, then the relation σ◃ = {(x, y) ∈
S × S : (x, y)◃ σ} is a quasi-order on S.

Proof. It is clear that σ◃ is a reflexive relation.
Let (x, y) ∈ σ◃ and (y, z) ∈ σ◃ and let (u, v) be an arbitrary element of σ.

Then (u, x) ∈ σ ∨ (x, y) ∈ σ ∨ (y, z) ∈ σ ∨ (z, v) ∈ σ. Hence, u ̸= x ∨ z ̸= v, i.e.,
(u, v) ̸= (x, z). So, (x, z) ∈ σ◃.

Therefore, σ◃ is a coquasiorder relation on S. �
Theorem 2.1. If {σk}k∈J is a family of co-quasiorders on a set (S,=, ̸=) all

included in a relation R, then
∪

k∈J σk is a co-quasiorder in S included in R. There
exists the maximal co-quasiorder relation τmax such that τmax ⊆

∩
k∈J σk.
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Proof. It is easy to check that
∪

k∈J σk is a consistent relation in S.
Let (x, z) be an arbitrary elements of X × X such that (x, z) ∈

∪
k∈J σk.

then there exists k in J such that (x, z) ∈ σk. Hence, for every y ∈ X we have
(x, y) ∈ σk ∨ (y, z) ∈ σk. So, (x, y) ∈

∪
k∈J σk or (y, z) ∈

∪
k∈J σkσk. So, the

relation
∪

k∈J σk is cotransitive.
At the other side, for every k in J holds σk ⊆ R. From this we conclude∪

k∈J σk ⊆ R.
By the first part of this theorem, there exists the biggest co-quasiorder relation

on S included in
∩

k∈J .. �

Corollary 2.1. The family of all co-quasiorders on a set (S,=, ̸=) is a com-
pletely lattice. The biggest element in this lattice is the apartness relation and last
one is ∅.

The reader can see some examples of this relation in our articles [8, 9, 14, 15,
16].

2.3. Coequality relations. A relation q on S is a coequality relation on S if
and only if it is consistent with the apetness, symmetric and cotransitive

q ⊆ ̸= , q−1 ⊆ q and q ⊆ q ∗ q.
If q is a coequivality relation defined on S, then a relation q◃ is an equivality

relation on S and associated with q. (For two relations, α and β defined on S we
say that α is associated with β if β ◦ α ⊆ α.)

Lemma 2.3. Let q be an coequality relation on a set S with apartness. Then
the relation q◃ is an equivalence on S associated with q.

Proof. It is true that =⊆ q◃ and that q◃ is symmetric.
We need to prove that is q◃ transitive. Let (x, y)◃q and (y, z)◃q and let (u, v)

be an arbitrary element of q. Then (u, x) ∈ q ∨ (x, y) ∈ q (y, z) ∈ q ∨ (z, v) ∈ q.
Here follows u ̸= x ∨ z ̸= v. So, (u, v) ̸= (x, z) and (x, z)◃ q.

Let us show that the relations of q◃ and q are associated. In order to show,
take (x, z) ∈ q◃◦q. By definition, there exists an element y ∈ S such that (x, y) ∈ q
and (y, z)◃ q. Thus, by cotransitivity of q, we have (x, z) ∈ q or (z, y) ∈ q = q−1.
Finally, we have (x, z) ∈ q because (y, z)◃ q. �

In some next sentences we will try to make clearer the notion of coequality
relation to the reader. Let q be a coequality on S. As we saw, the relation q◃ - the
strong complement of q - is an equality on S associate with q and we can construct
the factor-set S/(q◃, q) = {aq◃ : a ∈ S}, where aq◃ = {u ∈ S : (a, u)◃ q}, with

aq◃ = bq◃ ⇐⇒ (a, b)◃ q, aq◃ ̸= bq◃ ⇐⇒ (a, b) ∈ q.

and the family S/q = {aq : a ∈ S}, where aq = {u ∈ S : (a, u) ∈ q} is the class of q
generated by the element a, with

aq = bq ⇐⇒ (a, b)◃ q, aq ̸= bq ⇐⇒ (a, b) ∈ q.

Lemma 2.4. If σ is a co-quasiorder on S, then the relation q = σ ∪ σ−1 is an
coequality relation on S.
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Proof.
σ ⊆ ̸==⇒ σ−1 ⊆ ̸=

=⇒ σ ∪ σ−1 ⊆ ̸=;
q−1 = (σ ∪ σ−1)−1 = σ−1 ∪ σ = q.
Let x, y and z be arbitrary elements of set S. Then

(x, z) ∈ q = σ ∪ σ−1 ⇐⇒ (x, z) ∈ σ ∨ (z, x) ∈ σ
=⇒ ((x, y) ∈ σ ∨ (y, z) ∈ σ) ∨ ((z, y) ∈ σ ∨ (y, x) ∈ σ)
⇐⇒ ((x, y) ∈ σ ∨ (x, y) ∈ σ−1) ∨ ((y, z) ∈ σ ∨ (y, z) ∈ σ−1)
⇐⇒ (x, y) ∈ σ ∪ σ−1 ∨ (y, z) ∈ σ ∪ σ−1

⇐⇒ (x, z) ∈ σ ∪ σ−1 ∗ σ ∪ σ−1.
Therefore, the relation q is a coequality relation on S. �

Theorem 2.2. If {qk}k∈J is a family of coequality relations on a set (S,=, ̸=)
all included in a relation R, then

∪
k∈J qk is a coequality relation in S included in

R.
There exists the maximal coequality relation qmax such that qmax ⊆

∩
k∈J qk.

Proof. Since a coequality relation qk is a symmetric co-quasiorder relation in
S for the completeness of proof the first statement we need the following

(
∪

k∈J qk)
−1 =

∪
k∈J(qk)

−1 =
∪

k∈J qk.

So, the relation
∪

k∈J qk is a coequality relation on S. If qk is included in a relation
R, then

∪
k∈J qk is included in R also.

By second part of the Theorem 2.1, there exists the biggest co-quasiorder τmax

included in the intersection
∩

k∈J qk. Thus, by Lemma 2.4, relation τmax∪(τmax)
−1

is a coequality relation included in the intersection
∩

k∈J qk. �

Corollary 2.2. The family of all coequality relations in set (S,=, ̸=) is a
completely lattice. The biggest element in this lattice is the apartness relation in S
and last one is ∅.

The reader can see some examples of this relation in our articles [11, 12, 13]

2.4. Functions. For a function f : (S,=, ̸=) −→ (T,=, ̸=) between two sets
we say that it is:
− a strongly extensional if (∀a, b ∈ S)(f(a) ̸= f(b) =⇒ a ̸= b);
− an embedding if (∀a, b ∈ S)(a ̸= b =⇒ f(a) ̸= f(b)).

Without difficulties we can construct proof for statements in the following
lemma.

Lemma 2.5. Let q be a coequality relation on a set S. Then:
(1) The function πS : S −→ S/(q◃, q), determined by πS(a) = aq◃, is a strongly
extensional surjective mapping.
(2) The function ϑS : S −→ S/q, determined by ϑS(a) = aq, is a strongly exten-
sional surjective mapping.
(3) There exist the strongly extensional injective, surjective and embedding mapping
between S/(q◃, q) and S/q.
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Proof. It is clear that the connections πS and ϑS are functions. From deter-
minations of aq◃ ̸= bq◃ ⇐⇒ (a, b) ∈ q ⊆ ̸= and aq ̸= bq ⇐⇒ (a, b) ∈ q ⊆ ≠ we
conclude that πS and ϑS are strongly extensional and surjective mappings.

It is easy to check that the connection ψ : S/(q◃, q) −→ S/q, defined by
ψ(aq◃) = aq (a ∈ S), is a strongly extensional, injective, embedding and surjective
mapping. �

For a function f : (S,=, ̸=, α) −→ (T,=, ̸=, β) between two relational systems
we say that it is:
− isotone if (∀a, b ∈ S)((a, b) ∈ α =⇒ (f(a), f(b)) ∈ β);
− reverse isotone if (∀a, b ∈ S)((f(a), f(b)) ∈ β =⇒ (a, b) ∈ α).

Theorem 2.3. Let σ be a co-quasiorder relation on a set T . If f : S −→ T be a
stronaly extensional reverse isotone mapping, then the relation f−1(σ) = {(a, b) ∈
S×S : (f(a), f(b)) ∈ σ} is a co-quasiorder on S. In addition, there exists a strongly
extensional mapping ψ : S/qS −→ T/qT such that ψ ◦ ϑS = ϑT ◦ f , where qS =
f−1(σ) ∪ (f−1(σ))−1 and qT = σ ∪ σ−1.

Proof. Thus, from (f(a), f(b)) ∈ σ ⊆≠ follows f(a) ̸= f(b) and a ̸= b since
the mapping f is a reverse isotone. So, the relation f−1(σ) is a consistent relation.
Let (a, b) be s an arbitrary element of f−1(σ) and let b be an arbitrary element of
set S. Thus (f(a), f(c)) ∈ σ. For an element b ∈ S, since σ is a cotrantitive relation
on T , we have (f(a), f(b)) ∈ σ or (f(b), f(c)) ∈ σ. It is means (a, b) ∈ f−1(σ) or
(b, c) ∈ f−1(σ). Therefore, the relation f−1(σ) is a cotransitive relation on S. So,
the relation f−1(σ) is a co-quasiorder on S.

If the mapping ψ : S/qS −→ T/qT determine by the following way ψ(aqS) =
f(a)qT we immediately give seeing equality. �

In this part we will give our main results. Let (S,=, ̸=, σ) be a ordered set
under a co-quasiorder σ. In the following theorem we will give the solution of the
problem of existence of a co-order relation on the set S/q.

Theorem 2.4. Let σ be a co-quasiorder relation on a set S, q = σ∪σ−1. Then
there exists a relation θ on S/q, defined by (aq, bq) ∈ θ ⇐⇒ (a, b) ∈ σ, such that it
is a consistent, cotransitive and linear relation on S/q.

Proof. Let (aq, bq) ∈ θ. That (a, b) ∈ σ. According to σ ⊆ q, we have
(a, b) ∈ q. So, aq ̸= bq.

Let (aq, cq) ∈ θ. Then (a, c) ∈ σ. Thus, (a, b) ∈ σ or (b, c) ∈ σ for arbitrary
element b ∈ S. Finally, we have (aq, bq) ∈ θ or (bq, cq) ∈ θ. It is means that θ is a
cotransitive relation.

Let aq ̸= bq. Thus (a, b) ∈ q = σ ∪ σ−1. Then (a, b) ∈ σ or (b, a) ∈ σ, i.e., then
(aq, bq) ∈ θ or (bq, aq) ∈ θ. Hence θ is a linear relation on S/q. �

Some more information about function the reader can see in our articles [17,
18].
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3. SOME IMPORTANT SUBSETS

IN ORDERED SET UNDER CO-QUASIORDER

We will start this section with the following statement.

Proposition 3.1. Let τ be a co-quasiorder on a set S. Then classes aτ and τb
are detachable subsets of S such that a◃aτ and b◃ τb, for any a, b ∈ S. Moreover,
the following implications hold:
(1) y ∈ aτ ∧ x ∈ S =⇒ x ∈ aτ ∨ (x, y) ∈ τ ;
(2) y ∈ τb ∧ x ∈ S =⇒ x ∈ τb ∨ (y, x) ∈ τ .
(2) (a, b) ∈ τ =⇒ aτ ∪ τb = S.

Proof. Let x ∈ S and y ∈ aτ . Then, by cotransitivity of τ , we have (a, x) ∈ τ
or (x, y) ∈ τ . So, x ∈ aτ or, by consistency of τ , x ̸= y. Thus, aτ is a detachable
subset of S, and a◃ aτ holds.

y ∈ aτ ∧ x ∈ S ⇐⇒ (a, y) ∈ τ ∧ x ∈ S
=⇒ (a, x) ∈ τ ∨ (x, y) ∈ τ
=⇒ x ∈ aτ ∨ (x, y) ∈ τ .

In a similar manner we can prove that τb is a detachable subset of S with b◃τb
and that the implication y ∈ τb ∧ x ∈ S =⇒ x ∈ τb ∨ (y, x) ∈ τ holds.

Let a, b ∈ S such that (a, b) ∈ τ and let x ∈ S. This means that (a, x) ∈
τ ∨ (x, b) ∈ τ , i.e., x ∈ aτ or x ∈ τb, or, equivalently, x ∈ aτ ∪ τb. Therefore,
S ⊆ aτ ∪ τb, which implies equality. �

Generalizing the example (1) and (2) in Proposition 3.1, we can introduce the
concept of a special subsets in co-quasiordered set.

3.1. Co-ideals and co-filters.

Definition 3.1. Let S be ordered set under co-quasiorder τ . For detachable
subset cF of S we say that it is a co-filter in S if

y ∈ cF ∧ x ∈ S =⇒ x ∈ cF ∨ (x, y) ∈ τ .

So, the subset aτ is a principal co-filter of S generated by the element a. In
addition, the sets ∅ and S are trivial co-filters of S.

Definition 3.2. For detachable subset cJ of ordered subset S under a co-
quasiorder τ we say that it is a co-ideal in S if

y ∈ cJ ∧ x ∈ S =⇒ x ∈ cJ ∨ (y, x) ∈ τ .

So, the subset τb is a principal co-ideal of S generated by the element b. In
addition, the sets ∅ and S are trivial co-ideals of S.

Theorem 3.1. If cF is a co-filter of ordered set S under co-quasiorder τ , then
cF◃ is a filter in ordered set S under quasiorder τ◃.

If cJ is a co-ideal of ordered set S under co-quasiorder τ , then cJ◃ is an ideal
in ordered set S under quasiorder τ◃.
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Proof. Let cF be a co-filter of ordered set S under co-quasiorder τ . Then
τ◃ is an quasiorder on set S. Suppose that x ∈ cF▹ and (x, y) ◃ τ . Let u be an
arbitrary element of cF . Thus, from the implication u ∈ cF =⇒ x ∈ cF ∨ (x, u) ∈ τ
follows (x, u) ∈ τ because x ◃ cF . Further on, by cotransitivity of τ , we have
(x, y) ∈ τ ∨ (y, u) ∈ τ ⊆ ≠. Hence, we conclude y ̸= u ∈ cF because (x, y) ◃ τ .
Finally, y ∈ cF◃. So, the subset cF◃ is a filter in S.

The second statement of this theorem we can prove by analogy to previous
statement. �

Theorem 3.2. If {Kj}j∈J be a family of co-filters (co-ideals) in ordered set S
under co-quasiorder τ , then

∪
j∈J Kj is a co-filter (co-ideal respectively) too.

If G1 and G2 are co-filters (co-ideals), then the intersection G1 ∩ G2 is also
co-filter (co-ideal respectively) in S.

Proof. Let y ∈
∪

j∈J Kj and x ∈ S. Thus, there exists an index j ∈ J such

that y ∈ Kj . Hence, by definition of co-filter, we have x ∈ Kj or (x, y) ∈ τ. Finally,
we conclude x ∈

∪
j∈J Kj or x, y) ∈ τ . therefore, the union

∪
j∈J Kj is a co-filter

in S too.
The second statement we derive by the following implications:
y ∈ G1 ∩G2 ∧ x ∈ S =⇒
(x ∈ G1 ∨ (x, y) ∈ τ) ∧ (x ∈ G2 ∨ (x, y) ∈ τ) =⇒
x ∈ G1 ∩G2 ∨ (x, y) ∈ τ .
Corresponding statements for co-ideals we can prove by analogous to proofs of

previous statements. �

Corollary 3.1. Let S is a ordered set with apartness under co-quasiorder τ .
Then the family cF of all co-filters (the family cJ of all co-ideals) in S forms a
lattice. The greatest element in this lattice is S.

Corollary 3.2. Let S is a ordered set with apartness under co-quasiorder τ .
Then the family cF ∪ {∅} (the family cJ ∪ {∅}) in S forms an Alexandrov topology
on S.

Theorem 3.3. Let f : (S, σ) −→ (T, τ) be a reverse isotone mapping between
two co-quasiordered sets. If K is a co-filter (co-ideal) in T , then the set f−1(K) =
{a ∈ S : f(a) ∈ K} is a co-filter (co-ideal, respectively) in S.

Proof. Let y ∈ f−1(K) amd x ∈ S be arbitrary elements. Thus, f(y) ∈ K
and f(x) ∈ T . Hence f(x) ∈ K or (f(x), f(y)) ∈ τ . Therefore, we have x ∈ f−1(K)
or (x, y) ∈ σ because f is a reverse isotone mapping.

The proof for the statement for co-ideal we can construct by analogy to previous
proof. �

This subsection we finish with following observation. Let S be a set with
apartness ordered under a co-quasiorder τ . Mappings iL : S ∋ s 7−→ sτ ∈ cJ and
iR : S ∋ s 7−→ τs ∈ cF are strongly extensional functions.
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3.2. Ordered co-ideals and co-filters.

Definition 3.3. Let S be a set with apartness ordered under a co-quasiorder
τ . Subsets of the form

AL = {z ∈ S : (∃a ∈ A)((z, a) ∈ τ)} (A ⊆ S)

is ordered co-ideals in S, while subsets of the form

AR = {z ∈ S : (∃a ∈ A)((a, z) ∈ τ)} (A ⊆ S)

is ordered co-filter in S.

Particulary, for each element a ∈ S the set {a}L is the principal ordered co-
ideal generated by a, and {a}R is the principal ordered co-filter generated by a
and in addition {a}L = τa and {a}R = aτ hold. Besides, AL =

∪
a∈A τa and

AR =
∪

a∈A aτ hold also. Therefore, by Theorem 3.2, ordered co-ideal (co-filter) is
a co-ideal (co-filter).

Theorem 3.4. If {Kj}j∈J be a family of ordered co-filters (ordered co-ideals)
in ordered set S under co-quasiorder τ , then

∪
j∈J Kj is an ordered co-filter (order

co-ideal respectively) too.

Proof. Let {Kj}j∈J be a family of ordered co-filters in order set S under
co-quasiorder τ . Then for any j ∈ J there exists a subset Aj of S such that
Kj = AR

j . Assertions of this theorem we get by standards way of direct checking

since (
∪

j∈J Aj)
R =

∪
j∈J A

R
j holds. �

Remark 3.1. Let us note that if K1 and K2 be two order co-filters (order
co-ideals) than the intersection K1∩K2 is not a ordered co-filter (ordered co-ideal)
in general case. For example, the intersection of two ordered co-filters K1 = AR

and K2 = BR is a ordered co-filter if the following holds

(∀a ∈ A)(∀b ∈ B)(∃c ∈ A ∩B)((c, a)◃ τ ∧ (c, b)◃ τ).

Indeed. For arbitrary elements y ∈ AR ∩ BR and x ∈ S there exist elements
a ∈ A and b ∈ B such that (y, a) ∈ τ and (y, b) ∈ τ . There exists an element
c ∈ A∩B such that (c, a)◃τ and (c, b)◃τ by hypothesis. Thus, we have (y, c) ∈ τ .
Further, from this follows (y, x) ∈ τ or (x, c) ∈ τ and finally we have (y, x) ∈ τ or
x ∈ (A ∩B)R.

Corollary 3.3. The family OcF (the family OcJ) of all ordered co-filters
(ordered co-ideals) form meet semi-lattice.

3.3. Normal co-ideals and co-filters.

Definition 3.4. Let S be a set with apartness ordered under a co-quasiorder
τ . Subsets of the form

AL = {z ∈ S : (∀a ∈ A)((z, a) ∈ τ)} (A ⊆ S)

is normal co-ideals in S, while subsets of the form

AR = {z ∈ S : (∀a ∈ A)((a, z) ∈ τ)} (A ⊆ S)

is normal co-filter in S.
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Particulary, for each element a ∈ S the set {a}L is the principal normal co-ideal
generated by a, and {a}R is the principal normal co-filter generated by a and in
addition {a}L = τa = {a}L and {a}R = aτ = {a}R hold. Besides, AL =

∩
a∈A τa

and AR =
∩

a∈A aτ hold also. In addition, a normal co-ideal AL of S is a co-
ideal of S. Indeed. Let y ∈ AL be an arbitrary element and x ∈ S. Then from
(∀a ∈ A)((z, a) ∈ τ) we have (∀a ∈ A)((y, a) ∈ τ ∨ (x, a) ∈ τ) and (z, x) ∈ τ ∨ (∀a ∈
A)((x, a) ∈ τ). Therefore, the following implication y ∈ AL ∧ x ∈ S =⇒ (z, x) ∈
τ ∨ x ∈ AL is valid. We can demonstrate analogous analysis for normal co-filters,
too.

Let K be a normal co-ideal (normal co-filter) of set S ordered under co-
quasiorder τ . Then there exists a subset A of S such that K = AL (K = AR). If
z is an arbitrary element of K, we have (∀a ∈ A)((z, a) ∈ τ) ((∀a ∈ A)((a, z) ∈ τ))
and z ◃A because τ is a consistent relation. So, we have (∀z ∈ K)(z ◃A).

Theorem 3.5. If {Kj}j∈J be a family of normal co-ideals (normal co-filters)
in ordered set S under co-quasiorder τ , then

∩
j∈J Kj is a normal co-ideal (normal

co-filter respectively) too.

Proof. Let {Kj}j∈J be a family of normal co-ideals in ordered set S under
co-quasiorder τ . Then for each j ∈ J there exists a subset Aj of S such that Kj =
(Aj)L. Since

∩
j∈J (Aj)L = (

∪
j∈J Aj)L holds, we conclude that the intersection∩

j∈J Kj is a normal co-ideal of S.

Proof that the intersection
∩

j∈J Kj of the family {Kj}j∈J of normal co-filters
is a normal co-filter we can got by analogy to previous proof. �

Remark 3.2. Let K1 and K2 be two normal co-ideals of ordered set S under
co-quasiorder τ . Then there exist subsets A and B of S such that K1 = AL and
K2 = BL. Since AL ∪BL ⊆ (A ∩B)L is valid, we conclude that the union of two
normal co-ideals is not always normal co-ideal but the union K1∪K2 is included in
a normal co-ideal (A ∩B)L. The reverse inclusion is not true because the formula

(∀a ∈ A)((y, x) ∈ τ ∨ (x, a) ∈ τ) =⇒ (y, x) ∈ τ ∨ (∀a ∈ A)((x, a) ∈ τ)

can not be proven in the general case. We can demonstrate analogous analysis for
normal co-filters, too.

Corollary 3.4. The family NcJ (the family NcF) of all normal co-ideals
(normal co-filters) form joint semi-lattice.
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