NONSPLIT DOMINATION EDGE CRITICAL GRAPHS

Girish V R and P.Usha

Abstract

A set of vertices S is said to dominate the graph G if for each $v \notin S$, there is a vertex $u \in S$ with u adjacent to v. The minimum cardinality of any dominating set is called the domination number of the graph G and is denoted by $\gamma(G)$. A dominating set D of a graph $G=(V, E)$ is a nonsplit dominating set if the induced graph $\langle V-D\rangle$ is connected. The nonsplit domination number $\gamma_{n s}(G)$ of the graph G is the minimum cardinality of a nonsplit domination set. The aim of this paper is to investigate of those graphs which are critical in the sense that: A graph G is called edge domination critical if $\gamma(G+e)<\gamma(G)$ for every edge e in \bar{G}. A graph G is called edge nonsplit domination critical if $\gamma_{n s}(G+e)<\gamma_{n s}(G)$ for every edge e in \bar{G}. Initially we verify whether some particular classes of graphs are $\gamma_{n s}$ critical or not. Later $2-\gamma_{n s}$-critical and $3-\gamma_{n s}$-critical graphs are characterized.

1. Introduction

In this paper all our graphs will be finite, connected, undirected and without loops or multiple edges. Terminology not defined here will conform to that in [3]. Let $P_{n}, C_{n}, K_{1, n}, K_{n}, K_{m, n}$ denote the path, cycle, star, complete and bipartite graph.

An end vertex of a graph G is a vertex of degree one and an support vertex of a graph G is a vertex adjacent to end vertex. The eccentricity of the vertex v is the maximum distance from v to any vertex of G. That is

$$
e(v)=\max \{d(v, w) ; w \in V(G)\}
$$

The diameter of G is the maximum eccentricity among the vertices of G. Thus

$$
\operatorname{diameter}(G)=\max \{e(v) ; v \in V(G)\}
$$

[^0]A vertex $v \in V(G)$ is called a cut-vertex of a graph G, if $G-v$ is the disconnected graph. The neighborhood of a vertex in the graph G is the set of vertices adjacent to v. The neighborhood is denoted by $N(v)$ and $\kappa(G)$ is the vertex connectivity of the graph G.

A set of vertices S is said to dominate the graph G if for each $v \notin S$, there is a vertex $u \in S$ with u adajcent to v. The minimum cardinality of any dominating set is called the domination number of G and is denoted by $\gamma(G)$. The concept of nonsplit domination has introduced by Kulli V.R. and B. Janakiram [5]. A dominating set D of a graph $G=(V, E)$ is a nonsplit dominating set if the induced graph $\langle V-D\rangle$ is connected. The nonsplit domination number $\gamma_{s}(G)$ of the graph G is the minimum cardinality of a nonsplit domination set. The concept of domination has been studied by T. W. Haynes [4] and domination critical graphs has been studied by Sumner and Blitch $[\mathbf{7}]$ and Sumner $[\mathbf{8}]$ and also refer $[\mathbf{6}, \mathbf{1}, \mathbf{2}]$.

In this paper, we study the nonsplit domination edge critical graph. A graph G is called edge nonsplit domination critical if $\gamma_{n s}(G+e)<\gamma_{n s}(G)$ for every edge e in \bar{G}. Thus, G is k- $\gamma_{n s}$ critical if $\gamma_{n s}(G)=k$ for each edge $e \in \bar{G}, \gamma_{n s}(G+e)<k$.

First we discuss whether some particular classes of graphs are $\gamma_{n s}$-critical or not and then $2-\gamma_{n s}$-critical and $3-\gamma_{n s}$-critical are characterized with respect to diameter of the graph G.

2. We Require the Following Theorems to Prove the Later Results

In [5] the following theorems has been proved.
Theorem 2.1. For any cycle $C_{n}, \gamma_{n s}\left(C_{n}\right)=n-2$.
Theorem 2.2. For any path $P_{n}, \gamma_{n s}\left(P_{n}\right)=n-2, n>3$, otherwise $\gamma_{n s}\left(P_{n}\right)=$ $n-1, n \leqslant 3$.

Theorem 2.3. For any complete graph $K_{n}, \gamma_{n s}\left(K_{n}\right)=1, n>1$.

3. The Main Results

Theorem 3.1. Let G be a connected graph. Then for any edge $e \in E(\bar{G})$

$$
\gamma_{n s}(G)-\left\lfloor\frac{n}{2}\right\rfloor+1 \leqslant \gamma_{n s}(G+e) \leqslant \gamma_{n s}(G)
$$

Proof. Let D be the minimum non-split dominating set of graph G. Clearly $\gamma_{n s}(G+e) \leqslant \gamma_{n s}(G)$. For $e=v_{1} v_{2}, v_{1} \in D$ and $v_{2} \notin D$.

Case 1: Suppose if $d\left(v_{2}\right)=2$ and if $\left\langle G-v_{2}\right\rangle$ is disconnected into two components G_{1} and G_{2} such that $n_{1}+n_{2}+1=n$. If $n_{1}=n_{2}$ and if the graph G_{1} and G_{2} are complete graphs or G_{1} and G_{2} have atleast one vertex say $v_{3} \notin N\left(v_{2}\right), d\left(v_{3}\right)=n_{1}$ or G_{1} is complete graph and G_{2} has a at least one vertex say $v_{3} \notin N\left(v_{2}\right), d\left(v_{3}\right)=n_{1}$, then $\gamma_{n s}(G+e)=\gamma_{n s}(G)-n_{1}+1=$ $\gamma_{n s}(G)-\left\lfloor\frac{n}{2}\right\rfloor+1$. Otherwise $\gamma_{n s}(G+e)>\gamma_{n s}(G)-\left\lfloor\frac{n}{2}\right\rfloor+1$.

Case 2: Suppose $d\left(v_{2}\right)=2$ and $<G-v_{2}>$ is connected or $d\left(v_{2}\right) \geqslant 2$. If $V(G)-$ $\left(D \cup N\left(D-v_{4}\right)\right) \neq \phi, v_{4} \in N\left(v_{2}\right) \cap D$ or v_{4} is end vertex, then $\gamma_{n s}(G+e)=$ $\gamma_{n s}(G)$. Otherwise $\gamma_{n s}(G+e)<\gamma_{n s}(G)$.
Therefore from Case 1 and Case 2, we have

$$
\gamma_{n s}(G)-\left\lfloor\frac{n}{2}\right\rfloor+1 \leqslant \gamma_{n s}(G+e) \leqslant \gamma_{n s}(G)
$$

Theorem 3.2. If T is not a star, then T is not $\gamma_{n s}$-edge critical.
Proof. Assume that the tree $T \neq K_{1, n}$ is $\gamma_{n s}$-edge critical. Then $\gamma_{n s}(T+e)<$ $\gamma_{n s}(T)$ for every edge $e \in E(\bar{G})$. Let $S=N \cup B \cup R$ is a vertex set of a tree T, where $N=\left\{v_{i}, v_{i}\right.$ is an end vertex of a tree $\left.T\right\}, B=\left\{v_{j}, v_{j}\right.$ is an support vertex of a tree T and
$R=\left\{v_{k}, v_{k}\right.$ is an neither a support vertex nor a end vertex of a tree $\left.T\right\}$.
Let D be the $\gamma_{n s}$ set of a tree T. we consider the following cases:
Case 1: If every vertex of a tree T is adjacent to an end vertex. Then $\gamma_{n s}(G)=N$. Now consider the graph $G+e, e=v_{1} v_{2}, v_{1} \in N$ and $v_{2} \in B$. Then v_{2} dominates $N\left(v_{2}\right)$. Let $A=\left\{D-N\left(v_{2}\right)\right\} \cup v_{2}$. Then $<A>$ is disconnected. Therefore $\gamma_{n s}(G+e)=|D|=\gamma_{n s}(G)$, which is a contradiction.
Case 2: If atleast one vertex of a tree T is not adjacent to an end vertex say v_{1}. Now consider the graph $G+e, e=v_{1} v_{2}, v_{2} \in B$ and $v_{1} \in N$. Then either we can remove v_{1} or v_{2} if $v_{2} \in D$ or remove $N\left(v_{2}\right)$ if $v_{2} \notin D$ from D. Removal of v_{1} from D, then there exists atleast one vertex say v_{k} which is not covered by any of the vertex of $\left(D-v_{1}\right)$ or the graph $G+e$ is disconnected, otherwise removal of v_{2} from D makes the graph $G+e$ disconnected or otherwise removal of $N\left(v_{2}\right)$, Since $N\left(v_{2}\right)$ is a support vertex, $N\left(v_{2}\right) \in D$. Therefore $\gamma_{n s}(G+e)=|D|=\gamma_{n s}(G)$, which is a contradiction.
From the above cases, we can say that the tree T is not $\gamma_{n s}$-edge critical, if T is not a star.

ThEOREM 3.3. The graph $G=C_{n}, n \geqslant 4$ is $\gamma_{n s}$-edge critical for nonsplit domination.

Proof. Let us consider the graph $G=C_{n}$ and $G+e$ where $e \in \bar{G}$ is a graph consists of two cycles $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $n_{1}+n_{2}-2=n$ such that $\left|V_{1}\right| \leqslant\left|V_{2}\right|$. Let $A=V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{v_{i}, v_{j}\right\}$. We consider the following cases:
Case 1: If G_{1} and G_{2} are the cycles of length 3, then $G=C_{4}$ and $\gamma_{n s}(G)=2$. Then $\gamma_{n s}(G+e)=\left|v_{i}\right|=1$, where $v_{i} \in A$. Therefore $\gamma_{n s}(G+e)<\gamma_{n s}(G)$.

Case 2: If G_{1} and G_{2} are the cycles of length 4 , then $G=C_{6}$ and $\gamma_{n s}(G)=4$. Let D_{2} be the nonsplit dominating set of the graph $G+e, e \in \bar{G}$. Then $D_{1}=\left\{v_{r}, v_{s}\right\}$ where $v_{r} \in N\left(v_{i}\right) \cap V\left(G_{1}\right), v_{s} \in N\left(v_{j}\right) \cap V\left(G_{2}\right)$. So that $\gamma_{n s}(G+e)=\left|D_{1}\right|=2$. Therefore $\gamma_{n s}(G+e)<\gamma_{n s}(G)$.
Case 3: If G_{1} and G_{2} are the cycles of length 3 and length 4, then the graph $G=C_{n}$ will be C_{5} and $\gamma_{n s}(G)=3$. Let D_{2} be the nonsplit dominating set of the graph $G+e, e \in \bar{G}$. Then $D_{2}=\left\{v_{r}, v_{s}\right\}$, where $v_{r} \in V\left(G_{1}\right)-A, v_{s} \in$ $V\left(G_{2}\right)-A$. Then $\gamma_{n s}(G+e)=\left|D_{2}\right|=2$. Therefore $\gamma_{n s}(G+e)<\gamma_{n s}(G)$.

Case 4: If G_{1} and G_{2} are the cycles of length $\geqslant 3$ and length >4, then $\gamma_{n s}(G)=$ $n-2$. Let D_{3} be the nonsplit dominating set of the graph $G+e, e \in \bar{G}$. Then $D_{3}=B \cup C\left\{v_{r}, v_{l}\right\}$, where $\left\{\left(v_{r}, v_{l}\right)\right\} \in N(A) \cap V\left(G_{2}\right), B=\left\{v_{s} / v_{s} \in\right.$ $\left.V\left(G_{1}\right)-A\right\}, B=\left\{v_{m} / v_{m} \in V\left(G_{2}\right)-A\right\}$. Then $\gamma_{n s}(G+e)=\left(n_{1}-2\right)+\left(n_{2}-2\right)-2$

$$
=n_{1}+n_{2}-2-4=n-4
$$

since $n-4<n-2$, therefore $\gamma_{n s}(G+e)<\gamma_{n s}(G)$.
The result follows from the above cases.
Theorem 3.4. The graph $G=P_{n}, n>3$ is not $\gamma_{n s}$-edge critical for nonsplit domination.

Proof. Let D be the $\gamma_{n s}$ set of the graph G and let $G+e$ be the graph where $e \in \bar{G}$. we consider the following cases.
case 1: If $e \in \bar{G}$ joins $\left\{v_{1}, v_{2}\right\} \in D$ and $v_{2} \neq N\left(v_{1}\right)$, then either we can remove v_{1} or v_{2} from D, then either there exists atleast one vertex say v_{k} which is not covered by any of the vertex of $\left(D-\left(v_{1}\right.\right.$ or $\left.\left.v_{2}\right)\right)$ or the graph G is disconnected. Therefore $\gamma_{n s}(G+e)=|D|=\gamma_{n s}(G)$.
Case 2: If $e \in \bar{G}$ joins $v_{1} \in D, v_{2} \notin D, v_{2}$ is a not support vertex, then we can remove $v_{r}, v_{r} \in N(V(T)-D), v_{r} \in D, v_{r}$ covers v_{2}. Then $\gamma_{n s}(G+e)=$ $|D-1|<\gamma_{n s}(G)$. Otherwise if v_{2} is a support vertex, then removal of $v_{r}, v_{r} \in N\left(v_{2}\right) \cap D$, then v_{r} is not dominated by any of the vertex of $D-v_{r}$. Therefore $\gamma_{n s}(G+e)=|D|$. Hence $\gamma_{n s}(G+e)=\gamma_{n s}(G)$.
The result follows from the above cases.
Lemma 3.1. K_{n} is not $\gamma_{n s}$-edge critical for $n \geqslant 2$.
Lemma 3.2. $K_{m, n}$ is not $\gamma_{n s}$-edge critical for $m, n \geqslant 2, m, n \neq 2$ and $\gamma_{n s^{-}}$ critical for $m, n=2$.

Lemma 3.3. $K_{1, n}$ is $\gamma_{n s}$-edge critical for $n \geqslant 3$.
Theorem 3.5. A connected graph G is $2-\gamma_{n s}$-edge critical if and only if $\bar{G}=\cup_{i=1}^{i=m} K_{1, m_{i}}$ for $m_{i} \geqslant 1$ and $m \geqslant 2$.

Proof. If G is a connected $2-\gamma_{n s}$-critical graph, then for any edge $e \in E(\bar{G})$, say $e=a b$, we have $\gamma_{n s}(G+e)=1$. Thus, it follows that $\{a\}$ dominates $G+e$ and so a is an isolated vertex of $\bar{G}-e$. Hence, we have shown that every edge of
G is incident with an end vertex of \bar{G}. Since G is a connected graph, it follows that $\bar{G}=\cup_{i=1}^{1=m}$ for $m_{i} \geqslant 1$ and $m \geqslant 2$. Now, we prove the sufficiency condition, if $\bar{G}=\cup_{i=1}^{i=m} K_{1, m_{i}}$ for $m_{i} \geqslant 1$ and $m \geqslant 2$ then it is obvious that no vertex can dominate G. Hence, $\gamma_{n s}(G)>1$. Let b be an end vertex of \bar{G} and a be a center vertex of \bar{G} and $a b \notin E(\bar{G})$. Then $\{a, b\}$ is a nonsplit dominating set of G. Hence, $\gamma_{n s}(G) \leqslant 2$, that is, $\gamma_{n s}(G)=2$. For arbitrary $e=a b \in E(\bar{G})$, assume that b is an end vertex and a is a center. It is clear that $d(G+e)(b)=1$ and $\gamma_{n s}(G+e)=1$. So, G is a connected $2-\gamma_{n s}$-edge critical graph.

Theorem 3.6. If G is $\gamma_{n s}$-edge critical with n vertices, then there is no support vertex of degree at most $n-2$ in G.

Proof. Assume that the the graph G is $\gamma_{n s}$-edge critical in which the degree of the support vertex say v is at most $n-2$ which is adjacent to an end-vertex say x of a graph G. Since the degree of v is atmost $n-2$ there exists atleast one vertex say $v_{1}, v_{1} \notin N(v)$. Let D and D_{1} be the minimum non-split dominating set of the graph G and $G_{1}=G+e, e \in E(\bar{G})$. Since v is support vertex then either $v \in D$ or $v \notin D$ and x is a support vertex $x \in D_{1}$. we consider the following cases:
Case 1: If $v \notin D$, then consider the graph $G_{1}=G+e, e=v v_{1}$. If $v_{1} \notin D$, then clearly $\gamma_{n s}\left(G_{1}\right)=\gamma_{n s}(G)$. Otherwise if $v_{1} \in D$, then we can remove $N(v) \in D$, then there exists atleast one vertex say v_{k} which is not dominated by any vertex of $[D-N(v)]$. Therefore $\gamma_{n s}\left(G_{1}\right)=\gamma_{n s}(G)$ which is a contradiction.
Case 2: If $v \in D$, then there exists atleast one vertex say $v_{3} \notin D$. Then consider the graph $G_{1}=G+e, e=x v_{3}, v_{3} \in N(V(G)-D)$, then we can remove $N\left(v_{3}\right)$ or x from D, then there exists atleast one vertex say v_{k} which is not dominated by any vertex of $\left(D-v_{3}\right)$ or the graph G_{1} disconnected. Therefore $\gamma_{n s}\left(G_{1}\right)=\gamma_{n s}(G)$, which is a contradiction.
Hence the proof.
Theorem 3.7. For a graph $G \neq K_{1, n}$ with n vertices, if:
(i) $\kappa(G)=1$.
(ii) $G-v$ has exactly two components.
(iii) $d(v)=n-1$.

Then, G is $\gamma_{n s}$-edge critical.
Proof. Let us consider the graph G with $\kappa(G)=1$ and let D be the $\gamma_{n s}$ set of the graph G. Let v be the cut-vertex of the graph G. If $G-v$ has two components G_{1} and G_{2} and $d(v)=n-1$, then $\gamma_{n s}(G) \geqslant 2$. Now consider the graph $G_{1}=G+e, e=v_{1} v_{2}, v_{1} \in V\left(G_{1}\right), v_{2} \in V\left(G_{2}\right)$, then $\gamma_{n s}\left(G_{1}\right)=|v|=1$. Therefore $\gamma_{n s}\left(G_{1}\right)<\gamma_{n s}(G)$. Hence it is $\gamma_{n s}$-edge critical.

Theorem 3.8. Let G be a connected $2-\gamma_{n s}$ and $3-\gamma_{n s}$-edge critical graph, then $\operatorname{dia}(G)=2$.

Proof. we consider the following cases:

Case 1: Let G be connected $2-\gamma_{n s}$-edge critical graph and suppose G has a diameter atleast 3. Assume that $p=v_{1}, v_{2}, \ldots, v_{d}$ is a longest path with the diameter equal to the diameter of the graph G. Let D be the $\gamma_{n s}$ set of $G+v_{1} v_{d}$. Since G is a connected $2-\gamma_{n s}$ critical graph, $\gamma_{n s}\left(G+v_{1} v_{d}\right)=1$. If suppose $v_{1} \in D$ then the vertex v_{d-1} cannot be dominated by v_{1} because $v_{d-1} v_{1}$ is at a distance of 2 which is a contradiction. Otherwise if $v_{d} \in D$, the vertex v_{2} cannot be dominated by v_{d} because $v_{d} v_{2}$ is at a distance of 2 which is a contradiction. Therefore for a $2-\gamma_{n s}$-edge critical graph the $\operatorname{dia}(G) \leqslant 2$. If $\operatorname{dia}(G)=1$, then G is not $\gamma_{n s}$-edge critical. Therefore $\operatorname{dia}(G)=2$.
Case 2: Let G be a connected $3-\gamma_{n s}$-edge critical graph and suppose G has a diameter atleast 3. Assume that $p=v_{1}, v_{2}, \ldots, v_{d}$ is a longest path with the diameter equal to the diameter of the graph G. Since G is a connected $3-\gamma_{n s}$ critical graph, $\gamma_{n s}\left(G+v_{1} v_{d}\right) \leqslant 2$. Let D be the $\gamma_{n s}$ set of the $G_{1}=$ $\left(G+v_{1} v_{d}\right)$. The set D has to contain two vertices say $v_{i}, v_{j} \in p$. Since G is a connected $3-\gamma_{n s}$ critical graph, $\gamma_{n s}\left(G+v_{1} v_{d}\right) \leqslant 2$.If $\left(v_{i}, v_{j}\right) \in D$ then there exists atleast one vertex say v_{k} cannot be dominated by any of the vertex of D, since v_{k} is at a distance of 2 from $\left(v_{i}, v_{j}\right)$ or $G_{1}-\left(v_{i}, v_{j}\right)$ results a disconnected graph, which is a contradiction. Therefore for a $3-\gamma_{n s}$ critical graph the $\operatorname{dia}(G) \leqslant 2$. If $\operatorname{dia}(G)=1$, then G is not $\gamma_{n s^{-}}$ edge critical. Therefore $\operatorname{dia}(G)=2$.

Figure 1. A $3-\gamma_{n s}$-edge critical graph with diameter $=2$

4. Construction of $2-\gamma_{n s}$-critical graph and $3-\gamma_{n s}$-critical graph

1. Construction of $2-\gamma_{n s}$-critical graph

(i) A graph in which $n-1$ vertices of degree $n-2$ and $n^{t h}$ vertex is of degree 2 is always a critical graph.

Figure 2. $\gamma_{n s}(G)=\left\{v_{3}, v_{2}\right\}=2, \gamma_{n s}\left(G+v_{3} v_{1}\right)=\left\{v_{3}\right\}=1$
(ii) Let us consider the graph $G_{1}=K_{n}$ and $G_{2}=K_{2}=u_{1} u_{2}$, then we can the construct the critical graph G with,
(a) the vertex set $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right), v_{1}=u_{1}, v_{1}$ is any vertex G_{1}.
(b) the edge set $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Figure 3. $\gamma_{n s}(G)=\left\{v_{1}, u_{2}\right\}=2, \gamma_{n s}\left(G+u_{2} v_{2}\right)=\left\{v_{1}\right\}=1$

2. Construction of $3-\gamma_{n s}$-critical graph.

Let the consider graph G_{1} in which $n-1$ vertices of degree $n-2$ and $n^{\text {th }}$ vertex is of degree 2 and $G_{2}=K_{2}=u_{1} u_{2}$. Then we can construct the critical graph G with
(1) the vertex set $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right), v_{1}=u_{1}, v_{1} \in G_{1}, d\left(v_{1}\right)=n-2$.
(2) $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Figure 4. $\gamma_{n s}(G)=\left\{v_{4}, v_{2}, u_{2}\right\}=3, \gamma_{n s}\left(G+v_{4} v_{1}\right)=\left\{v_{4}, u_{2}\right\}=2$

References

[1] R. C. Brigham, P. Z. Chinn and R. D. Dutton. Vertex domination critical graphs. Networks, 18(3)(1988), 173-179.
[2] X-G. Chen, L. Sun and De-X. Ma. Connected domination critical graphs. Appl. Math. Letters, $17(5)(2004), 503-507$.
[3] F. Harary. Graph theory. Addison-Wesley Publishing Co. Inc., Reading, Mass., 1969.
[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamental of domination of graphs. Marcel Dekker Inc., New York, 1998.
[5] V. R. Kulli and B.Janikiram. Nonsplit domination number of a graph. Indian J. Pure Appl. Math., 31(4)(2000), 441-447.
[6] M. Lemanska and A. Patyk. Weakly connected domination critical graphs. Opuscula Mathematica, 28(3)(2008), 325-330.
[7] D.P.Summer and P.Blitch. Domination critical graphs. Journal of combinatorial theory series B, 34(1)(1983), 65-76.
[8] D.P.Sumner. Critical concepts in domination. Discrete Math., 86(1-3)(1990), 33-46.
Received by editors 04.05.2017; Available online 11.09.2017.

Department of Science and Humanities, PESIT (Bangalore South Campus), Electronic City Karnataka, India.

E-mail address: giridsi63@gmail.com
Department of Mathematics, Siddaganga Institute of Technology,B.H.Road, Tumakuru, Karnataka,India.

E-mail address: pushamurthy@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 05C69.
 Key words and phrases. Domination number, Nonsplit domination, Nonsplit domination number,Critical graph, Edge critical.

