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A GENERALIZATION OF BI IDEALS IN SEMIRINGS

Mohammad Munir and Anum Shafiq

Abstract. Bi ideals are the generalization of quasi ideals which are them-
selves the generalization of the so called one-sided, right and left ideals. In

this paper, we define the m-bi ideals as a generalization of the bi ideals. The
important properties of the m-bi ideals from the pure algebraic point of view
have been described. Moreover, we present the form of the m-bi ideals gen-
erated by subsets of the semiring. On the basis of these properties, further

characterizations of the semiring will be helpful.

1. Introduction

Vandiver introduced the idea of semirings as a generalization of rings, and
having no negative elements in 1934 [10]. Their most common example in the daily
life is of the non-negative integers which make the semiring under usual addition
and multiplication. Since their origin, semrings have been extensively used in the
theories of automata, operator algebra, algebras of formal processes, generalized
fuzzy computation, optimization and computer science. Recently, they are being
used in combinatorial optimization, Baysian networks, belief propagation, algebraic
geometry, optimization algebra, dequantization and amoebas.The studies of their
sub-structures like the subsemirings and ideals play an important role in their
advanced studies and uses. The generalization of the ideals explore the results
necessary for the classification of the semirings.

In lieu of their importance, Steinfeld introduced the notion of quasi ideals
for semigroups and rings respectively in [8] and [9]. Iseki [5] used this concept for
semirings without zero and proved important results on semirings using quasi ideals.
Shabir et al [7] characterized the semirings by the properties of their quasi-ideals.
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The concept of bi ideals for associative rings were introduced by Lajos and
Szasz [6]. Quasi ideals are a generalization of left and right ideals. Bi ideals are
a generalization of quasi ideals. Munir et al characterized some classes of the
semirings e.g. regular and weakly regular semirings using their quasi and bi ideals
[2]. In this paper, we define another class of such ideals named m-bi ideals as a
generalization of bi ideals. We prove important basic results on these ideals.

2. Preliminaries

We present a brief summary of the basic notions and concepts used in semirings
that will be of high value for our later pursuits. [3] and [4] can be referred for the
undefined terms.

Definition 2.1. A semiring is a nonempty set A together with two binary
operation + (Addition) and · (Multiplication) such that

(1) (A,+) is a commutative semigroup,
(2) (A, ·) is a semigroup;generally a non-commutative,
(3) the distributive laws hold i.e.,

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc, for all a, b, c ∈ A.

We assume that (A,+, ·) has an absorbing zero 0, i.e., a + 0 = 0 + a = a and
a · 0 = 0 · a = 0 hold for all a ∈ A.

Definition 2.2. A nonempty subset S of a semring (A,+, ·) is called a sub-
semiring of (A,+, ·) if S itself is a semiring under the operations of addition and
multiplication of A.

The following theorem characterizes the semirings. We state it without proof.

Theorem 2.3. Let (A,+, ·) be a semiring, then a non-empty subset S of A is
a subsemiring of A if and only if

(1) x+ y ∈ S for all x, y ∈ S,
(2) xy ∈ S for all x, y ∈ S,
(3) 0 ∈ S.

Definition 2.4. Let X be a non-empty subset of a semiring (A,+, ·), then
the smallest subsemiring of (A,+, ·) containing X is called the subsemiring of A
generated by X.

Definition 2.5. LetX and Y be two non-empty subsets of a semiring (A,+, ·),
then the sum X +Y respectively product XY of X and Y are defined by X +Y =
{x+ y : x ∈ X and y ∈ Y }, and XY = {

∑
finite

xiyi : xi ∈ X and yi ∈ Y }.

Definition 2.6. A nonempty subset E of a semiring (A,+, ·), is called a
right(left) ideal of A if the following conditions are satisfied:

(1) x+ y ∈ E for all x, y ∈ E,
(2) xa ∈ E(ax ∈ E) for all x ∈ E and a ∈ A.

E is called a two-sided ideal or simply an ideal if it is both a left and a right ideal
of A.
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Theorem 2.7. Let E and F be two ideals of a semiring (A,+, ·), then E+F =
{i+ j : i ∈ E, j ∈ F} is the smallest ideal containing both E and F .

Proof. Let x = i+ j, y = i
′
+ j

′
, where i, i

′ ∈ E, j, j
′ ∈ F , be two elements of

E+F , then x+ y = (i+ j)+ (i
′
+ j

′
) = (i+ i

′
)+ (j+ j

′
) ∈ E+F . xa = (i+ j)a =

ia+ ja ∈ E +F, and ax = a(i+ j) = ai+ aj ∈ E +F. That is E +F is an ideal of
(A,+, ·). Since i = i+0 ∈ E +F for all i ∈ E and j = 0+ j ∈ E +F for all j ∈ F .
So E ⊂ E + F and F ⊂ E + F . That is E + F contains both E and F .

Lastly, if S is another ideal of A containing both E and F , then i+j ∈ S for all
i ∈ E and j ∈ F . So, E+F ⊂ S. Thus, E+F is the smallest ideal of A containing
both E and F . �

Definition 2.8. Let X be a nonempty subset of a semiring (A,+, ·), then right
/ left ideal generated by X is the smallest right / left ideal which contains X i.e., it
is the intersection of all right / left ideals which contains X. If X is finite set, then
the right ( left or two-sided ) ideal generated by X is called the finitely generated
right ( left or two-sided ) ideal respectively.

Theorem 2.9. Let X be a nonempty subset of a semiring (A,+, ·), then
(1) The right ideal generated by X is N0X +XA,
(2) The left ideal generated by X is N0X +AX,
(3) The two-sided ideal generated by X is N0X + AX +XA +XAX, where

N0 is the set of whole numbers.

Proof. (1) Let

x =
∑
finite

njxj +
∑
finite

xiai, y =
∑
finite

n
′

jx
′

j +
∑
finite

x
′

ia
′

i,

where nj , n
′

j ∈ N0, xj , x
′

j ∈ X, ai, a
′

i ∈ A, be any two elements of N0X + XA.
Then

x+ y =
∑
finite

(njxj + n
′

jx
′

j) +
∑
finite

(xiai + x
′

ix
′

i) ∈ N0X +XA.

Now if a ∈ A, then

xa =
∑
finite

(nixi + xiai)a =
∑
finite

0.xi +
∑
finite

(nixia+ xiaia) ∈ N0X +XA,

i.e., N0X+XA is a right ideal of (A,+, ·). Now x =
∑

finite

1.xi+
∑

finite

xi.0 ∈ N0X+XA

i.e., X ⊂ N0X +XA.
Suppose that S ̸= {0} be another right ideal of (A,+, ·) containing X. Then an

element of the form
∑

finite

ni.xi+
∑

finite

xi.ai, xi ∈ X, ai ∈ A belongs to S because

S is the right ideal containing X. Thus N0X +XA ⊂ S. Therefore, N0X +XA is
the smallest right ideal containing X.

(2) Analogously.
(3) Analogously. �
Corollary 2.10. If the semiring (A,+, ·) contains the multiplicative identity,

then
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(1) The right ideal generated by X is XA,
(2) The left ideal generated by X is AX,
(3) The two-sided ideal generated by X is AXA.

Proof. Since 1 ∈ A,

(1) therefore N0X ⊂ XA, and N0X +XA = XA.
(2) Similar.
(3) Now N0X, AX, and XA are contained in AXA, so two-sided ideal gen-

erated by X is AXA.

�
Corollary 2.11. If (X,+) is a subsemigroup with zero of (A,+), then

(1) The right ideal generated by X is X +XA,
(2) The left ideal generated by X is X +AX,
(3) The two-sided ideal generated by X is X +AX +XA+AXA.

Proof. If (X,+) is a submonoid of (A,+), then N0X = X, so

(1) The right ideal generated by X is X +XA.
(2) Similar.
(3) The two-sided ideal generated by X is X +AX +XA+AXA.

�
Definition 2.12. Let (A,+, ·) be a semiring. A quasi ideal Q of A is a sub-

semigroup (Q,+) of A such that AQ ∩QA ⊆ Q [5].

Each quasi ideal of a semiring A is its subsemiring. Every one-sided ideal of A
is a quasi ideal of A. Since intersection of any family of quasi ideals of A is a quasi
ideal of A [7], so intersection of a right ideal R and a left ideal L of a semiring A
is a quasi ideal of A.

The sum and the product of quasi ideals both are not quasi ideals [7].

Definition 2.13. Let (A,+, ·) be a semiring. A bi ideal B is a subsemiring of
A such that BAB ⊆ B.

Every quasi ideal of a semiring A is a bi ideal. The product of two quasi ideals
of a semiring A is a bi ideal of A. Bi ideal may not be a quasi ideal. The product
RL of a left ideal L and right ideal R of A is a bi ideal of A, but not a quasi ideal[7].

The product TB and BT of an arbitrary subset T and bi ideal B of a semiring
A are bi ideals of A. So the product of two bi ideals of a semiring is a bi ideal.
Thus the intersection of a family of bi ideals of a semiring A is a bi ideal of A.

Definition 2.14. A subsemiring Q of a semiring A is called an (m,n)-quasi
ideal of A if AmQ ∩QAn ⊆ Q where m and n are positive integers [1].

It is to be noted that a quasi ideal Q of a semiring A is a (1, 1)-quasi ideal of
A. If A is a semiring having an identity, then all (m,n)-quasi ideals of A are quasi
ideals of A for all m,n ∈ N . Moreover, an (m,n)-quasi ideal of A is a (k, l)-quasi
ideal of A for all k > m and l > n. Any (m,n)-quasi ideal of a semiring S needs
not be a quasi ideal of A.
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Definition 2.15. For a semiring A, and a positive integer m, we have Am =
AAA...A(m-times).

Now A2 = AA ⊆ A; as A is a semiring. Therefore, A3 = AAA ⊆ A2 ⊆ A, i.e.,
A3 ⊆ A2, and A3 ⊆ A. So, we conclude that Al ⊆ Am for all positive integers l
and m, such that l > m. Consequently Am ⊆ A, for all m.

3. m-Bi Ideals

In this section, we define the notion of m-bi ideals, and discuss their important
properties.

Definition 3.1. Let (A,+, ·) be a semiring. An m-bi ideal B of A is a sub-
semiring of A such that BAmB ⊆ B where m is a positive integer, not necessarily
1, called bipotency of the bi ideal B.

BAmB ⊆ B is called the bipotency condition. It is to be noted that a bi ideal
B of a semiring A is a 1-bi ideal of A (bi ideal of bipotency 1). All the so-called
1-bi ideals are the simply the bi ideals, whereas those with bipotency m > 1 are to
specified with the value of m.

Proposition 3.2. For every m > 1, every bi-ideal is an m-bi ideal.

Proof. If B is a bi ideal of A, then BAB ⊆ B can be written as BA1B ⊆ B
employing that B is a bi ideal with bipotency m = 1. �

The converse of the above result is not true as is evident from the following
example.

Example 3.3. Let

S =



0 u v w
0 0 x y
0 0 0 z
0 0 0 0

 : u, v, w, x, y are any positive real numbers

 ,

and

A = S0 = S ∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,
then (A,+, ·) is a semiring under the usual operations of addition + and multipli-
cation · of matrices.

Let

B =



0 u 0 0
0 0 0 0
0 0 0 z
0 0 0 0

 : u, z are any positive real numbers

 ∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.
Then B is 2-bi ideal of A as BA2B ⊆ B, and BAB ̸⊂ B.
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The following two examples characterize them-bi ideals in classes of idempotent
and nilpotent matrices.

Example 3.4. Let S be the set of all idempotent matrices of idempotency m,
then S forms a semiring under the usual addition and multiplication of matrices.
In this case, every bi ideal B of S forms its m-bi ideal; as BSmB = BSB ⊆ B
implies BSmB ⊆ B.

Example 3.5. Let S be the set of all nilpotent matrices of nilpotency m, then
S forms a semiring under the usual addition and multiplication of matrices as
described before. In this case, every subsemiring B of S forms its m-bi ideal; as
BSmB = B0B ⊆ B implies BSmB ⊆ B, 0 is the zero matrix.

The left ideal L and the right ideal R of the semiring A are the bi ideals or the
1-bi ideals. Every ideal of A is a 1-bi ideal of A.

Proposition 3.6. The product of any two m-bi ideals of a semiring A, with
identity e, is m-bi ideal.

Proof. Let B1 and B2 be two bi ideals of a semiring A with bipotencies m1

and m2 respectively, that is, B1A
m1B1 ⊆ B1 and B2A

m1B2 ⊆ B2, m1 and m2

are any positive integers. Then B1B2 is obviously closed under addition by the
Definition 2.5. Now we have,

(B1B2)
2 = (B1B2)(B1B2) = (B1AB1)B2 = (B1Ae...eB1)B2 ⊆

(B1AA...AB1)B2 ⊆ (B1A
mB1)B2 ⊆ B1B2.

That is, (B1B2)
2 ⊆ B1B2. So, B1B2 is closed under multiplication. B1B2 is a

subsemiring of A. Moreover,

B1B2(A
max(m1,m2))B1B2 ⊆ B1AAmax(m1,m2)B1B2 =

B1A
1+max(m1,m2)B1B2 ⊆ B1A

m1B1B2 ⊆ B1B2.

We used the result A1+max(m1,m2) ⊆ Am1 as is evident by Definition 2.15. So,

B1B2(A
max(m1,m2))B1B2 ⊆ B1B2

. Thus, B1B2 is an m-bi ideal of A with bipotency max(m1,m2). �
Proposition 3.7. Let T be an arbitrary subset of a semiring A with identity

e, and B be an m- bi ideal of A, m not necessarily 1. Then the product BT is also
m-bi ideal of A.

Proof. It is straightforward to show that BT as defined by the Definition 2.5
is closed under addition. Next,

(BT )2 = (BT )(BT ) =

(BTB)T ⊆ (BAB) ⊆ BAe...eB ⊆ BAA...AB ⊆ (BAmB)T ⊆ BT .

So, BT 2 ⊆ BT making it a subsemiring of A. Moreover,

BT (Am)BT ⊆ BAAmBT ⊆ BA1+mBT ⊆ BAmBT ⊆ BT.

Therefore BT is an m-bi ideal of A. �
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Similarly, we can show that TB is also an m-bi ideal of A.

Proposition 3.8. The intersection of a family of bi ideals of semiring A with
bipotencies m1,m2, ..., is also a bi ideal with bipotency max{m1,m2, ...}.

Proof. Let {Bλ : λ ∈ ∧} be a family of m-bi ideals of semiring A. Then
B =

∩
λ∈∧

Bλ, being the intersection of subsemirings of A is a subsemiring of A.

Since BλA
mλBλ ⊆ Bλ ∀ λ ∈ ∧, and B ⊆ Bλ ∀ λ ∈ ∧, therefore

BAmax{mλ:λ∈∧}B ⊆ BλA
mλBλ ⊆ Bλ ∀ λ ∈ ∧.

That is, BAmax{mλ:λ∈∧}B ⊆ Bλ ∀ λ ∈ ∧. This gives BAmax{mλ:λ∈∧}B ⊆∩
λ∈∧

Bλ = B. So, BAmax{mλ:λ∈∧}B ⊆ B. Thus B is an m-bi ideal with bipotency

max{m1,m2, ...}. �

Sum of two m-bi ideals of a semiring is not an m-bi ideals.

Example 3.9. Let

A =

{[
a b
c d

]
: a, b, c, d are non-negative integers

}
.

Then A is a semiring under usual addition and multiplication of matrices.
Let

B1 =

{[
x 0
0 0

]
: x is a non-negative integers

}
,

and

B2 =

{[
0 0
0 y

]
: y is a non-negative integers

}
,

then B1 and B2 are 1-bi ideals of A. But B = B1 + B2, is not a bi ideal of A.
Indeed, in this case,

B =

{[
x 0
0 y

]
: x and y are non-negative integers

}
,

and so, BAB ̸⊂ B.

Proposition 3.10. Every (m,m)-quasi ideal Q of a semiring A is an m-bi
ideal of A.

Proof. Consider

QAmQ ⊆ QAmA = QAm+1 ⊆ QAm,

and so QAmQ ⊆ QAm. Similarly, QAmQ ⊆ AmQ. Combining these two, we have

QAmQ ⊆ QAm ∩AmQ ⊆ Q

. Thus QAmQ ⊆ Q. That is, Q is an m-bi ideal. �
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Proposition 3.11. Product of two (m,n)-quasi ideals Q1 and Q2 of A is an
m-bi ideal of A.

Proof. Since

Q1Q2 =

{∑
finite

mini : mi ∈ Q1, ni ∈ Q2, i ∈ ∧

}
,

this means that Q1Q2 is closed under addition. Since every quasi ideal is bi ideal,

(Q1Q2)(Q1Q2) ⊆ Q1(Q2AQ2) ⊆ Q1Q2.

That is, (Q1Q2)
2 ⊆ Q1Q2. So Q1Q2 is closed under multiplication. Clearly

(Q1Q2)A
max{m1,m2,n1,n2}(Q1Q2) ⊆ Q1Q2A

max{m1,m2,n1,n2}(AQ2) ⊆
Q1(Q2A

max{m1,m2,n1,n2}+1Q2) ⊆ Q1Q2.

So, Q1Q2 is Bi-ideal of A. �

Definition 3.12. Let A be a semiring. A subsemiring L of A is called an
m-left ideal of A if AmL ⊆ L where m is a positive integer. An n-right ideal of S
is defined analogously where n is a positive integer [1].

Proposition 3.13. An m-left/ n-right ideal of semiring A is an m-bi ideal.

Proof. Let L be the m-left ideal of A, then LAmL ⊆ LL ⊆ L. This gives
that L is m-bi ideal of A. The proof for m-right ideal is analogous. �

Theorem 3.14. Let A be a semiring.
(1) Let Li be an m-left ideal of A for all i ∈ I. Then

∩
i∈I

Li is an m-left ideal of A.

(2) Let Ri be an n-right ideal of A for all i ∈ I. Then
∩
i∈I

Ri is an n-right ideal of

A.

Proof. As Proposition 3.8. �

The following theorem shows that the intersection of an m-left ideal and an
n-right ideal of a semiring A is its t-bi ideal, where t = max(m,n).

Theorem 3.15. Let L and R be an m-left ideal and an n-right ideal of a
semiring A. Then L ∩R is an t-bi ideal of A, where t = max(m,n).

Proof. Since 0 ∈ L∩R, by Lemma 3.1, we have L∩R is a subsemiring of A.
Next, since L and R are also m-bi and n-bi ideals of A, their intersection becomes
max(m,n)-bi ideals from the result 3.8. Alternatively,

L ∩R(Amax{m,n})L ∩R ⊆ LAmax{m,n}L ⊆ Amax{m,n}+1L ⊆ AmL ⊆ L.

Similarly, we can show that L ∩R(Amax{m,n})L ∩R ⊆ R. Consequently,

L ∩RAmax{m,n}L ∩R ⊆ L ∩R

�
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3.1. Finitely Generated m-bi Ideals. Let S be a subset of a semiring A
and

τ = {B : B is an m-bi ideal of A containing S }.

Therefore τ is nonempty because A ∈ τ . Let < S >m=
∩

B∈τ

B. Clearly, < S >m

is nonempty because 0 ∈< S >m. Since the intersection of m-bi ideals is an m-bi
ideal, so < S >m is an m-bi ideal of A. Moreover, < S >m is the smallest m-bi
ideal of A containing S. The m-bi ideal < S >(m) is called the m-bi ideal of A
generated by S. It is clear that < ϕ >m=< 0 >m= {0}. An m-bi ideal is called
principal if it is generated as an m-bi ideal by a single element.

Theorem 3.16. Let S be a nonempty subset of a semiring A. Then the m-bi
ideal generated by S is < S >m=

∑m
i=1 N0S

i + SAmS

Proof. We need to show that < S >m=
∑m

i=1 N0S
i + SAmS is the smallest

m-bi ideal of A containing S. Let a, b ∈< S >m . Therefore,

a =
∑

finite

(njxj1 · · ·xjm) +
∑

finite

(sjaj1 · · · ajmtj), and

b =
∑

finite

(n
′

jx
′

j1
· · ·x′

jm
) +

∑
finite

(s
′

ja
′

j1
· · · a′

jm
t
′

j),

where nj , n
′

j ∈ N0,

xj1 , · · · , xjm , sj , tj , x
′

j1
, ..., x

′

jm
, s

′

j , t
′

j ∈ S, aj1 , · · · , ajm , a
′

j1
, · · · , a′

jm
∈ A,

be any two elements of < S >m.

a+ b

=
∑
finite

(njxj1 · · ·xjm) +
∑
finite

(sjaj1 · · · ajmtj) +
∑
finite

(n
′

jx
′

j1 · · ·x
′

jm)+∑
finite

(s
′

ja
′

j1 · · · a
′

jmt
′

j)

=
∑
finite

(njxj1 · · ·xjm) +
∑
finite

(n
′

jx
′

j1 · · ·x
′

jm) +
∑
finite

(sjaj1 · · · ajmtj)+∑
finite

(s
′

ja
′

j1 · · · a
′

jmt
′

j)

=
∑
finite

(
(njxj1 · · ·xjm) + (n

′

jx
′

j1 · · ·x
′

jm)
)
+

∑
finite

(
(sjaj1 · · · ajmtj) + (s

′

ja
′

j1 · · · a
′

jmt
′

j)
)
∈

m∑
i=1

N0S
i + SAmS.
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ab

=
( ∑
finite

(njxj1 · · ·xjm)+∑
finite

(sjaj1 · · · ajmtj)
)( ∑

finite

(n
′

jx
′

j1 · · ·x
′

jm) +
∑
finite

(s
′

ja
′

j1 · · · a
′

jmt
′

j)
)

=
∑
finite

(njxj1 · · ·xjm)
∑
finite

(n
′

jx
′

j1 · · ·x
′

jm) +
∑
finite

(njxj1 · · ·xjm)
∑
finite

(s
′

ja
′

j1 · · · a
′

jmt
′

j)

+
∑
finite

(sjaj1 · · · ajmtj)
∑
finite

(n
′

jx
′

j1 · · ·x
′

jm)+∑
finite

(sjaj1 · · · ajmtj)
∑
finite

(s
′

ja
′

j1 · · · a
′

jmt
′

j)

∈
m∑
i=1

N0S
i + SAmS,

as the first two terms belong to
∑m

i=1 N0S
i, and the second two terms belong to

SAmS. So < S >m is a subsemiring of A. Next, we need to show that < S >m

Am < S >m⊆< S >m. Consider

< S >m Am < S >m =
( m∑
i=1

N0S
i + SAmS

)
Am

( m∑
i=1

N0S
i + SAmS

)
=

( m∑
i=1

N0S
i
)
Am

( m∑
i=1

N0S
i
)
+
( m∑
i=1

N0S
i
)
Am(SAmS)

+ (SAmS)Am
( m∑
i=1

N0S
i
)
+ (SAmS)Am(SAmS)

The first two terms in the above expression belong to
∑m

i=1 N0S
i by the definition

of the finite sums, and the second two terms belong to SAmS. Therefore < S >m

Am < S >m⊆< S >m. That is, < S >m Am < S >m is an m-bi ideal containing
S.That is BAmB ⊆ B. To show that < S >m is the smallest m-bi ideal of A
containing S, let B′ be any other m-bi ideal of A containing S. Then N0S

i ⊆ B′ for
all i ∈ N and SAmS ⊆ B′AmB′ ⊆ B′. Therefore < S >m=

∑m
i=1 N0S

i+SAmS ⊆
B′. Hence, < S >m is the smallest m-bi ideal of A containing S. �

Corollary 3.17. If the semiring (A,+, ·) contains the multiplicative identity
1, then the m-bi ideal generated by the nonempty set S is < S >m= SAmS.

Proof. If A contains 1, then
∑m

i=1 N0S
i ⊆ SAmS. So, < S >m= SAmS. �

Corollary 3.18. If S is a subsemigroup with zero of (A,+), then the m-bi
ideal generated by S is < S >m= S + SAmS.
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Proof. If S is a subsemigroup with zero of (A,+), then
∑m

i=1 N0S
i ⊆ S. In

this case, the m-bi ideal generated by S is < S >m= S + SAmS. �

4. Conclusions

We introduced the notion of m-bi ideal in semirings as a generalization of their
bi ideals. We have studied some of their basic properties and characterized some
of their properties using their m-bi ideals. We also presented the forms of the
m-bi ideals of a semiring generated by a subset of the semiring. In the future, we
want to characterize some more classes of the semirings like regular semirings, intra
regular and weakly regular semirings using their m-bi ideals. Moreover, some other
classes of the m-bi ideals like prime m-bi ideals, maximal and minimal m-bi ideals,
principal m-bi ideals will be studied. Their studies with regard to the semiring
homomorphisms and factor semirings will be explored.
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