4-PRIME CORDIAL LABELING OF SOME SPECIAL GRAPHS

R.Ponraj, Rajpal Singh, and R.Kala

Abstract

Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a function. For each edge $u v$, assign the label $\operatorname{gcd}(f(u), f(v)) . \quad f$ is called k-prime cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leqslant 1, i, j \in\{1,2, \ldots, k\}$ and $\left|e_{f}(0)-e_{f}(1)\right| \leqslant 1$ where $v_{f}(x)$ denotes the number of vertices labeled with $x, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with admits a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate 4-prime cordial labeling behavior of union of two bipartite graphs, union of trees, durer graph, tietze graph, planar grid $P_{m} \times P_{n}$, subdivision of wheels and subdivision of helms.

1. Introduction

Graphs consider here are finite, simple and undirected only. Let G be a (p, q) graph where p refers the number of vertices of G and q refers the number of edge of G. The number of vertices of a graph G is called order of G, and the number of edges is called size of G. The subdivision graph $S(G)$ of a graph G is obtained by replacing each edge $u v$ by a path $u w v$. The Join of two graphs $G_{1}+G_{2}$ is obtained from G_{1} and G_{2} and whose vertex set is $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}+G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v: u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. The graph $C_{n}+K_{1}$ is called a wheel. In a wheel, the vertex of degree n is called the central vertex and the vertices on the cycle C_{n} are called rim vertices. The helm H_{n} is the graph obtained from a wheel by attaching a pendent edge at each vertex of the n-cycle. Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with $G_{2}, G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}. The product graph $G_{1} \square G_{2}$ is defined as follows: Consider any two

[^0]points $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$. Then u and v are adjacent in $G_{1} \times G_{2}$ whenever [$u_{1}=v_{1}$ and u_{2} adj v_{2}] or $\left[u_{2}=v_{2}\right.$ and u_{1} adj $\left.v_{1}\right]$. Cahit introduced the concept of cordial labeling of graphs [1]. Sundaram, Ponraj, Somasundaram have introduced the notion of prime cordial labeling [13] and product cordial labeling [14]. A 2-prime cordial labeling is a product cordial labeling. Also Prajapathi et al have studied edge product cordial labeling of some cycle related graphs [10, 11]. Recently Ponraj et al. [4], introduced k-prime cordial labeling of graphs. In $[\mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}]$ Ponraj et al. have studied the 4-prime cordial labeling behavior of complete graph, book, flower, $m C_{n}$, wheel, gear, double cone, helm, closed helm, butterfly graph, and friendship graph and some more graphs. In this paper we have studied 4 -prime cordiality of union of two bipartite graphs, union of trees, durer graph, tietze graph, planar grid $P_{m} \square P_{n}$, subdivision of wheels and subdivision of helms and some more graphs. Let x be any real number. Then $\lfloor x\rfloor$ stands for the largest integer less than or equal to x and $\lceil x\rceil$ stands for smallest integer greater than or equal to x. Terms not defined here follow from Harary [3] and Gallian [2].

2. Main results

First investigation is about $G \cup G$, where G is bipartite.
Theorem 2.1. If G is bipartite then $G \cup G$ is 4 -prime cordial.
Proof. Let $V(G)=V_{1} \cup V_{2},\left|V_{1}\right|=m,\left|V_{2}\right|=n, m \leqslant n$. First consider the first copy G. Assign the label 2 to the $\left\lceil\frac{m+n}{2}\right\rceil$ vertices of the first copy and 4 to the $\left\lfloor\frac{m+n}{2}\right\rfloor$ remaining vertices of the first copy. We now move to the second copy G. In this copy, assign the label 1 to all the m vertices of the set V_{1}. Then assign the label 3 to the m vertices of the set V_{2}. Next assign the label 1 to the $\left\lceil\frac{n-m}{2}\right\rceil$ vertices of the set V_{2}. Finally assign the label 3 to the remaining $\left\lfloor\frac{n-m}{2}\right\rfloor$ vertices of the set V_{2}. Obviously this vertex labeling is a 4-prime cordial labeling of $G \cup G$.

Corollary 2.1. If T is a tree, then $T \cup T$ is 4 -prime cordial.
Proof. As T is bipartite, the proof follows from theorem 2.1.
Next is the Dürer graph. Let C_{n} be the cycle $u_{1} u_{2} \ldots u_{1}$ where $n \equiv 0(\bmod 6)$. Then $D G_{n}$ is the graph with vertex set $V\left(D G_{n}\right)=V\left(C_{n}\right) \cup\left\{v_{i}: 1 \leqslant i \leqslant n\right\}$, $E\left(D G_{n}\right)=E\left(C_{n}\right) \cup\left\{u_{i} v_{i}: 1 \leqslant i \leqslant n\right\} \cup\left\{u_{i} u_{i+2}: 1 \leqslant i \leqslant n-2\right\} \cup\left\{u_{n} u_{2}, u_{n-1} u_{1}\right\}$. $D G_{6}$ is called the Dürer graph.

Theorem 2.2. The graph $D G_{n}$ is 4-prime cordial.
Proof. Clearly $D G_{n}$ has $2 n$ vertices and $3 n$ edges. Assign the label 1 to the vertices $v_{1}, v_{3}, v_{5} \ldots v_{n-1}$. Then assign the label 3 to the vertices $v_{2}, v_{4}, v_{6} \ldots v_{n}$. We now move to the cycle vertices. Assign the label 2 to the vertices $u_{1}, u_{2}, u_{3} \ldots u_{\frac{n}{2}}$ and assign the label 4 to the vertices $u_{\frac{n}{2}+1}, u_{\frac{n}{2}+2}, \ldots u_{n}$. This vertex labeling ${ }^{2} f$ is a 4-prime cordial labeling follow from $v_{f}(1)=v_{f}(2)=v_{f}(3)=v_{f}(4)=\frac{n}{2}$ and $e_{f}(0)=e_{f}(1)=\frac{3 n}{2}$.

Figure 1

A 4-prime cordial of Dürer graph $D G_{6}$ is given in figure 1.
We now investigate the Tietze graph. Let C_{n} be the cycle $u_{1} u_{2} \ldots u_{1}$ where $n \equiv 0(\bmod 9)$. Then $T G_{n}$ is the graph with vertex set $V\left(T G_{n}\right)=V\left(C_{n}\right) \cup\left\{v_{3 i-2}\right.$: $\left.1 \leqslant i \leqslant \frac{n}{3}\right\}, E\left(T G_{n}\right)=E\left(C_{n}\right) \cup\left\{u_{3 i-2} v_{3 i-2}: 1 \leqslant i \leqslant \frac{n}{3}\right\} \cup\left\{u_{3 i-1} u_{3 i+3}: 1 \leqslant i \leqslant\right.$ $\left.\frac{n-3}{3}\right\} \cup\left\{u_{n-1} u_{3}\right\}$. The graph $T G_{9}$ is called the Tietze graph.

Theorem 2.3. $T G_{n}$ is 4-prime cordial.
Proof. The order and size of $T G_{n}$ are $\frac{4 n}{3}$ and $2 n$ respectively. Assign the label 3 to the vertices $v_{1}, v_{4}, v_{7}, \ldots, v_{n-2}$. Next we move to the cycle vertices. Assign the label 1 to the vertices $u_{1}, u_{4}, u_{7}, \ldots, u_{n-2}$. For the remaining $\frac{2 n}{3}$ cycle vertices, assign the label 2 to any of $\frac{n}{3}$ vertices and 4 to another $\frac{n}{3}$ vertices. This labeling pattern f is a 4-prime cordial labeling since $v_{f}(1)=v_{f}(2)=v_{f}(3)=v_{f}(4)=\frac{n}{3}$ and $e_{f}(0)=e_{f}(1)=n$.

A 4-prime cordial labeling of the Tietze graph $T G_{9}$ is given in figure 2.

Figure 2

Theorem 2.4. A planar grid $P_{m} \square P_{n}$ is 4-prime cordial.

Proof. Let (i, j) denotes the vertex in the $i^{t h}$ row and $j^{t h}$ column. Clearly $P_{m} \square P_{n}$ has $m n$ vertices $2 m n-(m+n)$ edges.
Case 1. $m \equiv 0(\bmod 4)$.
Let $m=4 t, t \geqslant 1$.
Subcase 1a. n is even. Consider the first row vertices. Assign the labels 3 to the first $\frac{n}{2}+1$ vertices of the first row from left to right. Next assign the labels 1 and 3 alternatively to the vertices $\left(1, \frac{n}{2}+2\right),\left(1, \frac{n}{2}+3\right), \ldots,(1, n)$. We now assign the label to the second row depends on the labels of the vertex $(1, n)$. If the vertex $(1, n)$ received the label 1 then assign the labels 3 and 1 alternatively to the vertices of the second row from right to left until we reach the vertex $\left(2, \frac{n}{2}+2\right)$; otherwise assign 1 and 3 alternatively until we reach the vertex $\left(2, \frac{n}{2}+2\right)$. Then assign the label 1 to the vertices $(2,1),(2,2), \ldots,\left(2, \frac{n}{2}+1\right)$. Next we move to the third row. If the $\left(2, \frac{n}{2}+2\right)$ vertex received the label 1 , then assign the labels 3 and 1 alternatively to the vertices of the third row completely from left to right; otherwise assign 1 and 3 alternatively to the vertices of the third row. Next we move to the fourth row. If the $(3, n)$ received the label 1 then assign 3 and 1 alternatively to the vertices of the forth row completely from right to left otherwise assign 1 and 3 alternatively from right to left. That is if the $i^{t h}$ row is labeled from right to left, then $(i+1)^{t h}$ is labeled from left to right. Also if the $i^{t h}(i \geqslant 3)$ row is labeled from right to left, then the $(i+1)^{t h}$ row is labeled 1 and 3 alternatively or 3 and 1 alternatively depends on the label of (i, n) is 3 or 1 . The same procedure is continued until we labeled $(2 r)^{t h}$ row vertices. Now our attention is turn to the $(2 r+1)^{t h}$ row. Assign the labels 2 to the vertices of the $(2 r+1)^{t h},(2 r+2)^{t h}, \ldots,(3 r)^{t h}$ row. Finally assign the labels 4 to the vertices of the $(3 r+1)^{t h},(3 r+2)^{t h}, \ldots,(4 r)^{t h}$ rows.
Subcase 1b. n is odd.
In this case assign the label 3 to the first $\frac{n+1}{2}$ vertices of the first row from left to right. Next assign the labels alternatively 1 and 3 to the vertices $\left(1, \frac{n+1}{2}+\right.$ $1),\left(1, \frac{n+1}{2}+2\right), \ldots,(1, n)$. The second and subsequent rows are labeled as in case 1 pattern.
Case 2. $m \equiv 1(\bmod 4)$.
As in case 1, assign the label to the vertices of the first $(m-1)^{t h}$ rows. In the last row we assign the labels is as follows:
Subcase 2a. $n \equiv 0(\bmod 4)$.
Let $n=4 r$. Assign the label 2 to the first r column vertices. That is in the $m^{\text {th }}$ row, first r column vertices received the label 2 . Now assign the label 4 to the vertices of the $(r+1)^{t h},(r+2)^{t h}, \ldots,(r)^{t h}$ column. Next assign the labels 1 and 3 alternatively to the vertices of $(2 r+1)^{t h},(2 r+2)^{t h}, \ldots,(4 r)^{t h}$ column vertices.

Subcase 2b. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1$. In this case assign the label 2 to the first $r+1$ column vertices of the $m^{t h}$ row. Then assign 4 to the next r column vertices. Finally assign the label 1 and 3 alternatively to the $(2 r+1)^{t h}, \ldots,(4 r)^{t h}$ column vertices.
Subcase 2c. $n \equiv 2(\bmod 4)$.

Let $n=4 r+2$. Assign the label 2 to the first $r+1$ column vertices of the $m^{t h}$ row and 4 to the $(r+2)^{t h}, \ldots,(2 r+2)^{t h}$ column vertices. Finally assign the label 1 and 3 alternatively to the remaining column vertices.
Subcase 2d. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3$. As in subcase 2c, assign the label to the vertices. the label 2 to the first $r+1$ column vertices of the $m^{t h}$ row and 4 to the $(r+2)^{t h}, \ldots,(2 r+2)^{t h}$ column vertices. Finally assign the label 1 and 3 alternatively to the remaining column vertices.
Case 3. $m \equiv 2(\bmod 4)$.
As in case 2, assign the label to the first $(m-1)^{\text {th }}$ row vertices. We now consider the $m^{\text {th }}$ row. Assign the label to this $m^{\text {th }}$ row vertices as in subcase 2a to 2d of case 2 .
Case 4. $m \equiv 3(\bmod 4)$.
Similar to case 3.
Theorem 2.5. Let G be any 4-prime cordial graph. Then $G \odot K_{1}$ is also a 4-prime cordial.

Proof. Let $V\left(G \odot K_{1}\right)=V(G) \cup\left\{v_{i}: 1 \leqslant i \leqslant p\right\}$ and $E\left(G \odot K_{1}\right)=E(G) \cup$ $\left\{u_{i} v_{i}: 1 \leqslant i \leqslant p\right\}$. Let f be a 4-prime cordial labeling of G.
Case 1. $p \equiv 0(\bmod 4)$.
Let $p=4 t$. Assign the label 2 to the vertices v_{i} such a way that their support u_{i} rceived the label 4. Similarly assign the label 4 to the vertices u_{i} whose support also received the label 2. Next assign the label 3 to the vertices such that the vertices u_{i} received the label 1 . Finally assign the label 1 to the non labeled vertices. Clearly this vertex labeling g is a 4-prime cordial labeling since $e_{g}(0)=e_{f}(0)+\frac{p}{2}$ and $e_{g}(1)=e_{f}(1)+\frac{p}{2}$.
Case 2. $p \equiv 1(\bmod 4)$.
Let $p=4 t+1$. The following types arises.
TYPE A: $v_{f}(1)=t+1, v_{f}(2)=v_{f}(3)=v_{f}(4)=t$
TYPE B: $v_{f}(2)=t+1, v_{f}(1)=v_{f}(3)=v_{f}(4)=t$
TYPE C: $v_{f}(3)=t+1, v_{f}(1)=v_{f}(2)=v_{f}(4)=t$
TYPE D: $v_{f}(4)=t+1, v_{f}(1)=v_{f}(2)=v_{f}(3)=t$
TYPE A: $v_{f}(1)=t+1, v_{f}(2)=v_{f}(3)=v_{f}(4)=t$.
Subcase A(i): q is even.
In this case the vertex labeling g in case 1 is automatically 4 -prime cordial labeling of $G \odot K_{1}$. Since $e_{g}(1)=e_{g}(0)+1$ and $v_{g}(1)=v_{g}(3)=2 t+1, v_{g}(2)=$ $v_{g}(4)=2 t$.
Subcase A(ii): q is odd.
When $e_{f}(0)=e_{f}(1)+1$, then clearly the vertex labeling g is 4 -prime cordial labeling of $G \odot K_{1}$. In the case of $e_{f}(1)=e_{f}(0)+1$, interchange the labels of any two vertices v_{r} and v_{t} where label of $v_{r}=1$ and label of $v_{t}=2$. That is after interchange the vertex v_{r} received the label 2 whereas the vertex v_{t} received the label 1.

TYPE B: $v_{f}(2)=t+1, v_{f}(1)=v_{f}(3)=v_{f}(4)=t$
Clearly g is a 4 -prime cordial labeling of $G \odot K_{1}$ when $e_{f}(1)=e_{f}(0)+1$. Otherwise interchange the labels of any two vertices v_{r} and v_{t} such that label of $v_{r}=3$ and label of $v_{t}=4$.
TYPE C: $v_{f}(3)=t+1, v_{f}(1)=v_{f}(2)=v_{f}(4)=t$
In the case of $e_{f}(0)=e_{f}(1)+1$, clearly g is a 4-prime cordial labeling of $G \odot K_{1}$. For the case $e_{f}(1)=e_{f}(0)+1$, interchange the labels of v_{r} and v_{t} such that label of $v_{r}=1$ and label of $v_{t}=3$.
TYPE D: $v_{f}(4)=t+1, v_{f}(1)=v_{f}(2)=v_{f}(3)=t$
As in TYPE B we get a 4-prime cordial labeling of $G \odot K_{1}$.
Case 3. $p \equiv 2(\bmod 4)$.
Let $p=4 t+2$. In this case, the following six types are arises:
TYPE A: $v_{f}(1)=v_{f}(2)=t+1, v_{f}(3)=v_{f}(4)=t$
TYPE B: $v_{f}(1)=v_{f}(3)=t+1, v_{f}(2)=v_{f}(4)=t$
TYPE C: $v_{f}(1)=v_{f}(4)=t+1, v_{f}(2)=v_{f}(3)=t$
TYPE D: $v_{f}(2)=v_{f}(3)=t+1, v_{f}(1)=v_{f}(4)=t$
TYPE E: $v_{f}(2)=v_{f}(4)=t+1, v_{f}(1)=v_{f}(3)=t$
TYPE F: $v_{f}(3)=v_{f}(4)=t+1, v_{f}(1)=v_{f}(2)=t$
TYPE A: $v_{f}(1)=v_{f}(2)=t+1, v_{f}(3)=v_{f}(4)=t$
In this case $v_{g}(1)=v_{g}(2)=v_{g}(3)=v_{g}(4)=2 t+1$ and $e_{f}(0)=e_{f}(1)=$ $q+2 t+1$. Hence g is a 4-prime cordial labeling of $G \odot K_{1}$.
TYPE B: $v_{f}(1)=v_{f}(3)=t+1, v_{f}(2)=v_{f}(4)=t$
In this case interchange the labels of any vertices v_{i} and v_{j} such that label of v_{i} is 1 and label of v_{j} is 3.
TYPE C: $v_{f}(1)=v_{f}(4)=t+1, v_{f}(2)=v_{f}(3)=t$
Clearly the vertex labeling in case 1 is also 4 -prime cordial labeling of this type.

TYPE D: $v_{f}(2)=v_{f}(3)=t+1, v_{f}(1)=v_{f}(4)=t$.
In this type also the vertex labeling g in case 1, a 4-prime cordial labeling of $G \odot K_{1}$.
TYPE E: $v_{f}(2)=v_{f}(4)=t+1, v_{f}(1)=v_{f}(3)=t$
Interchanging the labels of two vertices u_{i} and v_{j} such that label of $v_{i}=1$ and label of $v_{j}=2$.
TYPE F: $v_{f}(3)=v_{f}(4)=t+1, v_{f}(1)=v_{f}(2)=t$
Obviously the labeling f as in case 1 is a 4 -prime cordial labeling.
Case 4. $p \equiv 3(\bmod 4)$.
Let $p=4 t+3$. The following types are occurs.
TYPE A: $v_{f}(1)=v_{f}(2)=v_{f}(3)=t+1, v_{f}(4)=t$
TYPE B: $v_{f}(1)=v_{f}(2)=v_{f}(4)=t+1, v_{f}(3)=t$
TYPE C: $v_{f}(1)=v_{f}(3)=v_{f}(4)=t+1, v_{f}(2)=t$
TYPE D: $v_{f}(2)=v_{f}(3)=v_{f}(4)=t+1, v_{f}(1)=t$

TYPE A and TYPE C:

Interchange the labels of two vertices v_{r} and v_{t} such that label of $v_{r}=1$ and label of $v_{t}=3$.

TYPE B and TYPE D:

In this type interchange the label of v_{r} and v_{t} in such a way that label of $v_{r}=2$ and label $v_{t}=3$.

Now we investigate the subdivision of wheel and helm.
Theorem 2.6. $S\left(W_{n}\right)$ is 4-prime cordial.
Proof. Let C_{n} be the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$ and $W_{n}=C_{n}+K_{1}$ where $V\left(K_{1}\right)=$ $\{u\}$. Let $v_{i}, w_{i}(1 \leqslant i \leqslant n)$ be the vertices which subdivide the rim edges and spokes edges respectively. Note that $S\left(W_{n}\right)$ has $3 n+1$ vertices and $4 n$ edges.
Case 1. $n \equiv 0(\bmod 4)$
Let $n=4 t, t \geqslant 1$. Assign the label 2 to the central vertex. Next assign the label 2 to the vertices $w_{1}, w_{2}, w_{3}, \ldots, w_{3 t}$ and 4 to t vertices $w_{3 t+1}, w_{3 t+2}, \ldots, w_{4 t}$. Next we move to the rim vertices. Assign the label 4 to the vertices $u_{1}, u_{2}, \ldots, u_{t}$, $v_{1}, v_{2}, \ldots, v_{t}$. In the case of even values of t, assign the label 3 to the vertices u_{t+1}, $v_{t+1}, u_{t+2}, v_{t+2}, \ldots, u_{\frac{3 t+2}{2}}, v_{\frac{3 t+2}{2}}$. For the odd t, assign the label 3 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{\frac{3 t+3}{2}}$ and $v_{t+1}, v_{t+2}, \ldots, v_{\frac{3 t+1}{2}}$. We now assign the label 3 to the vertices $v_{\frac{3 t+4}{2}}, v_{\frac{3 t+6}{2}}, \ldots, v_{\frac{7 t-2}{2}}$ or $u_{\frac{3 t+5}{2}}, u_{\frac{3 t+7}{2}}, \ldots, u_{\frac{7 t-1}{2}}$ according as t is even or odd. Finally assign the label 1 to the non labeled vertices.
Case 2. $n \equiv 1(\bmod 4)$
Let $n=4 t+1$. Assign the label to the vertices $u, u_{i}, v_{i}, w_{i}(1 \leqslant i \leqslant n-1)$ as in case 1 . Next assign the labels $4,1,3$ respectively to the vertices w_{n}, u_{n}, v_{n}. Finally interchange the labels of the vertices $u_{\frac{7 t-2}{2}}$ and u_{n} or $u_{\frac{7 t-1}{2}}$ and u_{n} according as t is even or odd.
Case 3. $n \equiv 2(\bmod 4)$
As in case 2 assign the label to the vertices $u, u_{i}, v_{i}, w_{i}(1 \leqslant i \leqslant n-1)$. Next assign the labels $2,3,1$ respectively to the vertices w_{n}, u_{n}, v_{n}.
Case 4. $n \equiv 3(\bmod 4)$
Assign the label to the vertices $u, u_{i}, v_{i}, w_{i}(1 \leqslant i \leqslant n-1)$ as in case 3 . Finally assign the labels $2,1,4$ respectively to the vertices w_{n}, u_{n}, v_{n}. The table 1 is establish that this vertex labeling f is a 4 -prime cordial labeling.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	$e_{f}(0)$	$e_{f}(1)$
$n=4 t$	$3 t$	$3 t+1$	$3 t$	$3 t$	$8 t$	$8 t$
$n=4 t+1$	$3 t+1$	$3 t+1$	$3 t+1$	$3 t+1$	$8 t+2$	$8 t+2$
$n=4 t+2$	$3 t+2$	$3 t+2$	$3 t+2$	$3 t+1$	$8 t+4$	$8 t+4$
$n=4 t+3$	$3 t+3$	$3 t+3$	$3 t+2$	$3 t+2$	$4 t+6$	$4 t+6$

Table 1

Theorem 2.7. The subdivision of helm, $S\left(H_{n}\right)$, is 4-prime cordial.
Proof. Let $V\left(S\left(H_{n}\right)\right)=V\left(S\left(W_{n}\right)\right) \cup\left\{x_{i}, y_{i}: 1 \leqslant i \leqslant n\right\}$ and $E\left(S\left(H_{n}\right)\right)=$ $E\left(S\left(W_{n}\right)\right) \cup\left\{x_{i} y_{i}, u_{i} x_{i}: 1 \leqslant i \leqslant n\right\}$. Clearly $S\left(H_{n}\right)$ has $5 n+1$ vertices and $6 n$ edges. We now give the 4-prime cordial labeling to the vertices of $S\left(H_{n}\right)$ as follows: Assign the labels to the vertices of $S\left(W_{n}\right)$ as in Theorem 2.6.
Case 1. $n \equiv 0(\bmod 4)$.
Assign the labels 2 to the pendent vertices $y_{1}, y_{2}, \ldots, y_{t}$. Next assign the label 3 to any of the t non labeled x_{i} vertices such that the label of whose neighbor's is 3 . Now assign the label 3 to the the corresponding vertices y_{i}. That is the t pairs of vertices $\left(x_{i}, y_{i}\right)$ received the label 3 . Next assign the label 4 to the any of $2 t$ non labeled vertices and 1 to the remaining $2 t$ vertices.
Case 2. $n \equiv 1(\bmod 4)$.
Assign the label $u, u_{i}, v_{i}, w_{i}(1 \leqslant i \leqslant n)$ as in case 2 of Theorem 2.6. Next assign the label to the vertices $x_{i}, y_{i}(1 \leqslant i \leqslant n-1)$ as in case 1 . Finally assign the labels 3,1 respectively to the vertices x_{n} and y_{n}.
Case 3. $n \equiv 2(\bmod 4)$.
As in case 2 assign the labels to the vertices $u, u_{i}, v_{i}, w_{i}, x_{i}, y_{i}(1 \leqslant i \leqslant n-1)$ and u_{n}, v_{n}, w_{n} as in case 2 of Theorem 2.6. Now assign the labels 2,4 to the vertices x_{n} and y_{n} respectively.
Case 4. $n \equiv 3(\bmod 4)$.
Assign the labels to $u, u_{i}, v_{i}, w_{i}, x_{i}, y_{i}(1 \leqslant i \leqslant n-1)$ as in case 3 and u_{n}, v_{n}, w_{n} as in case 3 of Theorem 2.6. Next assign the label 4,3 to the vertices x_{n} and y_{n} respectively. Finally interchange the labels of u_{n} and v_{n}.

References

[1] I.Cahit.. Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars combin., 23 (1987) 201-207.
[2] J.A.Gallian. A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2015) \#Ds6.
[3] F.Harary. Graph theory. Addision wesley, New Delhi 1969.
[4] R.Ponraj, Rajpal Singh, R.Kala and S. Sathish Narayanan. k-prime cordial graphs, J. Appl. Math. \mathcal{G} Informatics, 34 (3-4) (2016) 227-237.
[5] R.Ponraj, Rajpal Singh and S. Sathish Narayanan. 4-prime cordiality of some classes of graphs, Journal of algorithms and computation, 48(1)(2016), 69-79.
[6] R.Ponraj, Rajpal Singh and S. Sathish Narayanan. 4-prime cordiality of some cycle related graphs, Applications and Applied Mathematics, 12(1)(2016), 230-240.
[7] R.Ponraj and Rajpal Singh. 4-Prime cordial graphs obtained from 4-prime cordial graphs, Bull. Int. Math. Virtual Inst., 8(1)(2018), 1-9.
[8] R.Ponraj, Rajpal Singh and R.Kala. Some more 4-Prime cordial graphs, International Journal of Mathematical Combinatorics, 2 (2017) 105-115.
[9] R.Ponraj, Rajpal Singh and R.Kala. Some new families of 4-Prime cordial graphs, Submitted to the Journal.
[10] U.M.Prajapati and N.B.Patel. Some Edge Product Cordial Graphs in the Context of Duplication of Some Graph Elements, Open Journal of Discrete Mathematics, 6(2016), 248-258.
[11] U.M.Prajapati and N.B.Patel. Edge Product Cordial Labeling of Some Cycle Related Graphs, Open Journal of Discrete Mathematics, 6(2016), 268-278.
[12] M.A.Seoud and M.A.Salim. Two upper bounds of prime cordial graphs, JCMCC, 75(2010) 95-103.
[13] M.Sundaram, R.Ponraj and S.Somasundaram. Prime cordial labeling of graphs, J. Indian Acad. Math., 27(2005) 373-390.
[14] M. Sundaram, R. Ponraj and S. Somasundaram. Product cordial labeling of graphs, Bull. Pure and Appl. Sci. (Math. ES Stat.), 23E (2004) 155-163.

Received by editors 27.12.2016; Accepted 12.07.2017; Available online 17.07.2017.
R.Ponraj. Department of Mathematics, Sri Paramakalyani College, Alwarkurichi627412, India.

E-mail address: ponrajmaths@gmail.com
Rajpal Singh. Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India.

E-mail address: rajpalsingh@gmail.com
R.Kala. Department of Mathematics, Manonmaniam Sundaranar University, TirunelVEli - 627012, India.

E-mail address: karthipyi91@yahoo.co.in

[^0]: 1991 Mathematics Subject Classification. 05C78.
 Key words and phrases. Cycle, wheel, join, sunflower graph, lotus inside a circle.

