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F-INDEX AND COINDEX OF SOME DERIVED GRAPHS

Nilanjan De

Abstract. In this study, the explicit expressions for F-index and coindex
of derived graphs such as a line graph, subdivision graph, vertex-semitotal

graph, edge-semitotal graph, total graph and paraline graph (line graph of the
subdivision graph) are obtained.

1. Introduction

Throughout the paper, we consider finite, connected and undirected graphs
without any self-loops or multiple edges. Let G be such a graph with vertex set
V (G) and edge set E(G). Also let, n and m be the number of vertices and edges of
G and the edge connecting the vertices u and v is denoted by uv. Let dG(v) denote
the degree of the vertex v in G which is the number of edges incident to v, that
is, the number of first neighbors of v. Topological indices are numeric quantity de-
rived from a molecular graph which correlate the physico-chemical properties of the
molecular graph and have been found to be useful in isomer discrimination, quan-
titative structure-activity relationship (QSAR) and structure-property relationship
(QSPR) and are necessarily invariant under automorphism of graphs.

The first and the second classical Zagreb index of G denoted by M1(G) and
M2(G) respectively are one of the oldest topological indices introduced in [1] by
Gutman and Trinajstić and defined as

M1(G) =
∑

v∈V (G)

dG(u)
2
=

∑
uv∈E(G)

[dG(u) + dG(v)]

and
M2(G) =

∑
uv∈V (G)

dG(u)dG(v).
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These indices are most important topological indices in study of structure prop-
erty correlation of molecules and have received attention in mathematical as well as
chemical literature and have been extensively studied both with respect to mathe-
matical and chemical point of view (see [5, 4, 6, 2, 3]).

Another topological index, defined as sum of cubes of degrees of all the vertices
was also introduced in the same paper, where the first and second Zagreb indices
were introduced [1]. Furtula and Gutman in [7] recently investigated this index and
named this index as “forgotten topological index” or “F-index” and showed that
the predictive ability of this index is almost similar to that of first Zagreb index
and for the entropy and acetic factor, both of them yield correlation coefficients
greater than 0.95. The F-index of a graph G is defined as

F (G) =
∑

v∈V (G)

dG(u)
3
=

∑
uv∈E(G)

[
dG(u)

2
+ dG(v)

2
]
.

Recently, the concept of F-index attracting much attention of researchers. The
present author studied this index for different graph operations [8] and also studied
F-index of several classes of nanostar dendrimers and total transformation graphs
in [10] and [11]. In [12], Abdoa et al. investigate the trees extremal with respect
to the F-index. Analogous to Zagreb coindices, the present author introduced the
F-coindex in [9]. Thus, the F-coindex of a graph G is defined as

F̄ (G) =
∑

uv∈E(Ḡ)

[
dG(u)

2
+ dG(v)

2
]
.

Different topological indices of some derived graphs such as a line graph, sub-
division graph, vertex-semitotal graph, edge-semitotal graph, total graph and par-
aline graph have already been studied by many researcher. Gutman et al. in [13]
found first Zagreb index of some derived graphs. Also, Basavanagoud et al. in
[15] and [14] calculated multiplicative Zagreb indices and second Zagreb index of
some derived graphs. In this paper, we continue the previous work to determine
the F-index of these derived graphs. Throughout this paper, as usual, Cn and Sn

denote the cycle and star graphs on n vertices.

2. Main Results

In this section, first we define different subdivision-related graphs and state
some relevant results.

Line graph L = L(G) is the graph with vertex set V (L) = E(G) and whose
vertices correspond to the edges of G with two vertices being adjacent if and only
if the corresponding edges in G have a vertex in common two.

Subdivision graph S = S(G) is the graph obtained from G by replacing each of
its edges by a path of length two, or equivalently, by inserting an additional vertex
into each edge of G.

Vertex-semitotal graph T1 = T1(G) with vertex set V (G) ∪E(G) and edge set
E(S) ∪ E(G) is the graph obtained from G by adding a new vertex corresponding



F-INDEX AND COINDEX OF SOME DERIVED GRAPHS 83

to each edge of G and by joining each new vertex to the end vertices of the edge
corresponding to it.

Edge-semitotal graph T2 = T2(G) with vertex set V (G) ∪ E(G) and edge set
E(S) ∪ E(L) is the graph obtained from G by inserting a new vertex into each
edge of G and by joining with edges those pairs of these new vertices which lie on
adjacent edges of G.

The Total graph of a graph G is denoted by T = T (G) with vertex set V (G)∪
E(G) and any two vertices of T (G) are adjacent if and only if they are either
incident or adjacent in G Total graph.

The Paraline graph PL = PL(G) is the line graph of the subdivision graph
with 2m vertices. For details definitions of different derived graphs we refer our
reader to [13].

2.1. F-index of derived graphs. In order to calculate the first F-index of
the above specified derived graphs, we need following graph invariants. One of the
redefined versions of Zagreb index is given by

ReZG3(G) =
∑

uv∈E(G)

dG(u)dG(v)[dG(u) + dG(v)].

For different recent study of these index see [16, 11]. In this paper we use another
index to express the F-index of different derived graphs of a graph G and is denoted
by ξ4(G), which is defined as∑

v∈V (G)

dG(v)
4
=

∑
uv∈E(G)

[dG(u)
3
+ dG(v)

3
] = ξ4(G).

Now in the following we compute the F-index of the above specified derived graphs.

Proposition 2.1. Let G be be graph of order n and size m, then

F (L) = ξ4(G) + 3ReZG3(G)− 6F (G)− 12M2(G) + 12M1(G)− 8m.

Proof. For a Line graph, any two vertices are adjacent if the corresponding
edges of G are incident with a common vertex. Since, the edge uv of the graph G
is incident to [dG(u) + dG(v)− 2] other edges of G, we have

F (L) =
∑

uv∈E(G)

[dG(u) + dG(v)− 2]
3

=
∑

uv∈E(G)

[dG(u)
3
+ dG(v)

3
] + 3

∑
uv∈E(G)

dG(u)dG(v)[dG(u) + dG(v)]

−6
∑

uv∈E(G)

[dG(u)
2
+ dG(v)

2
]− 12

∑
uv∈E(G)

dG(u)dG(v)

+12
∑

uv∈E(G)

[dG(u) + dG(v)]− 8m

= ξ4(G) + 3ReZG3(G)− 6F (G)− 12M2(G) + 12M1(G)− 8m.

Hence the desired result follows. �
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Proposition 2.2. Let G be be graph of order n and size m, then

F (S) = F (G) + 8m

Proof. Since for u ∈ V (S) ∩ V (G), dS(u) = dG(u) and for e = uv ∈ V (S) ∩
E(G), dS(e) = 2, we have

F (S) =
∑

u∈V (G)

dG(u)
3
+

∑
uv∈E(G)

23 = F (G) + 8m. �

Proposition 2.3. Let G be be graph of order n and size m, then F (T1) =
8F (G) + 8m.

Proof. Since for u ∈ V (T1) ∩ V (G), dT1(u) = 2dG(u) and for e = uv ∈
V (T1) ∩ E(G), dT1(e) = 2, we have

F (T1) =
∑

u∈V (G)

[2dG(u)]
3
+

∑
uv∈E(G)

23 = 8F (G) + 8m. �

Proposition 2.4. Let G be be graph of order n and size m, then

F (T2) = F (G) + ξ4(G) + 3ReZG3(G).

Proof. Since for u ∈ V (T2)∩V (G), dT1(u) = dG(u) and for e = uv ∈ V (T2)∩
E(G), dT1(e) = dG(u) + dG(v), we have

F (T2) =
∑

u∈V (G)

dG(u)
3
+

∑
uv∈E(G)

[dG(u) + dG(v)]
3

= F (G) +
∑

uv∈E(G)

[dG(u)
3
+ dG(v)

3
] + 3

∑
uv∈E(G)

[dG(u) + dG(v)]dG(u)dG(v)

= F (G) + ξ4(G) + 3ReZG3(G).

Hence the result. �

Proposition 2.5. Let G be be graph of order n and size m, then

F (T ) = 8F (G) + ξ4(G) + 3ReZG3(G).

Proof. Since for u ∈ V (T ) ∩ V (G), dT (u) = 2dG(u) and for e = uv ∈ V (T ) ∩
E(G), dT1(e) = dG(u) + dG(v), we have

F (T ) =
∑

u∈V (G)

[2dG(u)]
3
+

∑
uv∈E(G)

[dG(u) + dG(v)]
3

= 8F (G) +
∑

uv∈E(G)

[dG(u)
3
+ dG(v)

3
] + 3

∑
uv∈E(G)

[dG(u) + dG(v)]dG(u)dG(v)

= 8F (G) + ξ4(G) + 3ReZG3(G).

Hence the desired result follows. �

Proposition 2.6. Let G be graph of order n and size m, then F (PL) = ξ4(G).



F-INDEX AND COINDEX OF SOME DERIVED GRAPHS 85

Proof. Since, for the paraline graph PL, dG(u) of its vertices have the same
degree as the vertex u of the graph G and paraline graph PL has 2m vertices, we
have

F (PL) =
∑

x∈V (G)

dPL(x)
3
=

∑
u∈V (G)

dG(u)[dG(u)]
3
= ξ4(G). �

Example 2.1. Consider the cycle Cn with n vertices where every vertex is of
degree 2, then
(i) F (L(Cn)) = 8n, (ii) F (S(Cn)) = 16n, (iii) F (T1(Cn)) = 72n, (iv) F (T2(Cn)) =
72n, (v) F (T (Cn)) = 128n, (vi) F (PL(Cn)) = 16n.

Example 2.2. Consider the cycle Sn with n vertices, then
(i) F (L(Sn)) = 8n,
(ii) F (S(Sn)) = (n− 1)(n2 − 2n+ 3),
(iii) F (T1(Sn)) = 72n,
(iv) F (T2(Sn)) = 72n,
(v) F (T (Sn)) = 128n,
(vi) F (PL(Sn)) = 16n.

2.2. F-coindex of derived graphs. The F-index is the sum over the adja-
cent edges and F-coindex is the sum of the contribution of non adjacent pair of
vertices. The concept of F-coindex was introduced by De et al. [9] and have shown
that the F-coindex can predict the octanol water partition coefficients of molecu-
lar structures very efficiently. In that paper the following proposition was proved,
which is necessary in the following study.

Proposition 2.7. Let G be a simple graph with n vertices and m edges, then

F̄ (G) = (n− 1)M1(G)− F (G).

The following proposition was proved in [13] and also required here.

Proposition 2.8. Let G be a graph of order n and size m, then
M1(L) = F (G)− 4M1(G) + 2M2(G) + 4m
M1(S) = M1(G) + 4m
M1(T1) = F (G) +M1(G) + 2M2(G)
M1(T2) = 4M1(G) + 4m
M1(T ) = F (G) + 4M1(G) + 2M2(G)
M1(PL) = F (G).

Now we calculate the F-coindex of the different derived graphs.

Proposition 2.9. Let G be a graph of order n and size m, then

F̄ (L) =

(m+5)F (G)−4(m+2)M1(G)+2(m+5)M2(G)−ξ4(G)−3ReZG3(G)+4m(m+1).
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Proof. Since, the line graph L has m vertices, so using propositions 2.7, 2.8
and 2.1, we get

F̄ (L) = (m− 1)M1(L)− F (L)

= (m− 1)[F (G)− 4M1(G) + 2M2(G) + 4m]− [ξ4(G) + 3ReZG3(G)

−6F (G)− 12M2(G) + 12M1(G)− 8m]

= (m− 1)F (G) + 6F (G)− 4(m− 1)M1(G)− 12M1(G) + 2(m− 1)M2(G)

+12M2(G) + 4m(m+ 1)− ξ4(G)− 3ReZG3(G)

from where the desired result follows. �

Proposition 2.10. Let G be a graph of order n and size m, then

F̄ (S) = (m+ n− 1)M1(G)− F (G) + 4m(m+ n− 3).

Proof. Since, the subdivision graph S has (m+n) vertices, so using proposi-
tions 2.7, 2.8 and 2.2, we get

F̄ (S) = (m+ n− 1)M1(S)− F (S)

= (m+ n− 1)(M1(G) + 4m)− F (G)− 8m

= (m+ n− 1)M1(G)− F (G) + 4m(m+ n− 1)− 8m.

�

Proposition 2.11. Let G be a graph of order n and size m, then

F̄ (T1) = 4(m+ n− 1)M1(G)− 8F (G) + 4m(m+ n− 3).

Proof. Since, the total graph T1 has (m + n) vertices, so using propositions
2.7, 2.8 and 2.3, we get

F̄ (T1) = (m+ n− 1)M1(T1)− F (T1)

= (m+ n− 1)(4M1(G) + 4m)− 8F (G)− 8m

= 4(m+ n− 1)M1(G)− 8F (G) + 4m(m+ n− 3)

Hence we get the desired result. �

Proposition 2.12. Let G be a graph of order n and size m, then

F̄ (T2) =

(m+n−2)F (G)+(m+n−1)M1(G)+2(m+n−1)M2(G)− ξ4(G)−3ReZG3(G).

Proof. Since, the total graph T2 has (m + n) vertices, so using propositions
2.7, 2.8 and 2.4, we get

F̄ (T2) = (m+ n− 1)M1(T2)− F (T2)

= (m+ n− 1)(F (G) +M1(G) + 2M2(G))− F (G)− ξ4(G)− 3ReZG3(G)

= (m+ n− 2)F (G) + (m+ n− 1)M1(G) + 2(m+ n− 1)M2(G)− ξ4(G)

−3ReZG3(G).

Hence the required result follows. �
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Proposition 2.13. Let G be a graph of order n and size m, then

F̄ (T ) =

(m+n−9)F (G)+4(m+n−1)M1(G)+2(m+n−1)M2(G)−ξ4(G)−3ReZG3(G).

Proof. Since, the total graph T has (m + n) vertices, so using propositions
2.7, 2.8 and 2.5, we get

F̄ (T ) = (m+ n− 1)M1(T )− F (T )

= (m+ n− 1)(F (G) + 4M1(G) + 2M2(G))− 8F (G)− ξ4(G)− 3ReZG3(G)

= (m+ n− 9)F (G) + 4(m+ n− 1)M1(G) + 2(m+ n− 1)M2(G)− ξ4(G)

−3ReZG3(G).

Hence the result follows. �

Proposition 2.14. Let G be a graph of order n and size m, then

F̄ (PL) = (2m− 1)F (G)− ξ4(G).

Proof. Since, the paraline graph PL has 2m vertices, so using propositions
2.7, 2.8 and 2.6, we get

F̄ (PL) = (2m− 1)M1(PL)− F (PL) = (2m− 1)F (G)− ξ4(G).

�

Example 2.3. Consider the cycle Cn with n vertices, then
(i) F̄ (L(Cn)) = 4n(n− 3),
(ii) F̄ (S(Cn)) = 8n(2n− 3),
(iii) F̄ (T1(Cn)) = 4n(10n− 23),
(iv) F̄ (T2(Cn)) = 4n(10n− 23),
(v) F̄ (T (Cn)) = 32n(2n− 5),
(vi) F̄ (PL(Cn)) = 8n(2n− 3).

Example 2.4. Consider the star graph Sn with n vertices, then
(i) F̄ (L(Sn)) = 0,
(ii) F̄ (S(Sn)) = (n− 1)(n2 + 8n− 18),
(iii) F̄ (T1(Sn)) = 16(n− 1)(n− 2),
(iv) F̄ (T2(Sn)) = (n− 1)(n3 − n2 − 12n− 2),
(v) F̄ (T (Sn)) = (n− 1)(6n3 − n4 − 11n2 + 14n− 16),
(vi) F̄ (PL(Sn)) = (n− 1)(n3 − 4n2 + 7n− 6).

3. Conclusion

In this paper, we have studied the F-index and coindex of different derived
graphs. For further study, F-index and coindex of some other derived and composite
graphs can be computed.
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