BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 1-9 DOI: 10.7251/BIMVI1801001P

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

4-PRIME CORDIAL GRAPHS OBTAINED FROM 4-PRIME CORDIAL GRAPHS

R. Ponraj and Rajpal Singh

ABSTRACT. Let G be a (p,q) graph. Let $f: V(G) \to \{1, 2, \ldots, k\}$ be a function. For each edge uv, assign the label gcd(f(u), f(v)). f is called k-prime cordial labeling of G if $|v_f(i) - v_f(j)| \leq 1$, $i, j \in \{1, 2, \ldots, k\}$ and $|e_f(0) - e_f(1)| \leq 1$ where $v_f(x)$ denotes the number of vertices labeled with $x, e_f(1)$ and $e_f(0)$ respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with admits a k-prime cordial labeling is called a k-prime cordial graph. In this paper we generate some new 4-prime cordial graphs derived from 4-prime cordial graphs.

1. Introduction

Graphs considered here are finite, simple and undirected only. Let G be a (p,q) graph where p refers the number of vertices of G and q refers the number of edges of G. The number of vertices of a graph G is called order of G, and the number of edges is called size of G. The union of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. The join of two graphs $G_1 + G_2$ is obtained from G_1 and G_2 and whose vertex set is $V(G_1+G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1+G_2) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1), v \in V(G_2)\}$. Sundaram, Ponraj, Somasundaram have introduced the notion of prime cordial labeling [10] and product cordial labeling [11]. Several authors were studied the edge product cordial labeling of some cycle related graphs [7, 8]. In this sequel Ponraj *et al.* [3] have introduced k-prime cordial labeling of graphs and studied some k-prime cordial labeling. In [4, 5, 6] Ponraj *et al.* have

²⁰¹⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. Path, union of graphs, bipartite graph, complete graph.

studied the 4-prime cordial labeling behavior of complete graph, book, flower, mC_n , wheel, gear, double cone, helm, closed helm, butterfly graph, and friendship graph, union of two bipartite graphs, union of trees, durer graph, tietze graph, planar grid $P_m \times P_n$, subdivision of wheels and subdivision of helms. In this paper we have obtained some 4-prime cordial graphs from 4-prime cordial graphs. Terms not defined here follow from Harary [2].

2. Main results

THEOREM 2.1. If G is a 4-prime cordial graph then $G \cup P_n$ is also a 4-prime cordial graph for $n \ge 5$.

PROOF. Let G be a (p,q) 4-prime cordial graph with a 4-prime cordial labeling f. Let P_n be the path $v_1v_2...v_n$ and $V(G) = \{u_i : 1 \leq i \leq p\}$. The proof is divided into four cases.

Case 1. $p \equiv 0 \pmod{4}$.

Let p = 4t. This forces, $v_f(1) = v_f(2) = v_f(3) = v_f(4) = t$. Now assign the label to the vertices of G using the labeling of f. Next assign the labels 2, 4 alternatively to the vertices u_1, u_2, \ldots , until we reach the vertex $u_{\lceil \frac{n}{2} \rceil}$. Next assign the labels 1, 3 to the remaining vertices $u_{\lceil \frac{n}{2} \rceil + 1}, u_{\lceil \frac{n}{2} \rceil + 2}, \ldots, u_n$ alternatively. We denote this vertex labeling by g.

Subcase 1. q is even.

Clearly the above vertex labeling g is a 4-prime cordial labeling of $G \cup P_n$.

Subcase 2. q is odd.

This case the following possible arises: $e_f(0) = e_f(1) + 1$ or $e_f(1) = e_f(0) + 1$. In the former cases, the above vertex labeling g is a 4-prime cordial labeling.

In the latter case, interchange the labels of u_{n-1} and u_n or u_{n-2} and u_{n-1} according as u_n received the label 3 or 1. Clearly the resulting vertex labeling is a 4-prime cordial labeling of $G \cup P_n$.

Case 2. $p \equiv 1 \pmod{4}$.

Let p = 4t + 1. Any one of the types given below are arises.

TYPE A: $v_f(1) = t + 1$, $v_f(2) = v_f(3) = v_f(4) = t$. **TYPE B:** $v_f(2) = t + 1$, $v_f(1) = v_f(3) = v_f(4) = t$. **TYPE C:** $v_f(3) = t + 1$, $v_f(1) = v_f(2) = v_f(4) = t$.

TYPE D: $v_f(4) = t + 1$, $v_f(1) = v_f(2) = v_f(3) = t$.

We now discuss the types one by one.

TYPE A:

Now consider the case $|v_g(1) - v_g(3)| = 2$, then choose the largest r such that $g(v_r) = 1$, and relabel the vertex v_r with 3.

Subcase 1. q is even or q is odd with $e_f(1) = e_f(0) + 1$.

Clearly the above resulting vertex labeling is a 4-prime cordial labeling of $G \cup P_n$.

Subcase 2. *q* is odd with $e_f(0) = e_f(1) + 1$.

In this case interchange the labels of v_1 and v_n , we get a 4-prime cordial labeling of $G \cup P_n$.

We now consider th case $|v_g(1) - v_g(4)| = 2$. In this case choose the largest r in such a way that $g(v_r) = 1$ and relabel the vertex v_r with 4. That is either v_n or v_{n-1} received the label 4. In the case of $e_f(0) = e_f(1) + 1$, clearly this resulting labeling is a 4-prime cordial labeling of $G \cup P_n$. For the case $e_f(1) = e_f(0) + 1$, choose the smallest integer s such that $g(v_s) = 1$ and interchange the labels of v_s and v_n or v_n and v_{n-1} according as v_n or v_{n-1} received the label 4. Obviously this labeling is a 4-prime cordial labeling of $G \cup P_n$. Clearly the case $|v_g(1) - v_g(2)| = 2$ is not arises.

TYPE B:

First consider the case $|v_g(2) - v_g(4)| = 2$. In this case, relabel the vertex v_1 with 4. If $e_f(0) = e_f(1) + 1$, clearly this resulting vertex labeling is a 4-prime cordial labeling also; otherwise, choose the smallest integers r such that $g(v_r) = 3$ and interchange the labels of v_r and v_n or v_{n-1} and v_n according as v_n received the label 1 or 3.

Consider the next case, $|v_g(2) - v_g(3)| = 2$. Interchange the labels of v_n and v_{n-1} or v_n and v_{n-1} where r is the smallest integer such that $g(v_r) = 1$, according as v_n received the label 3 or 1. After interchanging, relabel the vertex v_1 with 3.

When $e_f(0) = e_f(1) + 1$, clearly the resulting labeling is a 4-prime cordial labeling of $G \cup P_n$ also. For the case $e_f(1) = e_f(0) + 1$, interchange the labels of v_n and v_1 or v_{n-1} and v_1 according as v_n or v_{n-1} received the label 3. Obviously this resulting labeling is a 4-prime cordial labeling of $G \cup P_n$.

TYPE C and TYPE D:

In this type, clearly the labeling g satisfies the vertex condition. If $e_f(0) = e_f(1)+1$, then this labeling g is also a 4-prime cordial labeling of $G \cup P_n$; otherwise, interchange the labeling of v_r and v_{r+1} where r is the least positive integer such that $g(v_r) = 3$.

Case 3. $p \equiv 2 \pmod{4}$.

Let p = 4t + 2. In this case any one of the following case arises.

TYPE A: $v_f(1) = v_f(2) = t + 1$, $v_f(3) = v_f(4) = t$. **TYPE B:** $v_f(1) = v_f(3) = t + 1$, $v_f(2) = v_f(4) = t$. **TYPE C:** $v_f(1) = v_f(4) = t + 1$, $v_f(2) = v_f(3) = t$. **TYPE D:** $v_f(2) = v_f(3) = t + 1$, $v_f(1) = v_f(4) = t$. **TYPE E:** $v_f(2) = v_f(4) = t + 1$, $v_f(1) = v_f(3) = t$. **TYPE F:** $v_f(3) = v_f(4) = t + 1$, $v_f(1) = v_f(2) = t$. We now discuss all these types one by one.

TYPE A:

Choose the least positive integer r such that $g(v_r) = 1$. Relabel the vertices v_1 and v_r with 4 and 3 respectively. Clearly if $e_f(1) = e_f(0) + 1$, then the resulting labeling is a 4-prime cordial labeling of $G \cup P_n$. For the case $e_f(0) = e_f(1) + 1$, interchange the labels of v_1 and v_n .

TYPE B:

Let r be the least integer such that $g(v_r) = 1$. Relabel v_r with 4. When $e_f(1) = e_f(0) + 1$, the resulting labeling is a 4-prime cordial labeling of $G \cup P_n$. In the case $e_f(0) = e_f(1) + 1$, interchange the labels of v_1 and v_n .

TYPE C and TYPE D:

In this type relabel the vertex v_r with 3, where r is the least integer such that $g(v_r) = 1$. Next proceed as in TYPE B we get a 4-prime cordial labeling of $G \cup P_n$. **TYPE E:**

In this type relabel the vertex v_1 with 3. Next interchange the labels of v_1 and v_n or v_1 and v_{n-1} according as v_n received the label 1 or 3. Clearly this resulting labeling is a 4-prime cordial labeling of $G \cup P_n$ for the case, $e_f(0) = e_f(1) + 1$. For the case $e_f(1) = e_f(0) + 1$, interchange the labels of v_{n-2} and v_{n-3} , such vertices are exists as $n \ge 5$.

TYPE F:

Clearly the labeling g satisfies the vertex condition. For the case $e_f(0) = e_f(1) + 1$, this labeling g is a 4-prime cordial labeling. In the case $e_f(1) = e_f(0) + 1$, interchange the labels of v_{n-1} and v_n or v_{n-2} and v_{n-1} according as v_n received the label 3 or 1.

Case 4. $p \equiv 3 \pmod{4}$.

This case any one of the following cases happen. Let p = 4t + 3.

TYPE A: $v_f(4) = t$, $v_f(1) = v_f(2) = v_f(3) = t + 1$. **TYPE B:** $v_f(3) = t$, $v_f(1) = v_f(2) = v_f(4) = t + 1$. **TYPE C:** $v_f(2) = t$, $v_f(1) = v_f(3) = v_f(4) = t + 1$.

TYPE D: $v_f(1) = t$, $v_f(2) = v_f(3) = v_f(4) = t + 1$.

Now we discuss one by one.

TYPE A:

Relabel the vertex v_1 with 4. In the case $e_f(0) = e_f(1) + 1$, clearly the resulting labeling is a 4-prime cordial labeling of $G \cup P_n$. For the case $e_f(1) = e_f(0) + 1$, let v_r be the smallest positive integer such that $g(v_r) = 3$. Then interchange the labels of v_r and v_{r+1} .

TYPE B:

Relabel the vertex v_n or v_{n-1} with 3 according as v_n received the label 1 or 3. Next proceed as in TYPE A.

TYPE C and TYPE D:

Clearly the labeling g satisfies the vertex condition of 4-prime cordial labeling. For the edge condition, proceed as in TYPE A.

REMARK 2.1. When n = 1, using the 4-prime cordial labeling f of G assign the labels to the vertices of G in $G \cup P_1$. As $|E(G \cup P_1)| = |E(G)|$, assign any label to the vertex of P_1 with the 4-prime cordial vertex condition we get a 4-prime cordial labeling of $G \cup P_1$.

THEOREM 2.2. Let G be a (p,q) 4-prime cordial graph. Then $G \cup mK_{n,n}$ is 4-prime cordial for all even values of m.

PROOF. Clearly $G \cup mK_{n,n}$ has p + 2mn vertices and $q + mn^2$ edges. Let $K_{n,n}^i$ be the i^{th} copy of $K_{n,n}$. Let $V(K_{n,n}^i) = V_1^i \cup V_2^i$ where $V_1^i = \{v_j^i : 1 \leq j \leq n\}$ and $V_2^i = \{w_j^i : 1 \leq j \leq n\}$. Let f be a 4-prime cordial labelin of G. In $G \cup mK_{n,n}$, assign the label to the vertices $u_i (1 \leq i \leq n)$ using the 4-prime cordial labeling f. We now move to the bipartite graphs. First consider the $\frac{m}{2}$ copies of $K_{n,n}$. Assign the label 1 to all the vertices of the set $V_1^1, V_1^2, \ldots, V_1^{\frac{m}{2}}$ and 3 to all the vertices of the set $V_2^1, V_2^2, \ldots, V_2^{\frac{m}{2}}$. Next we now move to the another $\frac{m}{2}$ copies of $K_{n,n}$. Assign the label 2 to all vertices of the sets $V_1^{\frac{m}{2}+1}, V_1^{\frac{m}{2}+2}, \ldots, V_1^m$ and 4 to the all the vertices of the sets $V_2^{\frac{m}{2}+1}, V_2^{\frac{m}{2}+2}, \ldots, V_2^m$. We now prove this labeling g is a 4-prime cordial labeling of $G \cup mK_{n,n}$. $e_g(0) = e_f(0) + \frac{m}{2}n^2$ and $e_g(1) = e_f(1) + \frac{m}{2}n^2$. Also $v_g(1) = v_f(1) + \frac{m}{2}n$, $v_g(2) = v_f(2) + \frac{m}{2}n$, $v_g(3) = v_f(3) + \frac{m}{2}n$ and $v_g(4) = v_f(4) + \frac{m}{2}n$. Therefore

$$|e_g(0) - e_g(1)| = |e_f(0) - e_f(1)|$$

 $\leqslant 1$

as f is a 4-prime cordial labeling of G. Also

$$\begin{aligned} |v_g(r) - v_g(s)| &= |v_f(r) - v_f(s)| \\ &\leqslant 1 \end{aligned}$$

for all $r, s \in \{1, 2, 3, 4\}$ since f is a 4-prime cordial labeling.

THEOREM 2.3. If G is a (p,q) 4-prime cordial graph then $G \cup mK_{1,n}$, is also 4-prime cordial for all even values of m and all values of n.

PROOF. Note that the order and size of $G \cup mK_{1,n}$ are p+m(n+1) and q+mn respectively. Let f be a 4-prime cordial labeling of G. Let $K_{1,n}^i$ be the i^{th} copy of the star and $V(K_{1,n}^i) = \{v_i, v_j^i : 1 \leq j \leq n\}$ and $V(G) = \{u_i : 1 \leq i \leq p\}$. With the use of 4-prime cordial labeling f, assign the label to the vertices u_i $(1 \leq i \leq p)$. Next move to the stars.

Case 1. $m \equiv 0 \pmod{4}$.

Assign the label 1 to the vertice $v_1, v_3, \ldots, v_{\frac{m}{2}-1}$ and 3 to the vertices $v_2, v_4, \ldots, v_{\frac{m}{2}}$. Next assign the label 3 to the vertices $v_1^1, v_2^1, \ldots, v_n^1, v_1^3, v_2^3, \ldots, v_n^3, \ldots, v_1^{\frac{m}{2}-1}, v_2^{\frac{m}{2}-1}, \ldots, v_n^{\frac{m}{2}-1}$ and 1 to the vertices $v_1^1, v_2^2, \ldots, v_n^2, v_1^4, v_2^4, \ldots, v_n^4, \ldots, v_1^{\frac{m}{2}}, v_2^{\frac{m}{2}}, \ldots, v_n^{\frac{m}{2}}$. Next consider another $\frac{m}{2}$ copies of the stars. Assign the label 2 to the vertices $v_{\frac{m}{2}+1}, v_{\frac{m}{2}+3}, \ldots, v_{n-1}$ and 4 to the vertices v_2, v_4, \ldots, v_m . Now assign the label 4 to the vertices $v_1^{\frac{m}{2}+1}, v_2^{\frac{m}{2}+1}, \ldots, v_n^{\frac{m}{2}+1}, v_2^{\frac{m}{2}+1}, \ldots, v_n^{\frac{m}{2}+1}, v_2^{\frac{m}{2}+2}, \ldots, v_n^{\frac{m}{2}+2}, \ldots,$

 $e_g(1) = e_f(1) + \frac{m}{2}n$. Therefore,

$$|e_g(0) - e_g(1)| = |e_f(0) - e_f(1)|$$

 $\leqslant 1$

as f is a 4-prime cordial labeling. $v_g(1) = v_f(1) + \frac{m}{4}$, $v_g(2) = v_f(2) + \frac{m}{4}$, $v_g(3) = v_f(3) + \frac{m}{4}$ and $v_g(4) = v_f(4) + \frac{m}{4}$. This implies

$$\begin{aligned} |v_g(r) - v_g(s)| &= |v_f(r) - v_f(s)| \\ &\leqslant 1 \end{aligned}$$

for all $r, s \in \{1, 2, 3, 4\}$ since f is a 4-prime cordial labeling. Case 2. $m \equiv 1 \pmod{4}$.

As $m-1 \equiv 0 \pmod{4}$, assign the label to the first m-2 copies of the stars with the similar technique adopted in case 1. Next assign the labels 1, 2 respectively to the vertices v_{m-1} and v_m . Now we assign the label 3 to the vertices v_1^{m-1} , v_2^{m-1} , $\dots, v_{\left\lceil \frac{n}{2} \right\rceil}^{m-1}$ and 1 to the remaining vertices v_1^{m-1} , $v_{\left\lceil \frac{n}{2} \right\rceil + 1}^{m-1}$, $v_{\left\lceil \frac{n}{2} \right\rceil + 2}^{m-1}$, \dots, v_n^{m-1} of the $(m-1)^{th}$ star. Next assign 2 to the vertices $v_1^m, v_2^m, \dots, v_{\left\lceil \frac{n}{2} \right\rceil}^m$ and 4 to the vertices $v_{\left\lceil \frac{n}{2} \right\rceil + 1}^m$, $v_{\left\lceil \frac{n}{2} \right\rceil + 2}^m$, \dots, v_n^m . Let g be this resulting vertex labeling.

Subcase 1. *n* is odd.

Obviously the labeling g is a 4-prime cordial labeling of $G \cup mK_{1,n}$.

Subcase 2. *n* is even and $p \equiv 0 \pmod{4}$.

In this case also the labeling g is a 4-prime cordial labeling.

Subcase 3. n is even and $p \equiv 1 \pmod{4}$.

Let p = 4t + 1. In the type $v_f(1) = t + 1$, $v_f(2) = v_f(3) = v_f(4) = t$, relabel the vertex v_n^{m-1} with 2. In the type $v_f(2) = t + 1$, $v_f(1) = v_f(3) = v_f(4) = t$, relabel the vertex v_m with 4. The remaining two types, the vertex condition of gautomatically satisfied.

Subcase 4. *n* is even and $p \equiv 2 \pmod{4}$.

Let p = 4t + 2. In the type $v_f(1) = v_f(2) = t + 1$, $v_f(3) = v_f(4) = t$, relabel the vertex v_{m-1} with 3 and v_n^m with 4. In the type $v_f(1) = v_f(3) = t + 1$, $v_f(2) = v_f(4) = t$, relabel the vertex v_n^{m-1} with 4. In the type $v_f(1) = v_f(4) = t + 1$, $v_f(2) = v_f(3) = t$, relabel the vertex v_n^m with 3. For the type $v_f(2) = v_f(3) = t + 1$, $v_f(1) = v_f(4) = t$, relabel the vertex v_n^m with 4. For the type $v_f(2) = v_f(3) = t + 1$, $v_f(1) = v_f(4) = t$, relabel the vertex v_n^m with 4. For the type $v_f(2) = v_f(4) = t + 1$, $v_f(1) = v_f(3) = t$, relabel the vertex v_n^m with 4 and interchange the labels of v_1^2 with v_n^m . In the remaining type, the vertex condition of g is automatically satisfied. **Subcase 5.** n is even and $p \equiv 3 \pmod{4}$.

In the type $v_f(1) = v_f(2) = v_f(3) = t + 1$, $v_f(4) = t$, relabel the vertex v_n^{m-1} with 4. For the type $v_f(1) = v_f(2) = v_f(4) = t + 1$, $v_f(3) = t$, relabel the vertex v_n^{m-1} with 3. For the type $v_f(1) = v_f(3) = v_f(4) = t + 1$, $v_f(2) = t$, relabel the vertex v_n^{m-1} with 2. In the type $v_f(2) = v_f(3) = v_f(4) = t + 1$, $v_f(1) = t$, the vertex condition of g is obviously satisfied.

Hence $G \cup mK_{1,n}$ is 4-prime cordial for all even values of m.

THEOREM 2.4. Let G be a (p,q) 4-prime cordial graph with a 4-prime cordial labeling f. Let f(u) = 2 and f(v) = 4. The graph G(u, v) obtained from G by identifying u with central vertex of the star $K_{1,n}$ and v with central vertex of the another star $K_{1,n}$ is 4-prime cordial for all values of n.

PROOF. Using the 4-prime cordial labeling f, assign the labels to the vertices of G. Consider the first copy of the star $K_{1,n}$. Assign the label to the pendent vertices of the star with 1,3 alternatively. Next we move to the second copy. Assign the label 2, 4 alternatively to the pendent vertices of the second star. Let q denote the resulting vertex labeling. $e_q(0) = e_f(0) + n$ and $e_q(1) = e_f(1) + n$. This implies

$$|e_g(0) - e_g(1)| = |e_f(0) - e_f(1)|$$

 $\leqslant 1$

 $v_g(1) = v_f(1) + \frac{n}{2}, v_g(2) = v_f(2) + \frac{n}{2}, v_g(3) = v_f(3) + \frac{n}{2} \text{ and } v_g(4) = v_f(4) + \frac{n}{2}.$ This implies

$$\begin{aligned} |v_g(r) - v_g(s)| &= |v_f(r) - v_f(s)| \\ &\leqslant 1 \end{aligned}$$

for all $r, s \in \{1, 2, 3, 4\}$. Hence G(u, v) is 4-prime cordial.

THEOREM 2.5. Let G be a (p,q) 4-prime cordial graph and f be a 4-prime cordial labeling of G, f(u) = 2. Let G(u) be the graph obtained from G by identifying u with the central vertex of the star $K_{1,n}$. (i) If $p \equiv 0 \pmod{4}$ then G(u) is 4-prime cordial for all n (ii) If $p \equiv 1 \pmod{4}$ then G(u) is 4-prime cordial for all $n \equiv 0, 1$ (mod 4).

PROOF. Let u_1, u_2, \ldots, u_n be the pendent vertices of the star $K_{1,n}$. Use of 4-prime cordial labeling f, assign the label to the vertices of G. Next assign the labels 2, 4 alternatively $u_1, u_2, u_3, u_4, \ldots$ until reach the vertex $u_{\lceil \frac{n}{2} \rceil}$. Next assign the labels 1,3 alternatively to the vertices $u_{\lceil \frac{n}{2} \rceil+1}, u_{\lceil \frac{n}{2} \rceil+2}, \ldots, u_n$. Let g be the resulting vertex labeling.

Case 1. $p \equiv 0 \pmod{4}$.

Let p = 4t. This implies $v_f(1) = v_f(2) = v_f(3) = v_f(4) = t$.

Subcase 1. $n \equiv 0 \pmod{4}$.

Here $v_g(1) = v_f(1) + \frac{n}{4} = t + \frac{n}{4}$, similarly, $v_g(2) = t + \frac{n}{4}$, $v_g(3) = t + \frac{n}{4}$ and $v_g(4) = t + \frac{n}{4}$. $e_g(0) = e_f(0) + \frac{n}{2}$ and $e_g(1) = e_f(1) + \frac{n}{2}$. This forces $|e_g(0) - e_g(1)| \leq 1$ 1.

Subcase 2. $n \equiv 1 \pmod{4}$. Here $v_g(1) = v_f(1) + \frac{n-1}{4} = t + \frac{n-1}{4}, v_g(2) = t + \frac{n+3}{4}, v_g(3) = t + \frac{n-1}{4}$ and $v_g(4) = t + \frac{n-1}{4}$. This implies $|v_g(r) - v_g(s)| \leq 1$ for $r, s \in \{1, 2, 3, 4\}$. When $e_f(1) = e_f(0) + 1$ or $e_f(0) = e_f(1)$, clearly $|e_g(0) - e_g(1)| \leq 1$. On the other hand, namely $e_f(0) = e_f(1) + 1$, relabel u_1 with 3 in g, the resulting labeling obviously a 4-prime cordial labeling.

Subcase 3. $n \equiv 2 \pmod{4}$.

Here $v_g(1) = v_f(1) + \frac{n+2}{4} = t + \frac{n+2}{4}$, similarly, $v_g(2) = t + \frac{n+2}{4}$, $v_g(3) = t + \frac{n-2}{4}$ and $v_g(4) = t + \frac{n-2}{4}$. It follows that g satisfies the vertex condition of 4-prime cordial labeling. Also $e_g(0) = e_f(0) + \frac{n}{2}$ and $e_g(1) = e_f(1) + \frac{n}{2}$. This implies $|e_g(0) - e_g(1)| \leq 1$ as f is a 4-prime cordial labeling.

Subcase 4. $n \equiv 3 \pmod{4}$.

In this case $v_g(1) = v_f(1) + \frac{n+1}{4} = t + \frac{n+1}{4}$, $v_g(2) = t + \frac{n+1}{4}$, $v_g(3) = t + \frac{n-3}{4}$ and $v_g(4) = t + \frac{n+1}{4}$. Clearly $|v_g(r) - v_g(s)| \leq 1$ for all $r, s \in \{1, 2, 3, 4\}$. Clearly if $e_g(1) = e_f(0) + 1$ or $e_g(1) = e_f(0)$, the labeling g is 4-prime cordial labeling; otherwise relabel u_1 , with 3, the resulting labeling is a 4-prime cordial labeling.

Case 2.
$$p \equiv 1 \pmod{4}$$
.

Let p = 4t + 1. In this case $v_f(1) = t + 1$ or $v_f(2) = t + 1$ or $v_f(3) = t + 1$ or $v_f(4) = t + 1$.

Subcase 1. $n \equiv 0 \pmod{4}$.

The labeling g is obviously a 4-prime cordial labeling.

Subcase 2. $n \equiv 1 \pmod{4}$ and $v_f(x) = t + 1$, $x \in \{1, 3, 4\}$.

Clearly if either $e_f(1) = e_f(0) + 1$ or $e_f(1) = e_f(0)$, then g is a 4-prime cordial labeling. In this case $e_f(0) = e_f(1) + 1$, we get a 4-prime cordial labeling as follows: If x = 1 or 4, then relabel u_1 with 3; if x = 3, then relabel u_1 with 1.

Subcase 3. $n \equiv 1 \pmod{4}$ and $v_f(2) = t + 1$.

In this case relabel u_1 with 4. When $e_f(1) = e_f(0) + 1$ or $e_f(1) = e_f(0)$, clearly g itself a 4-prime cordial labeling; otherwise relabel u_1 with 1, we get a 4-prime cordial labeling.

THEOREM 2.6. Let G be a (4t,q) 4-prime cordial graph. Then $G + K_1$ and $G + 2K_1$ are also 4-prime cordial.

PROOF. Let f be a 4-prime cordial labeling of G. Consider the graph $G + K_1$. In $G + K_1$, assign the labels to the vertices of G as in G. Next assign the label 2 to the vertex of K_1 . We call this labeling g. Then $v_g(1) = v_f(1) = t$, $v_g(2) = v_f(1) + 1 = t + 1$, $v_g(3) = v_f(3) = t$, and $v_g(4) = v_f(4) = t$. Also $e_g(0) = e_f(0) + 2t$, $e_g(1) = e_f(1) + 2t$. As f is a 4-prime cordial labeling, g is also 4-prime cordial labeling. Next consider the graph $G + 2K_1$. Use of 4-prime cordial labeling g of $G + K_1$, assign the label to the vertices of $G + K_1$ and assign 4 to the remaining vertex of K_1 . It is easy to verify that this labeling is a 4-prime cordial labeling of $G + 2K_1$.

ACKNOWLEDGEMENT. The authors thank to the referee for his careful reading and commands which make the paper for better presentation.

References

- J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2015), #Ds6.
- [2] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
- [3] R.Ponraj, Rajpal singh, R.Kala and S. Sathish Narayanan, k-prime cordial graphs, J. Appl. Math. & Informatics, 34 (3-4) (2016), 227 - 237.

- [4] R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime cordiality of some classes of graphs, *Journal of algorithms and computation*, 48(1)(2016), 69-79.
- [5] R.Ponraj, Rajpal Singh, and S.Sathish Narayanan, A note on 3-Prime cordial graphs, Journal of Algorithms and Computation, 48(1)(2016), 45-55.
- [6] R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime cordiality of some cycle related graphs, Applications and Applied Mathematics, Accepted for publication.
- [7] U.M.Prajapati, N.B.Patel, Some Edge Product Cordial Graphs in the Context of Duplication of Some Graph Elements, Open Journal of Discrete Mathematics, 6(2016), 248-258.
- [8] U.M.Prajapati, N.B.Patel, Edge Product Cordial Labeling of Some Cycle Related Graphs, Open Journal of Discrete Mathematics, 6(2016), 268-278.
- [9] M.A.Seoud and M.A.Salim, Two upper bounds of prime cordial graphs, JCMCC, 75(2010), 95-103.
- [10] M.Sundaram, R.Ponraj and S.Somasundaram, Prime cordial labeling of graphs, J. Indian Acad. Math., 27(2005), 373-390.
- [11] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, Bull. Pure and Appl. Sci. (Math. & Stat.), 23E (2004), 155-163.

Receibed by editors 20.10.2016; Revised version 29.04.2017; Accepted 01.06.2017; Available online 12.06.2017.

DEPARTMENT OF MATHEMATICS, SRI PARAMAKALYANI COLLEGE, ALWARKURICHI-627412, INDIA.

E-mail address: ponrajmaths@gmail.com

Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India.

E-mail address: rajpalsingh@outlook.com