4-PRIME CORDIAL GRAPHS OBTAINED FROM 4-PRIME CORDIAL GRAPHS

R. Ponraj and Rajpal Singh

Abstract

Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a function. For each edge $u v$, assign the label $\operatorname{gcd}(f(u), f(v)) . \quad f$ is called k-prime cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leqslant 1, i, j \in\{1,2, \ldots, k\}$ and $\left|e_{f}(0)-e_{f}(1)\right| \leqslant 1$ where $v_{f}(x)$ denotes the number of vertices labeled with $x, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with admits a k-prime cordial labeling is called a k-prime cordial graph. In this paper we generate some new 4-prime cordial graphs derived from 4-prime cordial graphs.

1. Introduction

Graphs considered here are finite, simple and undirected only. Let G be a (p, q) graph where p refers the number of vertices of G and q refers the number of edges of G. The number of vertices of a graph G is called order of G, and the number of edges is called size of G. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The join of two graphs $G_{1}+G_{2}$ is obtained from G_{1} and G_{2} and whose vertex set is $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}+G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\{u v: u \in$ $\left.V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. Sundaram, Ponraj, Somasundaram have introduced the notion of prime cordial labeling [10] and product cordial labeling [11]. Several authors were studied the behavior of prime cordial labeling of graphs [1]. Also Prajapati et al. have studied the edge product cordial labeling of some cycle related graphs $[7,8]$. In this sequel Ponraj et al. [3] have introduced k-prime cordial labeling of graphs and studied some k-prime cordial and 3 -prime cordial graphs. A 2 prime cordial labeling is a product cordial labeling. In [4, 5, 6] Ponraj et al. have

[^0]studied the 4-prime cordial labeling behavior of complete graph, book, flower, $m C_{n}$, wheel, gear, double cone, helm, closed helm, butterfly graph, and friendship graph, union of two bipartite graphs, union of trees, durer graph, tietze graph, planar grid $P_{m} \times P_{n}$, subdivision of wheels and subdivision of helms. In this paper we have obtained some 4-prime cordial graphs from 4-prime cordial graphs. Terms not defined here follow from Harary [2].

2. Main results

Theorem 2.1. If G is a 4-prime cordial graph then $G \cup P_{n}$ is also a 4-prime cordial graph for $n \geqslant 5$.

Proof. Let G be a $(p, q) 4$-prime cordial graph with a 4 -prime cordial labeling f. Let P_{n} be the path $v_{1} v_{2} \ldots v_{n}$ and $V(G)=\left\{u_{i}: 1 \leqslant i \leqslant p\right\}$. The proof is divided into four cases.
Case 1. $p \equiv 0(\bmod 4)$.
Let $p=4 t$. This forces, $v_{f}(1)=v_{f}(2)=v_{f}(3)=v_{f}(4)=t$. Now assign the label to the vertices of G using the labeling of f. Next assign the labels 2,4 alternatively to the vertices u_{1}, u_{2}, \ldots, until we reach the vertex $u_{\left\lceil\frac{n}{2}\right\rceil}$. Next assign the labels 1,3 to the remaining vertices $u_{\left\lceil\frac{n}{2}\right\rceil+1}, u_{\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, u_{n}$ alternatively. We denote this vertex labeling by g.
Subcase 1. q is even.
Clearly the above vertex labeling g is a 4-prime cordial labeling of $G \cup P_{n}$.
Subcase 2. q is odd.
This case the following possible arises: $e_{f}(0)=e_{f}(1)+1$ or $e_{f}(1)=e_{f}(0)+1$. In the former cases, the above vertex labeling g is a 4 -prime cordial labeling.

In the latter case, interchange the labels of u_{n-1} and u_{n} or u_{n-2} and u_{n-1} according as u_{n} received the label 3 or 1 . Clearly the resulting vertex labeling is a 4-prime cordial labeling of $G \cup P_{n}$.
Case 2. $p \equiv 1(\bmod 4)$.
Let $p=4 t+1$. Any one of the types given below are arises.
TYPE A: $v_{f}(1)=t+1, v_{f}(2)=v_{f}(3)=v_{f}(4)=t$.
TYPE B: $v_{f}(2)=t+1, v_{f}(1)=v_{f}(3)=v_{f}(4)=t$.
TYPE C: $v_{f}(3)=t+1, v_{f}(1)=v_{f}(2)=v_{f}(4)=t$.
TYPE D: $v_{f}(4)=t+1, v_{f}(1)=v_{f}(2)=v_{f}(3)=t$.
We now discuss the types one by one.

TYPE A:

Now consider the case $\left|v_{g}(1)-v_{g}(3)\right|=2$, then choose the largest r such that $g\left(v_{r}\right)=1$, and relabel the vertex v_{r} with 3 .
Subcase 1. q is even or q is odd with $e_{f}(1)=e_{f}(0)+1$.
Clearly the above resulting vertex labeling is a 4-prime cordial labeling of $G \cup$ P_{n}.
Subcase 2. q is odd with $e_{f}(0)=e_{f}(1)+1$.

In this case interchange the labels of v_{1} and v_{n}, we get a 4-prime cordial labeling of $G \cup P_{n}$.

We now consider th case $\left|v_{g}(1)-v_{g}(4)\right|=2$. In this case choose the largest r in such a way that $g\left(v_{r}\right)=1$ and relabel the vertex v_{r} with 4 . That is either v_{n} or v_{n-1} received the label 4 . In the case of $e_{f}(0)=e_{f}(1)+1$, clearly this resulting labeling is a 4-prime cordial labeling of $G \cup P_{n}$. For the case $e_{f}(1)=e_{f}(0)+1$, choose the smallest integer s such that $g\left(v_{s}\right)=1$ and interchange the labels of v_{s} and v_{n} or v_{n} and v_{n-1} according as v_{n} or v_{n-1} received the label 4. Obviously this labeling is a 4-prime cordial labeling of $G \cup P_{n}$. Clearly the case $\left|v_{g}(1)-v_{g}(2)\right|=2$ is not arises.

TYPE B:

First consider the case $\left|v_{g}(2)-v_{g}(4)\right|=2$. In this case, relabel the vertex v_{1} with 4. If $e_{f}(0)=e_{f}(1)+1$, clearly this resulting vertex labeling is a 4 -prime cordial labeling also; otherwise, choose the smallest integers r such that $g\left(v_{r}\right)=3$ and interchange the labels of v_{r} and v_{n} or v_{n-1} and v_{n} according as v_{n} received the label 1 or 3 .

Consider the next case, $\left|v_{g}(2)-v_{g}(3)\right|=2$. Interchange the labels of v_{n} and v_{n-1} or v_{n} and v_{n-1} where r is the smallest integer such that $g\left(v_{r}\right)=1$, according as v_{n} received the label 3 or 1 . After interchanging, relabel the vertex v_{1} with 3 .

When $e_{f}(0)=e_{f}(1)+1$, clearly the resulting labeling is a 4 -prime cordial labeling of $G \cup P_{n}$ also. For the case $e_{f}(1)=e_{f}(0)+1$, interchange the labels of v_{n} and v_{1} or v_{n-1} and v_{1} according as v_{n} or v_{n-1} received the label 3 . Obviously this resulting labeling is a 4-prime cordial labeling of $G \cup P_{n}$.

TYPE C and TYPE D:

In this type, clearly the labeling g satisfies the vertex condition. If $e_{f}(0)=$ $e_{f}(1)+1$, then this labeling g is also a 4-prime cordial labeling of $G \cup P_{n}$; otherwise, interchange the labeling of v_{r} and v_{r+1} where r is the least positive integer such that $g\left(v_{r}\right)=3$.
Case 3. $p \equiv 2(\bmod 4)$.
Let $p=4 t+2$. In this case any one of the following case arises.
TYPE A: $v_{f}(1)=v_{f}(2)=t+1, v_{f}(3)=v_{f}(4)=t$.
TYPE B: $v_{f}(1)=v_{f}(3)=t+1, v_{f}(2)=v_{f}(4)=t$.
TYPE C: $v_{f}(1)=v_{f}(4)=t+1, v_{f}(2)=v_{f}(3)=t$.
TYPE D: $v_{f}(2)=v_{f}(3)=t+1, v_{f}(1)=v_{f}(4)=t$.
TYPE E: $v_{f}(2)=v_{f}(4)=t+1, v_{f}(1)=v_{f}(3)=t$.
TYPE F: $v_{f}(3)=v_{f}(4)=t+1, v_{f}(1)=v_{f}(2)=t$.
We now discuss all these types one by one.

TYPE A:

Choose the least positive integer r such that $g\left(v_{r}\right)=1$. Relabel the vertices v_{1} and v_{r} with 4 and 3 respectively. Clearly if $e_{f}(1)=e_{f}(0)+1$, then the resulting labeling is a 4-prime cordial labeling of $G \cup P_{n}$. For the case $e_{f}(0)=e_{f}(1)+1$, interchange the labels of v_{1} and v_{n}.

TYPE B:

Let r be the least integer such that $g\left(v_{r}\right)=1$. Relabel v_{r} with 4. When $e_{f}(1)=e_{f}(0)+1$, the resulting labeling is a 4 -prime cordial labeling of $G \cup P_{n}$. In the case $e_{f}(0)=e_{f}(1)+1$, interchange the labels of v_{1} and v_{n}.

TYPE C and TYPE D:

In this type relabel the vertex v_{r} with 3 , where r is the least integer such that $g\left(v_{r}\right)=1$. Next proceed as in TYPE B we get a 4-prime cordial labeling of $G \cup P_{n}$.

TYPE E:

In this type relabel the vertex v_{1} with 3 . Next interchange the labels of v_{1} and v_{n} or v_{1} and v_{n-1} according as v_{n} received the label 1 or 3 . Clearly this resulting labeling is a 4-prime cordial labeling of $G \cup P_{n}$ for the case, $e_{f}(0)=e_{f}(1)+1$. For the case $e_{f}(1)=e_{f}(0)+1$, interchange the labels of v_{n-2} and v_{n-3}, such vertices are exists as $n \geqslant 5$.

TYPE F:

Clearly the labeling g satisfies the vertex condition. For the case $e_{f}(0)=$ $e_{f}(1)+1$, this labeling g is a 4-prime cordial labeling. In the case $e_{f}(1)=e_{f}(0)+1$, interchange the labels of v_{n-1} and v_{n} or v_{n-2} and v_{n-1} according as v_{n} received the label 3 or 1 .
Case 4. $p \equiv 3(\bmod 4)$.
This case any one of the following cases happen. Let $p=4 t+3$.
TYPE A: $v_{f}(4)=t, v_{f}(1)=v_{f}(2)=v_{f}(3)=t+1$.
TYPE B: $v_{f}(3)=t, v_{f}(1)=v_{f}(2)=v_{f}(4)=t+1$.
TYPE C: $v_{f}(2)=t, v_{f}(1)=v_{f}(3)=v_{f}(4)=t+1$.
TYPE D: $v_{f}(1)=t, v_{f}(2)=v_{f}(3)=v_{f}(4)=t+1$.
Now we discuss one by one.

TYPE A:

Relabel the vertex v_{1} with 4 . In the case $e_{f}(0)=e_{f}(1)+1$, clearly the resulting labeling is a 4-prime cordial labeling of $G \cup P_{n}$. For the case $e_{f}(1)=e_{f}(0)+1$, let v_{r} be the smallest positive integer such that $g\left(v_{r}\right)=3$. Then interchange the labels of v_{r} and v_{r+1}.

TYPE B:

Relabel the vertex v_{n} or v_{n-1} with 3 according as v_{n} received the label 1 or 3 . Next proceed as in TYPE A.

TYPE C and TYPE D:

Clearly the labeling g satisfies the vertex condition of 4-prime cordial labeling. For the edge condition, proceed as in TYPE A.

REMARK 2.1. When $n=1$, using the 4 -prime cordial labeling f of G assign the labels to the vertices of G in $G \cup P_{1} . A s\left|E\left(G \cup P_{1}\right)\right|=|E(G)|$, assign any label to the vertex of P_{1} with the 4-prime cordial vertex condition we get a 4-prime cordial labeling of $G \cup P_{1}$.

Theorem 2.2. Let G be a $(p, q) 4$-prime cordial graph. Then $G \cup m K_{n, n}$ is 4 -prime cordial for all even values of m.

Proof. Clearly $G \cup m K_{n, n}$ has $p+2 m n$ vertices and $q+m n^{2}$ edges. Let $K_{n, n}^{i}$ be the $i^{t h}$ copy of $K_{n, n}$. Let $V\left(K_{n, n}^{i}\right)=V_{1}^{i} \cup V_{2}^{i}$ where $V_{1}^{i}=\left\{v_{j}^{i}: 1 \leqslant j \leqslant n\right\}$ and $V_{2}^{i}=\left\{w_{j}^{i}: 1 \leqslant j \leqslant n\right\}$. Let f be a 4 -prime cordial labelin of G. In $G \cup m K_{n, n}$, assign the label to the vertices $u_{i}(1 \leqslant i \leqslant n)$ using the 4 -prime cordial labeling f. We now move to the bipartite graphs. First consider the $\frac{m}{2}$ copies of $K_{n, n}$. Assign the label 1 to all the vertices of the set $V_{1}^{1}, V_{1}^{2}, \ldots, V_{1}^{\frac{m^{2}}{2}}$ and 3 to all the vertices of the set $V_{2}^{1}, V_{2}^{2}, \ldots, V_{2}^{\frac{m}{2}}$. Next we now move to the another $\frac{m}{2}$ copies of $K_{n, n}$. Assign the label 2 to all vertices of the sets $V_{1}^{\frac{m}{2}+1}, V_{1}^{\frac{m}{2}+2}, \ldots, V_{1}^{m}$ and 4 to the all the vertices of the sets $V_{2}^{\frac{m}{2}+1}, V_{2}^{\frac{m}{2}+2}, \ldots, V_{2}^{m}$. We now prove this labeling g is a 4-prime cordial labeling of $G \cup m K_{n, n} . \quad e_{g}(0)=e_{f}(0)+\frac{m}{2} n^{2}$ and $e_{g}(1)=$ $e_{f}(1)+\frac{m}{2} n^{2}$. Also $v_{g}(1)=v_{f}(1)+\frac{m}{2} n, v_{g}(2)=v_{f}(2)+\frac{m}{2} n, v_{g}(3)=v_{f}(3)+\frac{m}{2} n$ and $v_{g}(4)=v_{f}(4)+\frac{m}{2} n$. Therefore

$$
\begin{aligned}
\left|e_{g}(0)-e_{g}(1)\right| & =\left|e_{f}(0)-e_{f}(1)\right| \\
& \leqslant 1
\end{aligned}
$$

as f is a 4-prime cordial labeling of G. Also

$$
\begin{aligned}
\left|v_{g}(r)-v_{g}(s)\right| & =\left|v_{f}(r)-v_{f}(s)\right| \\
& \leqslant 1
\end{aligned}
$$

for all $r, s \in\{1,2,3,4\}$ since f is a 4 -prime cordial labeling.
Theorem 2.3. If G is a (p, q) 4-prime cordial graph then $G \cup m K_{1, n}$, is also 4-prime cordial for all even values of m and all values of n.

Proof. Note that the order and size of $G \cup m K_{1, n}$ are $p+m(n+1)$ and $q+m n$ respectively. Let f be a 4 -prime cordial labeling of G. Let $K_{1, n}^{i}$ be the $i^{\text {th }}$ copy of the star and $V\left(K_{1, n}^{i}\right)=\left\{v_{i}, v_{j}^{i}: 1 \leqslant j \leqslant n\right\}$ and $V(G)=\left\{u_{i}: 1 \leqslant i \leqslant p\right\}$. With the use of 4 -prime cordial labeling f, assign the label to the vertices $u_{i}(1 \leqslant i \leqslant p)$. Next move to the stars.
Case 1. $m \equiv 0(\bmod 4)$.
Assign the label 1 to the vertice $v_{1}, v_{3}, \ldots, v_{\frac{m}{2}-1}$ and 3 to the vertices v_{2}, v_{4}, $\ldots, v_{\frac{m}{2}}$. Next assign the label 3 to the vertices $v_{1}^{1}, v_{2}^{1}, \ldots, v_{n}^{1}, v_{1}^{3}, v_{2}^{3}, \ldots, v_{n}^{3}$, $\ldots, v_{1}^{\frac{2}{2}-1}, v_{2}^{\frac{m}{2}-1}, \ldots, v_{n}^{\frac{m}{2}-1}$ and 1 to the vertices $v_{1}^{2}, v_{2}^{2}, \ldots, v_{n}^{2}, v_{1}^{4}, v_{2}^{4}, \ldots, v_{n}^{4}$, $\ldots, v_{1}^{\frac{m}{2}}, v_{2}^{\frac{m}{2}}, \ldots, v_{n}^{\frac{m}{2}}$. Next consider another $\frac{m}{2}$ copies of the stars. Assign the label 2 to the vertices $v_{\frac{m}{2}+1}, v_{\frac{m}{2}+3}, \ldots, v_{m-1}$ and 4 to the vertices $v_{2}, v_{4}, \ldots, v_{m}$. Now assign the label 4 to the vertices $v_{1}^{\frac{m}{2}+1}, v_{2}^{\frac{m}{2}+1}, \ldots, v_{n}^{\frac{m}{2}+1}, v_{1}^{\frac{m}{2}+3}, v_{2}^{\frac{m}{2}+3}, \ldots$, $v_{n}^{\frac{m}{2}+3}, \ldots, v_{1}^{m-1}, v_{2}^{m-1}, \ldots, v_{n}^{m-1}$ and 2 to the vertices $v_{1}^{\frac{m}{2}+2}, v_{2}^{\frac{m}{2}+2}, \ldots, v_{n}^{\frac{m}{2}+2}$, $\ldots, v_{1}^{m}, v_{2}^{m}, \ldots, v_{n}^{m}$. Let g denote the resulting labeling. $e_{g}(0)=e_{f}(0)+\frac{m}{2} n$ and
$e_{g}(1)=e_{f}(1)+\frac{m}{2} n$. Therefore,

$$
\begin{aligned}
\left|e_{g}(0)-e_{g}(1)\right| & =\left|e_{f}(0)-e_{f}(1)\right| \\
& \leqslant 1
\end{aligned}
$$

as f is a 4-prime cordial labeling. $v_{g}(1)=v_{f}(1)+\frac{m}{4}, v_{g}(2)=v_{f}(2)+\frac{m}{4}, v_{g}(3)=$ $v_{f}(3)+\frac{m}{4}$ and $v_{g}(4)=v_{f}(4)+\frac{m}{4}$. This implies

$$
\begin{aligned}
\left|v_{g}(r)-v_{g}(s)\right| & =\left|v_{f}(r)-v_{f}(s)\right| \\
& \leqslant 1
\end{aligned}
$$

for all $r, s \in\{1,2,3,4\}$ since f is a 4 -prime cordial labeling.
Case 2. $m \equiv 1(\bmod 4)$.
As $m-1 \equiv 0(\bmod 4)$, assign the label to the first $m-2$ copies of the stars with the similar technique adopted in case 1 . Next assign the labels 1,2 respectively to the vertices v_{m-1} and v_{m}. Now we assign the label 3 to the vertices v_{1}^{m-1}, v_{2}^{m-1}, $\ldots, v_{\left\lceil\frac{n}{2}\right\rceil}^{m-1}$ and 1 to the remaining vertices $v_{\left\lceil\frac{n}{2}\right\rceil+1}^{m-1}, v_{\left\lceil\frac{n}{2}\right\rceil+2}^{m-1}, \ldots, v_{n}^{m-1}$ of the $(m-1)^{t h}$ star. Next assign 2 to the vertices $v_{1}^{m}, v_{2}^{m}, \ldots, v_{\left\lceil\frac{n}{2}\right\rceil}^{m}$ and 4 to the vertices $v_{\left\lceil\frac{n}{2}\right\rceil+1}^{m}$, $v_{\left\lceil\frac{n}{2}\right\rceil+2}^{m}, \ldots, v_{n}^{m}$. Let g be this resulting vertex labeling.
Subcase 1. n is odd.
Obviously the labeling g is a 4-prime cordial labeling of $G \cup m K_{1, n}$.
Subcase 2. n is even and $p \equiv 0(\bmod 4)$.
In this case also the labeling g is a 4 -prime cordial labeling.
Subcase 3. n is even and $p \equiv 1(\bmod 4)$.
Let $p=4 t+1$. In the type $v_{f}(1)=t+1, v_{f}(2)=v_{f}(3)=v_{f}(4)=t$, relabel the vertex v_{n}^{m-1} with 2 . In the type $v_{f}(2)=t+1, v_{f}(1)=v_{f}(3)=v_{f}(4)=t$, relabel the vertex v_{m} with 4 . The remaining two types, the vertex condition of g automatically satisfied.
Subcase 4. n is even and $p \equiv 2(\bmod 4)$.
Let $p=4 t+2$. In the type $v_{f}(1)=v_{f}(2)=t+1, v_{f}(3)=v_{f}(4)=t$, relabel the vertex v_{m-1} with 3 and v_{n}^{m} with 4 . In the type $v_{f}(1)=v_{f}(3)=t+1, v_{f}(2)=$ $v_{f}(4)=t$, relabel the vertex v_{n}^{m-1} with 4 . In the type $v_{f}(1)=v_{f}(4)=t+1, v_{f}(2)=$ $v_{f}(3)=t$, relabel the vertex v_{n}^{m-1} with 3 . For the type $v_{f}(2)=v_{f}(3)=t+1$, $v_{f}(1)=v_{f}(4)=t$, relabel the vertex v_{n}^{m} with 4 . For the type $v_{f}(2)=v_{f}(4)=t+1$, $v_{f}(1)=v_{f}(3)=t$, relabel the vertex v_{n}^{m} with 4 and interchange the labels of v_{1}^{2} with v_{n}^{m}. In the remaining type, the vertex condition of g is automatically satisfied.
Subcase 5. n is even and $p \equiv 3(\bmod 4)$.
In the type $v_{f}(1)=v_{f}(2)=v_{f}(3)=t+1, v_{f}(4)=t$, relabel the vertex v_{n}^{m-1} with 4. For the type $v_{f}(1)=v_{f}(2)=v_{f}(4)=t+1, v_{f}(3)=t$, relabel the vertex v_{n}^{m-1} with 3 . For the type $v_{f}(1)=v_{f}(3)=v_{f}(4)=t+1, v_{f}(2)=t$, relabel the vertex v_{n}^{m-1} with 2 . In the type $v_{f}(2)=v_{f}(3)=v_{f}(4)=t+1, v_{f}(1)=t$, the vertex condition of g is obviously satisfied.

Hence $G \cup m K_{1, n}$ is 4-prime cordial for all even values of m.

Theorem 2.4. Let G be a (p, q) 4-prime cordial graph with a 4-prime cordial labeling f. Let $f(u)=2$ and $f(v)=4$. The graph $G(u, v)$ obtained from G by identifying u with central vertex of the star $K_{1, n}$ and v with central vertex of the another star $K_{1, n}$ is 4-prime cordial for all values of n.

Proof. Using the 4-prime cordial labeling f, assign the labels to the vertices of G. Consider the first copy of the star $K_{1, n}$. Assign the label to the pendent vertices of the star with 1,3 alternatively. Next we move to the second copy. Assign the label 2,4 alternatively to the pendent vertices of the second star. Let g denote the resulting vertex labeling. $e_{g}(0)=e_{f}(0)+n$ and $e_{g}(1)=e_{f}(1)+n$. This implies

$$
\begin{aligned}
\left|e_{g}(0)-e_{g}(1)\right| & =\left|e_{f}(0)-e_{f}(1)\right| \\
& \leqslant 1
\end{aligned}
$$

$v_{g}(1)=v_{f}(1)+\frac{n}{2}, v_{g}(2)=v_{f}(2)+\frac{n}{2}, v_{g}(3)=v_{f}(3)+\frac{n}{2}$ and $v_{g}(4)=v_{f}(4)+\frac{n}{2}$. This implies

$$
\begin{aligned}
\left|v_{g}(r)-v_{g}(s)\right| & =\left|v_{f}(r)-v_{f}(s)\right| \\
& \leqslant 1
\end{aligned}
$$

for all $r, s \in\{1,2,3,4\}$. Hence $G(u, v)$ is 4-prime cordial.
Theorem 2.5. Let G be a (p, q) 4-prime cordial graph and f be a 4-prime cordial labeling of $G, f(u)=2$. Let $G(u)$ be the graph obtained from G by identifying u with the central vertex of the star $K_{1, n}$. (i) If $p \equiv 0(\bmod 4)$ then $G(u)$ is 4-prime cordial for all $n($ ii $)$ If $p \equiv 1(\bmod 4)$ then $G(u)$ is 4 -prime cordial for all $n \equiv 0,1$ $(\bmod 4)$.

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the pendent vertices of the star $K_{1, n}$. Use of 4 -prime cordial labeling f, assign the label to the vertices of G. Next assign the labels 2, 4 alternatively $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$ until reach the vertex $u_{\left\lceil\frac{n}{2}\right\rceil}$. Next assign the labels 1,3 alternatively to the vertices $u_{\left\lceil\frac{n}{2}\right\rceil+1}, u_{\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, u_{n}$. Let g be the resulting vertex labeling.
Case 1. $p \equiv 0(\bmod 4)$.
Let $p=4 t$. This implies $v_{f}(1)=v_{f}(2)=v_{f}(3)=v_{f}(4)=t$.
Subcase 1. $n \equiv 0(\bmod 4)$.
Here $v_{g}(1)=v_{f}(1)+\frac{n}{4}=t+\frac{n}{4}$, similarly, $v_{g}(2)=t+\frac{n}{4}, v_{g}(3)=t+\frac{n}{4}$ and $v_{g}(4)=t+\frac{n}{4} . e_{g}(0)=e_{f}(0)+\frac{n}{2}$ and $e_{g}(1)=e_{f}(1)+\frac{n}{2}$. This forces $\left|e_{g}(0)-e_{g}(1)\right| \leqslant$ 1.

Subcase 2. $n \equiv 1(\bmod 4)$.
Here $v_{g}(1)=v_{f}(1)+\frac{n-1}{4}=t+\frac{n-1}{4}, v_{g}(2)=t+\frac{n+3}{4}, v_{g}(3)=t+\frac{n-1}{4}$ and $v_{g}(4)=t+\frac{n-1}{4}$. This implies $\left|v_{g}(r)-v_{g}(s)\right| \leqslant 1$ for $r, s \in\{1,2,3,4\}$. When $e_{f}(1)=e_{f}(0)+1$ or $e_{f}(0)=e_{f}(1)$, clearly $\left|e_{g}(0)-e_{g}(1)\right| \leqslant 1$. On the other hand, namely $e_{f}(0)=e_{f}(1)+1$, relabel u_{1} with 3 in g, the resulting labeling obviously a 4 -prime cordial labeling.
Subcase 3. $n \equiv 2(\bmod 4)$.

Here $v_{g}(1)=v_{f}(1)+\frac{n+2}{4}=t+\frac{n+2}{4}$, similarly, $v_{g}(2)=t+\frac{n+2}{4}, v_{g}(3)=t+\frac{n-2}{4}$ and $v_{g}(4)=t+\frac{n-2}{4}$. It follows that g satisfies the vertex condition of 4 -prime cordial labeling. Also $e_{g}(0)=e_{f}(0)+\frac{n}{2}$ and $e_{g}(1)=e_{f}(1)+\frac{n}{2}$. This implies $\left|e_{g}(0)-e_{g}(1)\right| \leqslant 1$ as f is a 4 -prime cordial labeling.
Subcase 4. $n \equiv 3(\bmod 4)$.
In this case $v_{g}(1)=v_{f}(1)+\frac{n+1}{4}=t+\frac{n+1}{4}, v_{g}(2)=t+\frac{n+1}{4}, v_{g}(3)=t+\frac{n-3}{4}$ and $v_{g}(4)=t+\frac{n+1}{4}$. Clearly $\left|v_{g}(r)-v_{g}(s)\right| \leqslant 1$ for all $r, s \in\{1,2,3,4\}$. Clearly if $e_{g}(1)=e_{f}(0)+1$ or $e_{g}(1)=e_{f}(0)$, the labeling g is 4 -prime cordial labeling; otherwise relabel u_{1}, with 3 , the resulting labeling is a 4 -prime cordial labeling.
Case 2. $p \equiv 1(\bmod 4)$.
Let $p=4 t+1$. In this case $v_{f}(1)=t+1$ or $v_{f}(2)=t+1$ or $v_{f}(3)=t+1$ or $v_{f}(4)=t+1$.
Subcase 1. $n \equiv 0(\bmod 4)$.
The labeling g is obviously a 4-prime cordial labeling.
Subcase 2. $n \equiv 1(\bmod 4)$ and $v_{f}(x)=t+1, x \in\{1,3,4\}$.
Clearly if either $e_{f}(1)=e_{f}(0)+1$ or $e_{f}(1)=e_{f}(0)$, then g is a 4-prime cordial labeling. In this case $e_{f}(0)=e_{f}(1)+1$, we get a 4-prime cordial labeling as follows: If $x=1$ or 4 , then relabel u_{1} with 3 ; if $x=3$, then relabel u_{1} with 1 .
Subcase 3. $n \equiv 1(\bmod 4)$ and $v_{f}(2)=t+1$.
In this case relabel u_{1} with 4 . When $e_{f}(1)=e_{f}(0)+1$ or $e_{f}(1)=e_{f}(0)$, clearly g itself a 4 -prime cordial labeling; otherwise relabel u_{1} with 1 , we get a 4 -prime cordial labeling.

Theorem 2.6. Let G be a $(4 t, q)$ 4-prime cordial graph. Then $G+K_{1}$ and $G+2 K_{1}$ are also 4-prime cordial.

Proof. Let f be a 4-prime cordial labeling of G. Consider the graph $G+K_{1}$. In $G+K_{1}$, assign the labels to the vertices of G as in G. Next assign the label 2 to the vertex of K_{1}. We call this labeling g. Then $v_{g}(1)=v_{f}(1)=t, v_{g}(2)=$ $v_{f}(1)+1=t+1, v_{g}(3)=v_{f}(3)=t$, and $v_{g}(4)=v_{f}(4)=t$. Also $e_{g}(0)=e_{f}(0)+2 t$, $e_{g}(1)=e_{f}(1)+2 t$. As f is a 4-prime cordial labeling, g is also 4-prime cordial labeling. Next consider the graph $G+2 K_{1}$. Use of 4-prime cordial labeling g of $G+K_{1}$, assign the label to the vertices of $G+K_{1}$ and assign 4 to the remaining vertex of K_{1}. It is easy to verify that this labeling is a 4-prime cordial labeling of $G+2 K_{1}$.

Acknowledgement. The authors thank to the referee for his careful reading and commands which make the paper for better presentation.

References

[1] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2015), \#Ds6.
[2] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
[3] R.Ponraj, Rajpal singh, R.Kala and S. Sathish Narayanan, k-prime cordial graphs, J. Appl. Math. \& Informatics, 34 (3-4) (2016), 227 - 237.
[4] R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime cordiality of some classes of graphs, Journal of algorithms and computation, 48(1)(2016), 69-79.
[5] R.Ponraj, Rajpal Singh, and S.Sathish Narayanan, A note on 3-Prime cordial graphs, Journal of Algorithms and Computation, 48(1)(2016), 45-55.
[6] R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime cordiality of some cycle related graphs, Applications and Applied Mathematics, Accepted for publication.
[7] U.M.Prajapati, N.B.Patel, Some Edge Product Cordial Graphs in the Context of Duplication of Some Graph Elements, Open Journal of Discrete Mathematics, 6(2016), 248-258.
[8] U.M.Prajapati, N.B.Patel, Edge Product Cordial Labeling of Some Cycle Related Graphs, Open Journal of Discrete Mathematics, 6(2016), 268-278.
[9] M.A.Seoud and M.A.Salim, Two upper bounds of prime cordial graphs, JCMCC, $\mathbf{7 5}(2010)$, 95-103.
[10] M.Sundaram, R.Ponraj and S.Somasundaram, Prime cordial labeling of graphs, J. Indian Acad. Math., 27(2005), 373-390.
[11] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, Bull. Pure and Appl. Sci. (Math. \& Stat.), 23E (2004), 155-163.

Receibed by editors 20.10.2016; Revised version 29.04.2017; Accepted 01.06.2017;
Available online 12.06.2017.
Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, InDIA.

E-mail address: ponrajmaths@gmail.com
Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India.

E-mail address: rajpalsingh@outlook.com

[^0]: 2010 Mathematics Subject Classification. 05C78.
 Key words and phrases. Path,union of graphs, bipartite graph,complete graph.

