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LOCAL CONNECTIVE CHROMATIC NUMBER OF

DIRECT PRODUCT OF PATHS AND CYCLES

Canan Çiftçi and Pinar Dündar

Abstract. Graph coloring is one of the most important concept in graph
theory. There are many types of coloring. We study on the local connective
chromatic number of a graph G that is defined by us. In this paper, we

determine the local connective chromatic number of the direct product of two
paths Pm ×Pn, two cycles Cm ×Cn and for the direct product of a cycle and
a path Cm × Pn, where m and n are the number of vertices.

1. Introduction

Let G be a simple undirected graph, where V (G) and E(G) denote the set of
vertices and the set of edges of G, respectively. For two vertices u, v ∈ V (G), u and
v are adjacent if they are joined by an edge. Two vertices that are not adjacent in
a graph G are said to be independent. The independence number β(G) of a graph
G is the maximum cardinality among the independent sets of vertices of G. For
the notations and terminology not defined here, we follow [6].

The connectivity κ = κ(G) of a graph G is the minimum number of vertices
whose removal results in a disconnected or trivial graph. Two paths are internally
disjoint (vertex disjoint) if they do not share a common vertex except their end
vertices. The local connectivity κG(u, v) = κ(u, v) between two distinct vertices u
and v of a graph G is defined as the smallest number of vertices whose removal
separates u and v. By Menger’ s theorem [14], κ(u, v) equals the maximum number
of internally disjoint u − v paths in G and κ(G) = min{κ(u, v) : u, v ∈ V (G)}. It
is straightforward to verify that κ(G) 6 δ(G) and κ(u, v) 6 min{deg(u), deg(v)}
[16].
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The local connective coloring is defined by us by inspiring the notion of packing
coloring [5, 9, 12, 18].

Routing is the process of delivering messages among vertices and selecting the
best paths in a network. Efficiency and reliability of routing can be achieved by
using internally disjoint paths because the failure of a path would not affect the
performance of other paths. Then the more internally disjoint paths are the better
for a network [13]. Thus, we use the term internally disjoint path in our coloring
and color the vertices depending on the number of internally disjoint paths between
two vertices.

A graph G which has a local connective k- coloring can be partitioned into
disjoint color classesX1, X2, ..., Xk and can be drawn as a k-partite graph. Thereby,
the graph is partitioned into the subsets which have disjoint paths. Looking for a
secure disjoint path between two vertices u and v in any color class Xi, we make this
search with the vertices in the other color classes. This indicate that we look for
disjoint paths starting from u and ending to v using the vertices in the other color
classes. Thus, this search can be made with V (G) − (|Xi| − 2) vertices. Thereby,
NP-complete problem can be solved more easily. Local connective coloring provides
to facilitate the routing of non–adjacent vertices to communicate with each other.

The direct product G×H of two graphs G and H is a graph with V (G×H) =
V (G) × V (H) and E(G × H) = {(u1, v1)(u2, v2) : u1u2 ∈ E(G) and v1v2 ∈
E(H)}. It is also known as Kronecker product, tensor product, categorical product
and graph conjunction. This graph product is commutative and associative [3].
The direct product of graphs has been extensively investigated concerning graph
recognition and decomposition, graph embeddings, matching theory and stability
in graphs [1, 4]. More generally, the direct product is a widely used tool in the
area of graph colorings [11].

Lemma 1.1. [17] Let G be a connected graph. If G has no odd cycle, then
G×K2 has exactly two connected components isomorphic to G.

Theorem 1.1. [17] Let G and H be connected graphs. The graph G × H is
connected if and only if any G or H contains an odd cycle.

Corollary 1.1. [17] If G and H are connected graphs with no odd cycles then
G×H has exactly two connected components.

Theorem 1.2. [15] Let G = (V,E) be a connected graph, and H = (V1, V2, E
′
)

be a bipartite connected graph, then G×H is a bipartite graph, the partition of the
vertex set is (V × V1) and (V × V2).

Theorem 1.3. [8] The direct product of two connected graphs is a non–connected
graph if and only if both are bipartite.

Lemma 1.2. [10] If G = (V0 ∪ V1, E) and H = (W0 ∪ W1, F ) are bipartite
graphs, then (V0 ×W0) ∪ (V1 ×W1) and (V0 ×W1) ∪ (V1 ×W0) are vertex sets of
the two components of G×H.

Lemma 1.3. [10] If G is a connected, bipartite graph and n > 4 is an even
integer, then the graph G× Cn consists of two isomorphic connected components.
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Theorem 1.4. [2] If G and H are regular graphs then G×H is also a regular
graph.

2. Local Connective Chromatic Number of Direct Product Graphs

Definition 2.1. A local connective k-coloring of a graph G is a mapping c :
V (G) −→ {1, 2, ..., k} such that

(1) If uv ∈ E(G), then c(u) ̸= c(v), and
(2) If uv /∈ E(G) and κ(u, v) > i, then c(u) = c(v) = i, where κ(u, v) is the

maximum number of internally disjoint paths between u and v.

The smallest integer k for which there exists a local connective k- coloring of G is
called the local connective chromatic number of G, and it is denoted by χlc(G).

The first condition characterizes proper coloring. Thus, every local connective
coloring is a proper coloring.

The vertices of G are partitioned into disjoint color classesX1, X2, ..., Xk, where
each color class Xi consists of distinct vertices u, v ∈ Xi such that κ(u, v) > i and
n∪

i=1

Xi = V (G). The maximum cardinality of Xi in G is denoted by ki.

In this section, we give local connective chromatic number of direct product
of paths and cycles. Let G and H be any two graphs with vertex sets V (G) =
{u1, u2, ..., um}, V (H) = {v1, v2, ..., vn}, respectively. A vertex (ui, vj) is abbrevi-
ated as wij , where wij ∈ V (G×H), i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}.

Theorem 2.1. Let Pm and Pn be two paths of order m and n, respectively.
Then, 4 6 χlc(Pm × Pn) 6 max{2n+ 5,m+ n+ 7} for m 6 n.

Proof. It is known that paths are bipartite graphs. By Theorem 1.3, the
graph Pm × Pn is non–connected for m and n being odd or even. Further by
Corollary 1.1, Pm×Pn has two connected components as G1 and G2. Since δ(G1) =
δ(G2) = 2 and ∆(G1) = ∆(G2) = 4, we have 2 6 κ(wij , wkl) 6 4, where wij , wkl ∈
V (G1)(or V (G2)) , i, k ∈ {1, 2, ...,m}, j, l ∈ {1, 2, ..., n}. Thus, ki 6 1 for i > 5.
That is, the pair of vertices can be colored with the same color at most color 4,
and the remaining uncolored vertices receive different colors.

We prove this theorem in four cases for m and n being odd or even.

Case 1. Let m and n be odd.
Since |V (Pm × Pn)| = mn, we have |V (G1)| = ⌈mn

2 ⌉, |V (G2)| = ⌊mn
2 ⌋. The

graph Pm × Pn has four vertices of each of degree one in the only one component.
Assume that these vertices be in the component G1. Since there is one internally
disjoint path between these vertices, they can be colored with color 1. The vertex
wij can be colored with color 1, where i ∈ {1, 3, ...,m}, j ∈ {1, 3, ..., n}. Thus,
β(G1) = ⌈n

2 ⌉⌈
m
2 ⌉ vertices in G1 are colored with color 1, and ⌊n

2 ⌋⌊
m
2 ⌋ vertices in

G1 remain uncolored. ⌊n
2 ⌋⌊

m
2 ⌋ < ⌊mn

2 ⌋ and thus color the graph G2 with color 2.
When we start coloring from the vertex w12 and color all vertices which are not
adjacent with each other in G2, then maximum ⌊n

2 ⌋⌈
m
2 ⌉ vertices in G2 are colored
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Figure 1. Local connective coloring of P5 × P7

with color 2. Thus, there are ⌈n
2 ⌉⌊

m
2 ⌋ and n⌊m

2 ⌋ uncolored vertices in G2 and G,
respectively.

Case 1.1. Let m = 3 and n > 3.
For all vertices wij , wkl in G1 or G2, we have κ(wij , wkl) 6 2, where i, k ∈

{1, 2, 3}, j, l ∈ {1, 2, ..., n}. Thus, there is not any vertex colored with color 3 and
color 4. Hence, the remaining n⌊m

2 ⌋ vertices are colored with different colors. Then
we have χlc(P3 × Pn) = 2 + n⌊m

2 ⌋ = n+ 2.

Case 1.2. Let m = 5 and n > 5.
Since κ(G1) = 1, κ(G2) = 2, we have κ(wij , wkl) > 2, where wij , wkl ∈ V (G2).

Four vertices in P5 × Pn are colored with color 3. Color the vertex wij in G2

with color 3 for the minimum local connective coloring number, where i ∈ {2, 4},
j ∈ {3, 5}.

Case 1.2.1. If m = n = 5, no vertices that remain uncolored in G1 or G2 are
colored with color 4. Thus, the remaining vertices receive different colors and we
have χlc(P5 × P5) = 3 + n⌊m

2 ⌋ − 4 = 9.

Case 1.2.2. If m = 5 and n > 7, the vertex wi4 for i ∈ {2, 4} in G1 is colored
with color 4. The remaining n⌊m

2 ⌋ − 6 = 2n − 6 vertices receive different colors.
Thus, we have χlc(P5 × Pn) = 2n− 2.

Case 1.3. Let m > 7 and n > 7.
Take the vertex wij in G1, where i ∈ {2, 4, ...,m − 1}, j ∈ {2, 4, ..., n − 1}.

The number of internally disjoint paths between these vertices is at most 4. Thus,
maximum (m−1

2 )(n−1
2 ) vertices are colored with color 3, and there is no vertex in

G1 remains uncolored.
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Case 1.3.1. If m = n = 7, the number of internally disjoint paths between
only two vertices in G2 is 4. Hence, these vertices receive color 4, and we have
χlc(P7 × P7) = 4 + ⌊m

2 ⌋⌈
n
2 ⌉ − 2 = 14.

Case 1.3.2. Let m = 7 and n > 9. Since m = 7, there are four vertices in G2

that the number of internally disjoint paths between them is 4. Thus, these four
vertices receive color 4, and we have χlc(P7 × Pn) = 4 + ⌊m

2 ⌋⌈
n
2 ⌉ − 4 = 3

2 (n+ 1).

Case 1.3.3. Let m > 9 and n > 9.
Take the vertices wij , where i ∈ {4, 6, 8, ...,m − 3}, j ∈ {3, 5, 7, ..., n − 2} and

wkl, where k ∈ {2,m−1}, l ∈ {5, 7, 9, ..., n−4} in G2. Since the number of internally
disjoint paths between them is 4, ⌊m−4

2 ⌋(n−3
2 ) + 2⌊n−6

2 ⌋ vertices are colored with
color 4. Hence, the remaining m+ 3 vertices receive m+ 3 different colors, and we
have χlc(Pm × Pn) = 4 +m+ 3 = m+ 7.

Consequently, if m and n are odd, then we have

χlc(Pm × Pn) =



n+ 2, m = 3, n > 3

9, m = n = 5

2n− 2, m = 5, n > 7

14, m = n = 7
3
2 (n+ 1), m = 7, n > 9

m+ 7, m > 9, n > 9.

Case 2. Let m be even and n be odd.
|V (Pm × Pn)| = mn and |V (G1)| = |V (G2)| = mn

2 . The graph Pm × Pn

has four vertices of each of degree one. Two of them are in G1 and the other two
vertices are in G2. Assume that we start coloring from the vertex w11 in G1. Assign
color 1 to every vertex when i and j are odd. Thus, β(G1) = m

2 ⌈
n
2 ⌉ vertices are

colored with color 1. The graph G1 has ⌊n
2 ⌋ uncolored vertices of degree 2 and

⌊n
2 ⌋(

m
2 − 1) uncolored vertices each of degree 4. Then the total number of the

remaining uncolored vertices in G1 is ⌊n
2 ⌋

m
2 .

Start coloring the graph G2 with color 2 for the minimum number of local
connective coloring. Assume that we start coloring from the vertex w21. The graph
G2 has total mn

2 − 2 vertices of degree two and four, and since the number of
internally disjoint paths between these vertices is at least 2, each vertex which is
not adjacent with each other is colored with color 2. Thus, the vertices wij , where
i ∈ {2, 4, 6, ...,m − 2}, j ∈ {1, 3, 5, ..., n} and wnl, where l ∈ {3, 5, 7, ..., n − 2} are
colored with color 2. Then maximum ⌈n

2 ⌉(
m−2
2 ) + n−3

2 = m
2 ⌈

n
2 ⌉ − 2 vertices in G2

receive color 2. Among the remaining 2 + ⌊n
2 ⌋

m
2 vertices in G2, two of them have

degree one, ⌊n
2 ⌋ of them are each of degree 2 and ⌊n

2 ⌋(
m
2 − 1) of them are each of

degree 4. Thus, there are 2+⌊n
2 ⌋m vertices in the graph Pm×Pn remain uncolored.

Case 2.1. Let m = 2 and n > 3.
In this case, Pn

∼= G1, Pn
∼= G2 and P2 × Pn

∼= 2Pn. Since χlc(Pn) = 1 + ⌊n
2 ⌋
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by [7], we get

χlc(P2 × Pn) = n+ χlc(Pn) = n+ 1 + ⌊n
2
⌋ = 3n+ 1

2
.

Case 2.2. Let m = 4 and n > 5.
Since κ(wij , wkl) 6 2, where wij , wkl ∈ V (G1)(or V (G2)) there is not any

vertex colored with color 3 and 4. Hence, the remaining m⌊n
2 ⌋ + 2 = 2n vertices

receive different colors. Then we haveχlc(P4 × Pn) = 2n+ 2.

Case 2.3. Let m > 6 and n > 7.
Every pair of vertices in G1 each of degree 4 satisfy the condition κ(wij , wkl) >

3, where i, k ∈ {2, 4, ...,m−2}, j, l ∈ {2, 4, ..., n−1}. Thus, ⌊n
2 ⌋(

m
2 −1) vertices are

colored with color 3. The number of the remaining vertices in G1 is ⌊n
2 ⌋ and each of

them has degree two. Further, these vertices satisfy the condition κ(wmj , wml) 6 2,
where j, l ∈ {2, 4, ..., n − 1},j ̸= l. Then they receive different colors. Hence, we
have χlc(G1) = 2 + ⌊n

2 ⌋.
Consider coloring the graph G2. For the vertices wij , where i ∈ {5, 7, 9, ...,m−

3}, j ∈ {2, 4, 6, ..., n − 1} and wkl, where k ∈ {3,m − 1}, l ∈ {4, 6, 8, ..., n − 3}, the
number of internally disjoint paths between them are 4 and so ⌊m−5

2 ⌋(n−1
2 )+2⌊n−4

2 ⌋
vertices are colored with color 4. The remaining n+11

2 vertices in G2 receive different

colors. Thus, χlc(G2) = 2 + n+11
2 , and we have

χlc(Pm × Pn) = χlc(G1) + χlc(G2) = n+ 9.

Consequently, if m is even and n is odd, then we have

χlc(Pm × Pn) =


3n+1

2 , m = 2, n > 3

2n+ 2, m = 4, n > 5

n+ 9, m > 6, n > 7.

Case 3. Let m be odd and n be even.
The graph Pm × Pn has four vertices of each of degree one. Two of them

are in G1 and the other two vertices are in G2. If we color the vertices of G1

starting from the vertex w11 as Case 2, n
2 ⌈

m
2 ⌉ vertices receive color 1. For color 2,

assume that we start coloring from the vertex w12 in G2. The vertices wij , where i ∈
{3, 5, 7, ...,m−2}, j ∈ {2, 4, 6, ..., n} and wkl, where k ∈ {1,m}, l ∈ {2, 4, 6, ..., n−2}
are colored with color 2. There are at most (m−3)n

4 + 2(n−2)
2 = ⌈m

2 ⌉
n
2 − 2 vertices

which receive color 2. Thus, ⌊m
2 ⌋n+ 2 vertices remain uncolored in Pm × Pn.

Case 3.1. Let m = 3 and n > 4.
In this case, κ(wij , wkl) 6 2, where wij , wkl ∈ V (G1)(or V (G2)), i, k ∈ {1, 2, 3},

j, l ∈ {1, 2, ..., n}. Thus, there is not any pair of vertices that is colored with color
3 or color 4. Then we have

χlc(P3 × Pn) = 2 + ⌊m
2
⌋n+ 2 = n+ 4.

Case 3.2. Let m = 5 and n > 6.
If κ(wij , wkl) > 3 or deg(wij) > 3, where i, k ∈ {1, 2, ...,m}, j, l ∈ {1, 2, ..., n},

any two vertices wij and wkl can be colored with color 3. Thus, there are ⌊m
2 ⌋(

n
2−1)
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vertices in G1 each of degree 4 that can be colored with color 3. Since m = 5, only
four vertices of them are colored with color 3.

Case 3.2.1. If m = 5 and n = 6, there is not any pair of vertices which receives
color 4. Hence, the remaining vertices are colored with different colors, and so we
have χlc(P5 × P6) = 3 + ⌊m

2 ⌋n+ 2− 4 = 13.

Case 3.2.2. Let m = 5 and n > 8. The number of internally disjoint paths
between only two vertices in G2 is 4. Thus, these two vertices are colored with color
4. Since the remaining 2n−4 vertices receive different colors, we have χlc(P5×Pn) =
2n.

Case 3.3. Let m > 7 and n > 8.
Since m > 7, in G1 there are ⌊m

2 ⌋(
n
2 − 1) vertices each of degree 4 which are

colored with color 3. Thus, we have

χlc(G1) = 2 + ⌊m
2
⌋n
2
− ⌊m

2
⌋(n

2
− 1) = 2 + ⌊m

2
⌋.

Case 3.3.1. If m = 7 and n > 8, only four vertices in G2 can be colored
with color 4. Since the remaining n

2 ⌊
m
2 ⌋ − 2 vertices in G2 receive different colors,

χlc(G2) = 2 + n
2 ⌊

m
2 ⌋ − 2 = 3n

2 , and we have χlc(P7 × Pn) = χlc(G1) + χlc(G2) =
3n
2 + 5.

Case 3.3.2. Let m > 9 and n > 10.
For the minimum number of local connective coloring consider the vertices

wij , where i ∈ {4, 6, ...,m− 3}, j ∈ {3, 5, ..., n− 1} and wkl, where k ∈ {2,m− 1},
l ∈ {5, 7, ..., n−3} inG2. Since the number of internally disjoint paths between these
⌊m−4

2 ⌋(n−2
2 ) + 2⌊n−5

2 ⌋ vertices is 4, they are colored with color 4. The remaining
m+11

2 vertices in G2 receive different colors. Hence, χlc(G2) = 2 + m+11
2 and we

have χlc(Pm × Pn) = χlc(G1) + χlc(G2) = m+ 9.
Consequently, if m is odd and n is even, then we get

χlc(Pm × Pn) =



n+ 4, m = 3, n > 4

13, m = 5, n = 6

2n, m = 5, n > 8
3n
2 + 5, m = 7, n > 8

m+ 9, m > 9, n > 10.

Case 4. Let m and n be even.
In this case, |V (G1)| = |V (G2)| = mn

2 . The graph Pm × Pn has four vertices
of each of degree one. Two of them are in G1 and the other two vertices are in
G2. Assume that we start coloring the graph from the vertex w11 in G1, and assign
color 1 to every vertex wij when i and j are not both even. Thus, β(G1) = mn

4
vertices are colored with color 1 and mn

4 vertices in G1 remain uncolored.
For color 2, assume that we start coloring the graph G2 from the vertex w21,

and consider the vertices wij , where i ∈ {2, 4, ...,m − 2}, j ∈ {1, 3, ..., n − 1} and
wnl, where l ∈ {3, 5, ..., n− 1}. Thus, (m−2

2 )⌈n−1
2 ⌉+ n−2

2 = mn
4 − 1 vertices in G2
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are colored with color 2, and the number of the remaining uncolored vertices in G2

is mn
4 + 1.

Case 4.1. Let m = 2 and n > 2.
Since P2 × Pn

∼= 2Pn and χlc(Pn) = 1 + ⌊n
2 ⌋ by [7], we have

χlc(P2 × Pn) = n+ χlc(Pn) = n+ 1 + ⌊n
2
⌋ = ⌈3n+ 1

2
⌉.

Case 4.2. Let m = 4 and n > 4.
Since m = 4, there is not any pair of vertices which is colored with color 3 and

color 4. Hence, we have

χlc(P4 × Pn) = 2 +
mn

2
+ 1 = 2n+ 3.

Case 4.3. Let m > 6 and n > 6.
For every vertex of degree 4 in G1 which is not adjacent with each other

κ(wij , wkl) > 3 is satisfied, where i, k ∈ {2, 4, ...,m − 2}, j, l ∈ {2, 4, ..., n − 2}.
Thus, (m−2

2 )(n−2
2 ) vertices are colored with color 3, and m+n

2 − 1 vertices in G1

remain uncolored. Since the number of internally disjoint paths between these re-
maining vertices is at most 2, all of them receive different colors. Hence, we have
χlc(G1) = 1 + m+n

2 .

Case 4.3.1. Let m = n = 6. Since there is not any pair of vertices in G2 which
is colored with color 4, we have χlc(P6 × P6) = χlc(G1) + 1 + mn

4 + 1 = 18.

Case 4.3.2. Let m = 6, n > 8. The number of internally disjoint paths between
only two vertices in G2 is 4. Thus, the remaining mn

4 − 1 vertices receive different
colors, and we have χlc(P6 × Pn) = χlc(G1) + 2 + mn

4 − 1 = 2n+ 5.

Case 4.3.3. Let m > 8 and n > 8.
Consider the vertices wij , where i ∈ {5, 7, ...,m−3}, j ∈ {2, 4, ..., n−2} and wkl,

where k ∈ {3,m− 1}, l ∈ {4, 6, ..., n− 4} in G2. The number of internally disjoint
paths between these vertices is 4. Thus, ⌊m−5

2 ⌋(n−2
2 ) + 2⌊n−5

2 ⌋ = mn
4 − m+n

2 − 3

vertices receive color 4. The remaining m+n
2 + 4 vertices receive different colors.

Then χlc(G2) = 6+m+n
2 and we have χlc(Pm×Pn) = χlc(G1)+χlc(G2) = m+n+7.

As a result, if m and n is even, we have

χlc(Pm × Pn) =



⌈ 3n+1
2 ⌉, m = 2, n > 2

2n+ 3, m = 5, n > 4

18, m = n = 6

2n+ 5, m = 6, n > 6

m+ n+ 7, m > 8, n > 8.

By summing up four cases we have the statement of Theorem. �

Theorem 2.2. Let Cm and Pn be cycle and path of order m and n, respectively.
Then,
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χlc(Cm × Pn) =



2, if m is odd

m+ 2, if m is even, n = 2

m+ 3, if m is even, n = 3

m+ 4, if m is even, n > 4 even

or m is even, n > 5 odd

Proof. Since deg(wij) = deg(ui) · deg(vj), we have

κ(wij , wkl) 6 min{wij , wkl} 6 4,

where wij , wkl ∈ V (Cm × Pn), i, k ∈ {1, 2, ...,m}, j, l ∈ {1, 2, ..., n}. Thus, ki 6 1
for i > 5, and the pair of vertices can be colored with the same color at most color
4. We have following two cases for coloring the graph Cm × Pn.

Figure 2. Local connective coloring of C5 × P7

Case 1. Let m and n be odd or m be odd and n be even.
By Theorem 1.1, since m is odd, the graph Cm × Pn is connected, and by

Theorem 1.2, Cm × Pn is bipartite graph. Let Cm × Pn = (V1 ∪ V2, E). Since
κ(wij , wkl) 6 4, where wij , wkl ∈ V (Cm×Pn), i, k ∈ {1, 2, ...,m}, j, l ∈ {1, 2, ..., n},
the vertices of V1 and V2 can be colored with color 1 and color 2, respectively. Then
we have χlc(Cm × Pn) = 2.

Case 2. Let m and n be even or m be even and n be odd.
In this case, since cycles and paths are bipartite graphs, let Cm = (V0 ∪

V1, E), Pn = (W0 ∪W1, F ). By Theorem 1.3 and Theorem 1.2, the graph Cm × Pn

is non-connected bipartite graph. Further, by Lemma 1.2 and 1.3, G1 = ((V0 ×
W0) ∪ (V1 × W1),

E·F
2 ) and G2 = ((V0 × W1) ∪ (V1 × W0),

E·F
2 ) are two bipartite

components of Cm ×Pn. Since G1 is bipartite graph, χlc(G1) = 2 by Case 1. Let’s
start coloring the graph G2 with color χlc(G1) + 1 = 3.
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Since |V (Cm×Pn)| = |V (Cm)||V (Pn)|, it is obvious that |V (Cn)| = |V (Pm)| =
mn
2 .

Case 2.1. Let n = 2 and m be even.
Since P2 = K2, by Lemma 1.1 the graph Cm ×K2 has exactly two connected

components G1 and G2 isomorphic to Cm.
Since G2 is 2–regular graph, the number of internally disjoint paths between

all two vertices in G2 is at most 2. Thus, all vertices of G2 receive different colors.
Then, χlc(Cm × P2) = χlc(G1) + χlc(G2) = m+ 2.

Case 2.2. Let n = 3 and m be even.
In this case, the graph G2 has m(n−2)

2 = m
2 vertices of degree 4, and these

vertices are either in the vertex set V0 ×W1 or in V1 ×W0. That is, these vertices
are not adjacent. Thus, m

2 vertices are colored with color 3. The number of the
remaining uncolored vertices is m. Since the degree of these remaining vertices is
2, these m vertices receive different colors. Thus, we have

χlc(Cm × P3) = χlc(G1) + χlc(G2) = 2 + 1 +m = m+ 3.

Case 2.3. Let m be even and n > 4 even or m be even and n > 5 odd.
The graph Cm ×Pn has m(n− 2) vertices each of degree 4, and G2 has half of

these vertices. The vertex sets W0 and W1 have ⌊n−2
2 ⌋ and ⌈n−2

2 ⌉ internal vertices
of Pn, respectively.

Since κ(wij , wkl) 6 4, where wij , wkl ∈ V (G2), we color
m
2 ⌊

n−2
2 ⌋ vertices of G2

with color 3 and m
2 ⌈

n−2
2 ⌉ vertices of G2 with color 4. The remaining m vertices

receive different colors. Thus, we have

χlc(Cm × Pn) = χlc(G1) + χlc(G2) = 2 + 2 +m = m+ 4

. �
Theorem 2.3. Let Cm and Cn be two cycles of order m and n, respectively.

Then,

χlc(Cm × Cn) =


2, if m is odd, n is even or m is even, n is odd

3, if m and n are odd

4, if m and n are even.

Proof. By proof of Theorem 1.4, the graph Cm×Cn is 4–regular graph. Then
the number of internally disjoint paths between any two vertices in Cm × Cn is at
most 4. Hence, ki 6 1 for i > 5. We have following three cases for coloring the
graph Cm × Cn.

Case 1. Let m be odd and n be even or m be even and n be odd.
It is known that if the order of a cycle is even, it is bipartite graph. Thus, by

Theorem 1.1 and Theorem 1.2, the graph Cm × Cn is bipartite connected graph.
Since the number of internally disjoint paths between any two vertices in Cm ×Cn

is at most 4, we have χlc(Cm × Cn) = 2.

Case 2. Let m and n be even.
Since m and n are even, Cm and Cn are bipartite graphs. By Theorem 1.2,

Theorem 1.3 and Lemma 1.3, the graph Cm ×Cn is bipartite non-connected graph



LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF ... 571

Figure 3. Local connective coloring of C5 × C7

and has exactly two isomorpic connected components G1 and G2. Thus, these
components are also bipartite graphs. Since G1 is bipartite graph and the number
of internally disjoint paths between any two vertices of G1 is at most 4, we have
χlc(G1) = 2. Let’s start coloring the graph G2 with color χlc(G1)+1 = 3. Since G2

is also bipartite graph and the number of internally disjoint paths between any two
vertices of G2 is at most 4, the vertices of G2 receive color 3 and color 4. Hence,
χlc(Cm × Cn) = 4.

Case 3. Let m and n be odd.
Since m and n are odd, the graph Cm × Cn is connected by Theorem 1.1.

Assume that we start coloring the graph from the vertex w11. By definition of
direct product, the vertex w1j can be colored with color 1 for j ∈ {1, 2, ..., n}. Thus
we color all non–adjacent vertices w1j , w3j , w5j ,...,w(m−2)j with color 1. Since the
vertices w2j , w4j , w6j ,...,w(m−1)j are not adjacent with each other, and the number
of internally disjoint paths between them is at most 4, these vertices receive color
2. Then total n(m − 1) vertices in Cm × Cn are colored with color 1 and color
2. Hence, the vertex wmj remains uncolored and the number of its vertices is
mn − n(m − 1) = n. Since the vertex wmj is adjacent to the vertices w1j and
w(m−1)j , the vertex wmj is colored with different color other than color 1 and color
2. Thus, all vertices in the graph Cm × Cn are colored with three local connective
colors. �

3. Conclusion

In this paper, we define a new type of graph coloring called local connective
coloring. It is known that a communication network is fault-tolerant if it has
alternative paths (internally disjoint paths) between vertices and the internally
disjoint paths are used to transmit messages among vertices. Thus, we use the
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term internally disjoint path in our coloring and color the vertices depending on
the number of internally disjoint paths between two vertices. In our work, we
study on the local connective chromatic number of direct product of some cycles
and paths. We can consider the local connective chromatic number of Cartesian
product of graphs in further study.
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