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COMMON BEST PROXIMITY POINTS

IN COMPLEX VALUED METRIC SPACES

S. M. Aghayan, A. Zireh, and A. Ebadian

Abstract. In this paper, we obtain the existence and the uniqueness of com-
mon best proximity point theorems for non-self mappings between two subsets

of a complex valued metric space satisfying certain contractive conditions. Our
results supported by some examples.

1. Introduction and Preliminaries

Fixed point theory focuses on solving the equation Tx = x, where T is a self-
mapping defined on a subset of a metric space or other suitable space. If it is
assumed that, T is not a self-mapping then the equation Tx = x is likely to have
no solution. Consequently, the significant aim is determining an element x that is
in close proximity to Tx in some sense. Eventually, the target is finding an element
x in a metric space, that satisfy in the following condition, d(x, Tx) = d(A,B) and
d(x, Sx) = d(A,B) which d is a metric function and d(A,B) := inf{d(x, y) : x ∈
A, y ∈ B}. Now, if T, S : A → B are two non-self mappings, then the equations
Sx = x and Tx = x are likely to have no solution, the solution known as a common
fixed point of the mappings S and T (see, [1, 7, 9, 12, 8, 15]). So, the purpose
is finding an element x in A such that d(x, Sx) = d(A,B) and d(x, Tx) = d(A,B)
which x is called the common best proximity point of mappings S and T in a
metric space (see, [2, 13, 14]). In 2011, Azam et al. [3] introduced the notion
of complex valued metric space, which is a generalization of the classical metric
space and established the existence of common fixed point theorems for mappings
satisfying contraction condition (see [3], Theorem 4). The purpose of this article
is generalizing some well-known results about common best proximity points that
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were established in the classic metric space (see, [2, 13]), in the complex valued
metric space by some new definitions and presenting a type of contractive condition
and developing a common best proximity point theorem for non-self mappings
which satisfy in this contractive condition, in the complex valued metric space.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order ≼
on C as follows:

z1 ≼ z2 if and only if Re(z1) 6 Re(z2), Im(z1) 6 Im(z2).

It follows that z1 ≼ z2 if and only if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 ̸= z2 and one of (i), (ii), and (iii) is
satisfied where we denote z1 ≺ z2 if only (iii) is satisfied. Note that

0 ≼ z1 � z2 =⇒ |z1| < |z2|,
z1 ≼ z2, z2 � z3 =⇒ z1 ≺ z3.

Definition 1.1. [3] Let X be a nonempty set. Suppose that the mapping d :
X ×X → C, satisfies:

(a) 0 ≼ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, z) ≼ d(x, y) + d(y, z), for all x, y, z ∈ X.

Then d is called a complex valued metric on X , and (X, d) is called a complex
valued metric space.

Example 1.1. Let X = C. Define the mapping d : X×X → C for all x, y ∈ X,
by

d(x, y) = i|x− y|.
Clearly, the pair (X, d) is a complex valued metric space.

Definition 1.2. [3] Let (X, d) be a complex valued metric space.

(a) A point x ∈ X is called interior point of a set A ⊆ X whenever there
exists 0 ≺ r ∈ C such that B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A.

(b) A point x ∈ X is called a limit point of a subset A ⊆ X whenever for
every 0 ≺ r ∈ C, B(x, r)

∩
(Ar {x}) ̸= ∅.

(c) A subset A ⊆ X is called open whenever each element of A is an interior
point of A.

(d) A subset A ⊆ X is called closed whenever each limit point of A belongs to
A.

(e) The family F = {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a Hausdorff
topology τ on X.

Definition 1.3. [4] Let A be a subset of C. If there exists u ∈ C such that
z ≼ u for all z ∈ A, then A is bounded above and u is an upper bound. Similarly,
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if there exists l ∈ C such that l ≼ z, for all z ∈ A, then A is bounded below and l
is a lower bound.

Definition 1.4. [4] For a A ⊆ C which is bounded above if there exists an
upper bound s of A such that, for every upper bound u of A, s ≼ u, then the upper
bound s is called supA. Similarly, for a subset A ⊆ C which is bounded below if
there exists a lower bound t of A such that for every lower bound l of A, l ≼ t, then
the lower bound t is called inf A.

Suppose that A ⊆ C is bounded above. Then there exists q = u+ iv ∈ C such
that z = x+ iy ≼ q = u+ iv, for all z ∈ A. It follows that x ≼ u and y ≼ v, for all
z = x + iy ∈ A; that is, S = {x : z = x + iy ∈ A} and T = {y : z = x + iy ∈ A}
are two sets of real numbers which are bounded above. Hence both supS and inf T
exist. Let x̄ = supS and ȳ = supT . Then z̄ = x̄+ iȳ is supA.

Similarly, if A ⊆ C is bounded below, then z∗ = x∗ + iy∗ is inf A, where
x∗ = inf S = inf{x : z = x+ iy ∈ A} and y∗ = inf T = inf{y : x+ iy ∈ A}.

Any subset A ⊆ C which is bounded above has supremum. Equivalently, any
subset A ⊆ C which is bounded below has infimum.

Definition 1.5. [3] Let (X, d) be a complex valued metric space. Let {xn} be
a sequence in X and x ∈ X.

(i) If for every c ∈ C, with 0 ≺ c there is n0 ∈ N such that d(xn, x) ≺ c,
for all n > n0, then {xn} is said to be convergent, {xn} converges to x, x
is the limit point of {xn}. We denote this by limnxn = x or xn → x as
n −→ ∞.

(ii) If for every c ∈ C, with 0 ≺ c there is N ∈ N such that for all n > N ,
d(xn, xn+m) ≺ c, where m ∈ N, then {xn} is said to be Cauchy sequence.

(iii) If every Cauchy sequence is convergent in (X, d), then (X, d) is called a
complete complex valued metric space.

Lemma 1.1 ([3], Lemma 3). Let (X, d) be a complex valued metric space and
let {xn} be a sequence in X. Then {xn} is a Cauchy sequence if and only if
|d(xn, xn+m)| → 0 as n → ∞.

Lemma 1.2 ([3], Lemma 2). Let (X, d) be a complex valued metric space and
let {xn} be a sequence in X. Then {xn} converges to x if and only if |d(xn, x)| → 0
as n → ∞.

Given nonempty subsets A and B of complex valued metric space (X, d). Then
{d(x, y) : x ∈ A, y ∈ B} ⊆ C is always bounded below by z0 = 0 + i0 and hence
inf{d(x, y) : x ∈ A, y ∈ B} exists. Here we define

d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B},
A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

From the above definition, it is clear that for every x ∈ A0 there exists y ∈ B0

such that d(x, y) = d(A,B) and conversely, for every y ∈ B0 there exists x ∈ A0

such that d(x, y) = d(A,B).
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Definition 1.6. Given non-self mapping S : A → B and T : A → B, an
element x ∈ X is called a common best proximity point of the mappings if they
satisfy the condition that

d(x, Sx) = d(x, Tx) = d(A,B).

Definition 1.7. Let (A,B) be a pair of nonempty subsets of a complex valued
metric space (X, d) with A0 ̸= ∅. Then that pair (A,B) is said to have the weak
P-property if and only if

(1.1)

{
d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)
=⇒ d(x1, x2) ≼ d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Definition 1.8. The mappings S : A → B and T : A → B are said to be
commute proximally if they satisfy the condition that

[d(u, Sx) = d(v, Tx) = d(A,B)] ⇒ Sv = Tu.

Definition 1.9. Let S and T be two non-empty subsets of a complex valued
metric space (X, d). Non-self mappings S, T : A −→ B are said to satisfy a L-
contractive condition if there exist non-negative numbers αi where i = 1, ..., 4 and
α1 + α2 + α3 + 2α4 < 1, then for each x, y ∈ A,

d(Sx, Sy) ≼ α1d(Tx, Ty) + α2d(Tx, Sx) + α3d(Ty, Sy)

+α4[d(Ty, Sx) + d(Sy, Tx)].

Definition 1.10. A mapping T : A → B is said to dominate a mapping
S : A → B proximally if there exists a non-negative real number α < 1 such that
for all u1, u2, v1, v2, x1, x2 in A,

d(u1, Sx1) = d(u2, Sx2) = d(A,B) = d(v1, Tx1) = d(v2, Tx2)

⇒ d(u1, u2) ≼ αd(v1, v2)

.

Definition 1.11. A mapping T : A → B is said to weakly dominate a mapping
S : A → B proximally if there exists a non-negative real number α < 1 such that
for all u1, u2, v1, v2, x1, x2 in A,

d(u1, Sx1) = d(u2, Sx2) = d(A,B) = d(v1, Tx1) = d(v2, Tx2)

⇒ d(u1, u2) ≼ α ωu1,u2,v1,v2 .

where ωu1,u2,v1,v2 = Re ωu1,u2,v1,v2 + i Im ωu1,u2,v1,v2 and

Re ωu1,u2,v1,v2 = max{Re d(v1, v2), Re d(v1, u1), Re d(v2, u2),
Re d(v1,u2)+Re d(v2,u1)

2 },
Im ωu1,u2,v1,v2 =

max{Im d(v1, v2), Im d(v1, u1), Im d(v2, u2),
Im d(v1,u2)+Im d(v2,u1)

2 }.

If T dominates S then T weakly dominates S. But the converse is not true.
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Example 1.2. Let us consider the complex valued metric space (X, d) where
X = C and let d : X ×X −→ C be given as

d(z1, z2) = |x1 − x2|+ i|y1 − y2|,

where z1 = x1 + iy1 and z2 = x2 + iy2. Let A and B be two subsets of X given by

A = {z ∈ C : Re(z) = −1, 0 6 Im(z) 6 1},

B = {z ∈ C : Re(z) = 1, 0 6 Im(z) 6 1}.
So we have that A0 = A, B0 = B and d(A,B) = 2 + 0i. Let T, S : A −→ B be
defined as

Tz = −x+ iy for each z = x+ iy ∈ A

and

Sz =

{
1 + i 14 0 6 y < 1

1 + i 13 y = 1

for each z = x+ iy ∈ A. If we suppose that v1 = x1 = −1 + 12
13 i, v2 = x2 = −1 + i,

u1 = −1 + 1
4 i, u2 = −1 + 1

3 i, it implies that

d(u1, Sx1) = d(u2, Sx2) = d(A,B) = d(v1, Tx1) = d(v2, Tx2).

Clearly, 0 + 1
12 i = d(u1, u2) ̸≼ αd(v1, v2) = α(0 + 1

13 i) for each non-negative real

number α < 1. But obviously, we have that for α = 1
8 , T weakly dominates S

proximally.

2. Common Best Proximity Point by Weakly Dominate Proximally
Property

Theorem 2.1. Let (X, d) be a complete complex valued metric space, A and
B be two non-empty subsets of X. Assume that A0 and B0 are nonempty and A0

is closed. Let S : A → B and T : A → B be two non-self mappings that satisfy the
following conditions:

(a) T weakly dominates S proximally
(b) S and T commute proximally
(c) S and T are continuous
(d) S(A0) ⊆ B0

(e) S(A0) ⊆ T (A0)

Then there exists a unique element x ∈ A such that

d(x, Tx) = d(A,B) and d(x, Sx) = d(A,B).

Proof. Let x0 be a fixed element in A0. Since S(A0) ⊆ T (A0), then there
exists an element x1 ∈ A0 such that Sx0 = Tx1. Then by continuing this process
we can choose xn ∈ A0 such that there exists xn+1 ∈ A0 satisfying

Sxn = Txn+1 for each n ∈ N

since S(A0) ⊆ B0, there exists an element un ∈ A such that

d(Sxn, un) = d(A,B) for each n ∈ N.(2.1)
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By choosing xn and un it follows that

d(Sxn, un) = d(Sxn+1, un+1)(2.2)

and

d(A,B) = d(Txn, un−1) = d(Txn+1, un).

Since T weakly dominates S proximally then we have

d(un, un+1) ≼ α ωun,un+1,un−1,un ,

where α < 1 and

Re ωun,un+1,un−1,un = αmax{Re d(un−1, un), Re d(un−1, un),

Re d(un, un+1),
Re d( un−1, un+1) +Re d(un, un)

2
}.

and

Im ωun,un+1,un−1,un = αmax{Im d(un−1, un), Im d(un−1, un),

Im d(un, un+1),
Im d( un−1, un+1) + Im d(un, un)

2
}.

We focus on Re d(un, un+1) and conclude for Im d(un, un+1) and finally for
d(un, un+1),

Re d(un, un+1) 6 α max{Re d(un−1, un),
Re d(un−1, un+1)

2
}

6 α max{Re d(un−1, un),
Re d(un−1, un) +Re d(un, un+1)

2
}.

We will prove that {un} is a Cauchy sequence. We distinguish two cases.

Case I. Suppose that

Re d(un, un+1) 6 α Re d(un−1, un),

so we get that

Re d(un, un+1) 6 αn Re d(u0, u1),

Therefore for any m > n we have

Re d(un, um) 6 Re d(un, un+1) +Re d(un+1, un+2) + . . . +Re d(um−1, um)

6 αn Re d(u0, u1) + αn+1 Re d(u0, u1) + . . . + αm−1 Re d(u0, u1)

6 ( αn

1−α ) Re d(u0, u1) → 0 as m, n → ∞.

Case II. Assume that

Re d(un, un+1) 6 α
Re d(un−1, un) +Re d(un, un+1)

2

6 α/2

1− α/2
Re d(un−1, un).

Put h = α/2
1−α/2 < 1, so we have that

Re d(un, un+1) 6 hn Re d(u0, u1).
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It follows that for any m > n,

Re d(un, um) 6 (
hn

1− h
) Re d(u0, u1) → 0 as m, n → ∞.

Similarly we can conclude that for any m > n,

Im d(un, um) 6 (
αn

1− α
) Im d(u0, u1) → 0 as m, n → ∞,

or

Im d(un, um) 6 (
hn

1− h
) Im d(u0, u1) → 0 as m, n → ∞.

This implies that for any m > n,

d(un, um) → 0 as m, n → ∞.

Then {un} is a Cauchy sequence and since X is complete and A0 is closed, there
exists u ∈ A0 such that un → u. By hypothesis, mappings S and T are commuting
proximally and by (2.2) we have that

Tun = Sun−1, for every n ∈ N.

Since T and S are continuous it implies that

Tu = lim
n→∞

Tun = lim
n→∞

Sun−1 = Su.

As Su ∈ S(A0) ⊆ B0, there exists an x ∈ A0 such that

d(x, Su) = d(A,B) = d(x, Tu).(2.3)

Since S and T commute proximally, Sx = Tx. Also, Sx ∈ S(A0) ⊆ B0, there exists
a z ∈ A0 such that

d(z, Sx) = d(A,B) = d(z, Tx).(2.4)

Since T weakly dominates S then from (2.3) and (2.4) we can conclude that

d(x, z) ≼ α ωx,z,x,z = α (Re d(x, z) + iIm d(x, z)) = α d(x, z).

It follows that x = z, therefore we have that

d(x, Sx) = d(A,B) = d(x, Tx).(2.5)

We now show that S and T have unique common best proximity point. For this,
assume that x∗ in A is a second common best proximity point of S and T , then

d(x∗, Sx∗) = d(A,B) = d(x∗, Tx∗).(2.6)

Since T weakly dominate S proximally then from (2.5) and (2.6), we have

d(x, x∗) ≼ αd(x, x∗).

Consequently, x = x∗ and S and T have a unique common best proximity point. �
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Example 2.1. Let us consider the complex valued metric space (X, d) where
X = C and let d : X ×X −→ C be given as

d(z1, z2) = |x1 − x2|+ i|y1 − y2|,
where z1 = x1 + iy1 and z2 = x2 + iy2. Let A and B be two subsets of X given by

A = {z ∈ C : Re(z) = −1, 0 6 Im(z) 6 1}
∪ {z ∈ C : Re(z) = 1, 0 6 Im(z) 6 1},

B = {z ∈ C : Re(z) = −2, 0 6 Im(z) 6 1}
∪ {z ∈ C : Re(z) = 2, 0 6 Im(z) 6 1}.

Then A and B are closed and bounded subsets of X such that

d(A,B) = 1, A0 = A, B0 = B.

Let T, S : A −→ B be defined as

Tz = 2|x|+ iy for each z = x+ iy ∈ A

and

Sz = 2|x|+ i
y

2
for each z = x+ iy ∈ A.

Therefore T and S satisfy the properties mentioned in Theorem 2.1. Hence the
conditions of Theorem 2.1 are satisfied and 1 + 0i is the unique common best
proximity point of S and T .

By Theorem 2.1 we obtain the following results in the fixed point theorem.

Corollary 2.1. Let (X,d) be a complex valued metric space. Let T : X → X
be a continuous mapping and S be any self-mapping on X that commutes with T .
Further let S and T satisfy S(X) ⊆ T (X) and there exists a constant α ∈ [0, 1)
such that for every x, y ∈ X

d(Sx, Sy) ≼ α ωSx,Sy,Tx,Ty.

where

Re ωSx,Sy,Tx,Ty

= max{Re d(Tx, Ty), Re d(Tx, Sx), Re d(Ty, Sy), Re d(Tx,Sy)+Re d(Ty,Sx)
2 },

and

Im ωSx,Sy,Tx,Ty

= max{Im d(Tx, Ty), Im d(Tx, Sx), Im d(Ty, Sy), Im d(Tx,Sy)+Im d(Ty,Sx)
2 }.

Then S and T have a unique common fixed point.

If T is assumed to be identity mapping in Corollary 2.1, then we have the
following result.

Corollary 2.2. Let (X,d) be a complex valued metric space. Let S be a self-
mapping on X and there exists a constant α ∈ [0, 1) such that for every x, y ∈ X

d(Sx, Sy) ≼ α ωSx,Sy,x,y.
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where Re ωSx,Sy,x,y

= max{Re d(x, y), Re d(x, Sx), Re d(y, Sy), Re d(x,Sy)+Re d(y,Sx)
2 },

and

Im ωSx,Sy,x,y

= max{Im d(x, y), Im d(x, Sx), Im d(y, Sy), Im d(x,Sy)+Im d(y,Sx)
2 }.

Then S has a fixed point.

3. Common Best Proximity Point for L-contractive Condition
Mappings

Theorem 3.1. Let (X, d) be a complex valued metric space, A and B be two
non-empty closed subsets of X and the pair (A,B) satisfies the weak P-property.
Let A0 and B0 are non-empty. Assume also that S, T : A −→ B are two non-self
mappings satisfying the following conditions:

(a) S and T commute proximally;
(b) S and T are continuous;
(c) S(A0) ⊆ B0 and S(A0) ⊆ T (A0);
(d) S and T satisfy L-contractive condition.

Then, there exists a unique point x ∈ A such that

d(x, Tx) = d(A,B) = d(x, Sx).

Proof. Let x0 be a fixed element in A0. Since S(A0) ⊆ T (A0), then there
exists an element x1 ∈ A0 such that Sx0 = Tx1. Then by continuing this process
we can choose xn ∈ A0 such that there exists xn+1 ∈ A0 satisfying

Sxn = Txn+1 for each n ∈ N.(3.1)

Since S(A0) ⊆ B0 there exists an element un ∈ A0 such that

d(Sxn, un) = d(A,B) for each n ∈ N.(3.2)

Further, it follows from the choice xn and un that

d(Sxn, un) = d(A,B) = d(Sxn+1, un+1),

By using the weak P-property and L-contractive condition, we have

d(un, un+1) ≼ d(Sxn, Sxn+1)

≼ α1d(Txn, Txn+1) + α2d(Txn, Sxn) + α3d(Txn+1, Sxn+1)

+α4[d(Txn+1, Sxn) + d(Sxn+1, Txn)]

≼ α1d(Sxn−1, Sxn) + α2d(Sxn−1, Sxn) + α3d(Sxn, Sxn+1)

+α4d(Sxn−1, Sxn) + α4d(Sxn, Sxn+1).

Consequently, it implies that

d(un, un+1) ≼ hd(Sxn−1, Sxn) ≼ . . . ≼ hnd(Sx0, Sx1),
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where h = α1+α2+α4

1−(α3+α4)
< 1. Therefore, {un} is a Cauchy sequence and since (X, d)

is a complete complex valued metric space and A is closed, then there exists u ∈ A
such that un → u as n → ∞. Also, we have that

d(Sxn, un) = d(A,B) = d(Txn, un−1),

Since S and T commute proximally we get that

Tun = Sun−1.

Thus, it follows that Tu = Su, because S and T are continuous. Since {Sxn} is
also a Cauchy sequence, X is complete and B is closed we can easily prove that
Su ∈ S(A0) ⊆ B0. Therefore, there exists x ∈ A0 such that

d(x, Su) = d(A,B) = d(x, Tu).(3.3)

Therefore, Tx = Sx, because S and T commute proximally. Since Sx ∈ S(A0) ⊆
B0, there exists z ∈ A0, it implies that

d(z, Sx) = d(A,B) = d(z, Tx).(3.4)

By L-contractive condition, we get that

d(Su, Sx) ≼ α1d(Tu, Tx) + α2d(Su, Tu) + α3d(Sx, Tx)

+α4[d(Su, Tx) + d(Sx, Tu)]

= (α1 + 2α4)d(Su, Sx).(3.5)

Therefore, Su = Sx. From (3.3) and (3.4) we have

d(x, Su) = d(A,B) = d(z, Sx),

the weak P-property of the pair (A,B) implies

d(x, z) ≼ d(Sx, Su) = 0.

So x = z and

d(x, Sx) = d(A,B) = d(x, Tx).(3.6)

Suppose that x∗ is another common best proximity point of the mappings S and
T so that

(3.7) d(x∗, Sx∗) = d(A,B) = d(x∗, Tx∗).

Since S and T commute proximally, then Sx = Tx and Sx∗ = Tx∗. So we have

d(Sx, Sx∗) ≼ α1d(Tx, Tx
∗) + α2d(Tx, Sx) + α3d(Tx

∗, Sx∗)

+α4[d(Tx
∗, Sx) + d(Tx, Sx∗)]

= (α1 + 2α4)d(Sx, Sx
∗),

Which implies that Sx = Sx∗. Since the pair (A,B) satisfies weak P-property,
from (3.6) and (3.7) we have that

d(x, x∗) ≼ d(Sx, Sx∗).

Eventually, we have that x = x∗. Hence S and T have a unique common best
proximity point. �
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Example 3.1. Let (X, d) be a complex valued metric space defined as in Ex-
ample 2.1 and A, B be two subsets of X given by

A = {z ∈ C : Re(z) = 0, 0 6 Im(z) 6 1},
B = {z ∈ C : Re(z) = 1, 0 6 Im(z) 6 1}.

Let T, S : A −→ B be defined as

T (0 + iy) = 1 + iy for each 0 6 y 6 1

and
S(0 + iy) = 1 + i

y

4
for each 0 6 y 6 1.

Then (A,B) is a pair of nonempty closed and bounded subsets of X such that
A0 = A, B0 = B and d(A,B) = 1 + 0i. It is verified that the (A,B) satisfies the
weak P-property. Also T and S satisfy the properties mentioned in Theorem 3.1.
Hence the conditions of Theorem 3.1 are satisfied and it is seen that 0 = 0 + i0 is
the unique common best proximity point of S and T .

If we suppose that S and T are self-mappings, then Theorem 3.1 implies the fol-
lowing common fixed point theorem, that generalizes and complements the results
of [5], [6], [10], [11] and others in complex valued metric spaces.

Corollary 3.1. Let (X, d) be a complete complex valued metric space. Assume
that S, T : X −→ X are two self mappings satisfying the following conditions:

(a) there exist non-negative numbers αi where i = 1, ..., 4 and α1 +α2 +α3 +
2α4 < 1, such that for each x, y ∈ A,

d(Sx, Sy) ≼ α1d(Tx, Ty) + α2d(Tx, Sx) + α3d(Ty, Sy)

+α4[d(Ty, Sx) + d(Sy, Tx)].

(b) S and T commute;
(c) T is continuous;
(d) S(X) ⊆ T (X);

Then S and T have a unique common fixed point.
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