COMMON BEST PROXIMITY POINTS IN COMPLEX VALUED METRIC SPACES

S. M. Aghayan, A. Zireh, and A. Ebadian

Abstract

In this paper, we obtain the existence and the uniqueness of common best proximity point theorems for non-self mappings between two subsets of a complex valued metric space satisfying certain contractive conditions. Our results supported by some examples.

1. Introduction and Preliminaries

Fixed point theory focuses on solving the equation $T x=x$, where T is a selfmapping defined on a subset of a metric space or other suitable space. If it is assumed that, T is not a self-mapping then the equation $T x=x$ is likely to have no solution. Consequently, the significant aim is determining an element x that is in close proximity to $T x$ in some sense. Eventually, the target is finding an element x in a metric space, that satisfy in the following condition, $d(x, T x)=d(A, B)$ and $d(x, S x)=d(A, B)$ which d is a metric function and $d(A, B):=\inf \{d(x, y): x \in$ $A, y \in B\}$. Now, if $T, S: A \rightarrow B$ are two non-self mappings, then the equations $S x=x$ and $T x=x$ are likely to have no solution, the solution known as a common fixed point of the mappings S and T (see, $[\mathbf{1 , 7 , 9 , 1 2 , 8 , 1 5]) . ~ S o , ~ t h e ~ p u r p o s e ~}$ is finding an element x in A such that $d(x, S x)=d(A, B)$ and $d(x, T x)=d(A, B)$ which x is called the common best proximity point of mappings S and T in a metric space (see, $[\mathbf{2}, \mathbf{1 3}, \mathbf{1 4}]$). In 2011, Azam et al. [3] introduced the notion of complex valued metric space, which is a generalization of the classical metric space and established the existence of common fixed point theorems for mappings satisfying contraction condition (see [3], Theorem 4). The purpose of this article is generalizing some well-known results about common best proximity points that

[^0]were established in the classic metric space (see, $[\mathbf{2}, \mathbf{1 3}]$), in the complex valued metric space by some new definitions and presenting a type of contractive condition and developing a common best proximity point theorem for non-self mappings which satisfy in this contractive condition, in the complex valued metric space.

Let \mathbb{C} be the set of complex numbers and $z_{1}, z_{2} \in \mathbb{C}$. Define a partial order \preceq on \mathbb{C} as follows:

$$
z_{1} \preceq z_{2} \text { if and only if } \operatorname{Re}\left(z_{1}\right) \leqslant \operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right) \leqslant \operatorname{Im}\left(z_{2}\right) .
$$

It follows that $z_{1} \preceq z_{2}$ if and only if one of the following conditions is satisfied:
(i) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$,
(ii) $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$,
(iii) $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$,
(iv) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$.

In particular, we will write $z_{1} \npreceq z_{2}$ if $z_{1} \neq z_{2}$ and one of (i), (ii), and (iii) is satisfied where we denote $z_{1} \prec z_{2}$ if only (iii) is satisfied. Note that

$$
\begin{aligned}
& 0 \preceq z_{1} \precsim z_{2} \Longrightarrow\left|z_{1}\right|<\left|z_{2}\right|, \\
& z_{1} \preceq z_{2}, z_{2} \precsim z_{3} \Longrightarrow z_{1} \prec z_{3} .
\end{aligned}
$$

Definition 1.1. [3] Let X be a nonempty set. Suppose that the mapping d : $X \times X \rightarrow \mathbb{C}$, satisfies:
(a) $0 \preceq d(x, y)$, for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
(b) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(c) $d(x, z) \preceq d(x, y)+d(y, z)$, for all $x, y, z \in X$.

Then d is called a complex valued metric on X, and (X, d) is called a complex valued metric space.

Example 1.1. Let $X=\mathbb{C}$. Define the mapping $d: X \times X \rightarrow \mathbb{C}$ for all $x, y \in X$, by

$$
d(x, y)=i|x-y| .
$$

Clearly, the pair (X, d) is a complex valued metric space.
Definition 1.2. [3] Let (X, d) be a complex valued metric space.
(a) A point $x \in X$ is called interior point of a set $A \subseteq X$ whenever there exists $0 \prec r \in \mathbb{C}$ such that $B(x, r)=\{y \in X: d(x, y) \prec r\} \subseteq A$.
(b) A point $x \in X$ is called a limit point of a subset $A \subseteq X$ whenever for every $0 \prec r \in C, B(x, r) \bigcap(A \backslash\{x\}) \neq \emptyset$.
(c) A subset $A \subseteq X$ is called open whenever each element of A is an interior point of A.
(d) A subset $A \subseteq X$ is called closed whenever each limit point of A belongs to A.
(e) The family $F=\{B(x, r): x \in X, 0 \prec r\}$ is a sub-basis for a Hausdorff topology τ on X.
Definition 1.3. [4] Let A be a subset of \mathbb{C}. If there exists $u \in \mathbb{C}$ such that $z \preceq u$ for all $z \in A$, then A is bounded above and u is an upper bound. Similarly,
if there exists $l \in \mathbb{C}$ such that $l \preceq z$, for all $z \in A$, then A is bounded below and l is a lower bound.

Definition 1.4. [4] For a $A \subseteq \mathbb{C}$ which is bounded above if there exists an upper bound s of A such that, for every upper bound u of $A, s \preceq u$, then the upper bound s is called $\sup A$. Similarly, for a subset $A \subseteq \mathbb{C}$ which is bounded below if there exists a lower bound t of A such that for every lower bound l of $A, l \preceq t$, then the lower bound t is called $\inf A$.

Suppose that $A \subseteq \mathbb{C}$ is bounded above. Then there exists $q=u+i v \in \mathbb{C}$ such that $z=x+i y \preceq q=u+i v$, for all $z \in A$. It follows that $x \preceq u$ and $y \preceq v$, for all $z=x+i y \in A$; that is, $S=\{x: z=x+i y \in A\}$ and $T=\{y: z=x+i y \in A\}$ are two sets of real numbers which are bounded above. Hence both $\sup S$ and $\inf T$ exist. Let $\bar{x}=\sup S$ and $\bar{y}=\sup T$. Then $\bar{z}=\bar{x}+i \bar{y}$ is $\sup A$.

Similarly, if $A \subseteq \mathbb{C}$ is bounded below, then $z^{*}=x^{*}+i y^{*}$ is $\inf A$, where $x^{*}=\inf S=\inf \{x: \bar{z}=x+i y \in A\}$ and $y^{*}=\inf T=\inf \{y: x+i y \in A\}$.

Any subset $A \subseteq \mathbb{C}$ which is bounded above has supremum. Equivalently, any subset $A \subseteq \mathbb{C}$ which is bounded below has infimum.

Definition 1.5. [3] Let (X, d) be a complex valued metric space. Let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$.
(i) If for every $c \in \mathbb{C}$, with $0 \prec c$ there is $n_{0} \in N$ such that $d\left(x_{n}, x\right) \prec c$, for all $n>n_{0}$, then $\left\{x_{n}\right\}$ is said to be convergent, $\left\{x_{n}\right\}$ converges to x, x is the limit point of $\left\{x_{n}\right\}$. We denote this by $\lim _{n} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \longrightarrow \infty$.
(ii) If for every $c \in \mathbb{C}$, with $0 \prec c$ there is $N \in \mathbb{N}$ such that for all $n>N$, $d\left(x_{n}, x_{n+m}\right) \prec c$, where $m \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is said to be Cauchy sequence.
(iii) If every Cauchy sequence is convergent in (X, d), then (X, d) is called a complete complex valued metric space.

Lemma 1.1 ([3], Lemma 3). Let (X, d) be a complex valued metric space and let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ is a Cauchy sequence if and only if $\left|d\left(x_{n}, x_{n+m}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 1.2 ([3], Lemma 2). Let (X, d) be a complex valued metric space and let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ converges to x if and only if $\left|d\left(x_{n}, x\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Given nonempty subsets A and B of complex valued metric space (X, d). Then $\{d(x, y): x \in A, y \in B\} \subseteq \mathbb{C}$ is always bounded below by $z_{0}=0+i 0$ and hence $\inf \{d(x, y): x \in A, y \in B\}$ exists. Here we define

$$
\begin{gathered}
d(A, B)=\inf \{d(x, y): x \in A \text { and } y \in B\}, \\
A_{0}=\{x \in A: d(x, y)=d(A, B) \text { for some } y \in B\}, \\
B_{0}=\{y \in B: d(x, y)=d(A, B) \text { for some } x \in A\} .
\end{gathered}
$$

From the above definition, it is clear that for every $x \in A_{0}$ there exists $y \in B_{0}$ such that $d(x, y)=d(A, B)$ and conversely, for every $y \in B_{0}$ there exists $x \in A_{0}$ such that $d(x, y)=d(A, B)$.

Definition 1.6. Given non-self mapping $S: A \rightarrow B$ and $T: A \rightarrow B$, an element $x \in X$ is called a common best proximity point of the mappings if they satisfy the condition that

$$
d(x, S x)=d(x, T x)=d(A, B)
$$

Definition 1.7. Let (A, B) be a pair of nonempty subsets of a complex valued metric space (X, d) with $A_{0} \neq \emptyset$. Then that pair (A, B) is said to have the weak P-property if and only if

$$
\left\{\begin{array}{l}
d\left(x_{1}, y_{1}\right)=d(A, B) \tag{1.1}\\
d\left(x_{2}, y_{2}\right)=d(A, B)
\end{array} \quad \Longrightarrow d\left(x_{1}, x_{2}\right) \preceq d\left(y_{1}, y_{2}\right),\right.
$$

where $x_{1}, x_{2} \in A_{0}$ and $y_{1}, y_{2} \in B_{0}$.
Definition 1.8. The mappings $S: A \rightarrow B$ and $T: A \rightarrow B$ are said to be commute proximally if they satisfy the condition that

$$
[d(u, S x)=d(v, T x)=d(A, B)] \Rightarrow S v=T u
$$

Definition 1.9. Let S and T be two non-empty subsets of a complex valued metric space (X, d). Non-self mappings $S, T: A \longrightarrow B$ are said to satisfy a L contractive condition if there exist non-negative numbers α_{i} where $i=1, \ldots, 4$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}<1$, then for each $x, y \in A$,

$$
\begin{aligned}
d(S x, S y) \preceq & \alpha_{1} d(T x, T y)+\alpha_{2} d(T x, S x)+\alpha_{3} d(T y, S y) \\
& +\alpha_{4}[d(T y, S x)+d(S y, T x)] .
\end{aligned}
$$

Definition 1.10. A mapping $T: A \rightarrow B$ is said to dominate a mapping $S: A \rightarrow B$ proximally if there exists a non-negative real number $\alpha<1$ such that for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A,

$$
\begin{gathered}
d\left(u_{1}, S x_{1}\right)=d\left(u_{2}, S x_{2}\right)=d(A, B)=d\left(v_{1}, T x_{1}\right)=d\left(v_{2}, T x_{2}\right) \\
\Rightarrow d\left(u_{1}, u_{2}\right) \preceq \alpha d\left(v_{1}, v_{2}\right)
\end{gathered}
$$

Definition 1.11. A mapping $T: A \rightarrow B$ is said to weakly dominate a mapping $S: A \rightarrow B$ proximally if there exists a non-negative real number $\alpha<1$ such that for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A,

$$
\begin{gathered}
d\left(u_{1}, S x_{1}\right)=d\left(u_{2}, S x_{2}\right)=d(A, B)=d\left(v_{1}, T x_{1}\right)=d\left(v_{2}, T x_{2}\right) \\
\Rightarrow d\left(u_{1}, u_{2}\right) \preceq \alpha \omega_{u_{1}, u_{2}, v_{1}, v_{2}} .
\end{gathered}
$$

where $\omega_{u_{1}, u_{2}, v_{1}, v_{2}}=\operatorname{Re} \omega_{u_{1}, u_{2}, v_{1}, v_{2}}+i \operatorname{Im} \omega_{u_{1}, u_{2}, v_{1}, v_{2}}$ and
$\operatorname{Re} \omega_{u_{1}, u_{2}, v_{1}, v_{2}}=\max \left\{\operatorname{Red}\left(v_{1}, v_{2}\right), \operatorname{Red} d\left(v_{1}, u_{1}\right), \operatorname{Red}\left(v_{2}, u_{2}\right), \frac{\operatorname{Red} d\left(v_{1}, u_{2}\right)+\operatorname{Red} d\left(v_{2}, u_{1}\right)}{2}\right\}$,
$\operatorname{Im} \omega_{u_{1}, u_{2}, v_{1}, v_{2}}=$
$\max \left\{\operatorname{Im} d\left(v_{1}, v_{2}\right), \operatorname{Im} d\left(v_{1}, u_{1}\right), \operatorname{Im} d\left(v_{2}, u_{2}\right), \frac{\operatorname{Im} d\left(v_{1}, u_{2}\right)+\operatorname{Im} d\left(v_{2}, u_{1}\right)}{2}\right\}$.
If T dominates S then T weakly dominates S. But the converse is not true.

Example 1.2. Let us consider the complex valued metric space (X, d) where $X=\mathbb{C}$ and let $d: X \times X \longrightarrow \mathbb{C}$ be given as

$$
d\left(z_{1}, z_{2}\right)=\left|x_{1}-x_{2}\right|+i\left|y_{1}-y_{2}\right|
$$

where $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$. Let A and B be two subsets of X given by

$$
\begin{gathered}
A=\{z \in \mathbb{C}: \operatorname{Re}(z)=-1,0 \leqslant \operatorname{Im}(z) \leqslant 1\} \\
B=\{z \in \mathbb{C}: \operatorname{Re}(z)=1,0 \leqslant \operatorname{Im}(z) \leqslant 1\}
\end{gathered}
$$

So we have that $A_{0}=A, B_{0}=B$ and $d(A, B)=2+0 i$. Let $T, S: A \longrightarrow B$ be defined as

$$
T z=-x+i y \text { for each } z=x+i y \in A
$$

and

$$
S z= \begin{cases}1+i \frac{1}{4} & 0 \leqslant y<1 \\ 1+i \frac{1}{3} & y=1\end{cases}
$$

for each $z=x+i y \in A$. If we suppose that $v_{1}=x_{1}=-1+\frac{12}{13} i, v_{2}=x_{2}=-1+i$, $u_{1}=-1+\frac{1}{4} i, u_{2}=-1+\frac{1}{3} i$, it implies that

$$
d\left(u_{1}, S x_{1}\right)=d\left(u_{2}, S x_{2}\right)=d(A, B)=d\left(v_{1}, T x_{1}\right)=d\left(v_{2}, T x_{2}\right) .
$$

Clearly, $0+\frac{1}{12} i=d\left(u_{1}, u_{2}\right) \npreceq \alpha d\left(v_{1}, v_{2}\right)=\alpha\left(0+\frac{1}{13} i\right)$ for each non-negative real number $\alpha<1$. But obviously, we have that for $\alpha=\frac{1}{8}, T$ weakly dominates S proximally.

2. Common Best Proximity Point by Weakly Dominate Proximally Property

Theorem 2.1. Let (X, d) be a complete complex valued metric space, A and B be two non-empty subsets of X. Assume that A_{0} and B_{0} are nonempty and A_{0} is closed. Let $S: A \rightarrow B$ and $T: A \rightarrow B$ be two non-self mappings that satisfy the following conditions:
(a) T weakly dominates S proximally
(b) S and T commute proximally
(c) S and T are continuous
(d) $S\left(A_{0}\right) \subseteq B_{0}$
(e) $S\left(A_{0}\right) \subseteq T\left(A_{0}\right)$

Then there exists a unique element $x \in A$ such that

$$
d(x, T x)=d(A, B) \text { and } d(x, S x)=d(A, B)
$$

Proof. Let x_{0} be a fixed element in A_{0}. Since $S\left(A_{0}\right) \subseteq T\left(A_{0}\right)$, then there exists an element $x_{1} \in A_{0}$ such that $S x_{0}=T x_{1}$. Then by continuing this process we can choose $x_{n} \in A_{0}$ such that there exists $x_{n+1} \in A_{0}$ satisfying

$$
S x_{n}=T x_{n+1} \quad \text { for each } n \in N
$$

since $S\left(A_{0}\right) \subseteq B_{0}$, there exists an element $u_{n} \in A$ such that

$$
\begin{equation*}
d\left(S x_{n}, u_{n}\right)=d(A, B) \quad \text { for each } n \in N \tag{2.1}
\end{equation*}
$$

By choosing x_{n} and u_{n} it follows that

$$
\begin{equation*}
d\left(S x_{n}, u_{n}\right)=d\left(S x_{n+1}, u_{n+1}\right) \tag{2.2}
\end{equation*}
$$

and

$$
d(A, B)=d\left(T x_{n}, u_{n-1}\right)=d\left(T x_{n+1}, u_{n}\right) .
$$

Since T weakly dominates S proximally then we have

$$
d\left(u_{n}, u_{n+1}\right) \preceq \alpha \omega_{u_{n}, u_{n+1}, u_{n-1}, u_{n}}
$$

where $\alpha<1$ and

$$
\begin{array}{r}
\operatorname{Re} \omega_{u_{n}, u_{n+1}, u_{n-1}, u_{n}}=\alpha \max \left\{\operatorname{Red} d\left(u_{n-1}, u_{n}\right), \operatorname{Red} d u_{n-1}, u_{n}\right), \\
\left.\operatorname{Red} d\left(u_{n}, u_{n+1}\right), \frac{\operatorname{Red} d\left(u_{n-1}, u_{n+1}\right)+\operatorname{Red} d\left(u_{n}, u_{n}\right)}{2}\right\} .
\end{array}
$$

and

$$
\begin{array}{r}
\operatorname{Im} \omega_{u_{n}, u_{n+1}, u_{n-1}, u_{n}}=\alpha \max \left\{\operatorname{Im} d\left(u_{n-1}, u_{n}\right), \operatorname{Im} d\left(u_{n-1}, u_{n}\right),\right. \\
\left.\operatorname{Im} d\left(u_{n}, u_{n+1}\right), \frac{\operatorname{Im} d\left(u_{n-1}, u_{n+1}\right)+\operatorname{Im} d\left(u_{n}, u_{n}\right)}{2}\right\} .
\end{array}
$$

We focus on Re $d\left(u_{n}, u_{n+1}\right)$ and conclude for $\operatorname{Im} d\left(u_{n}, u_{n+1}\right)$ and finally for $d\left(u_{n}, u_{n+1}\right)$,

$$
\begin{aligned}
& \operatorname{Re} d\left(u_{n}, u_{n+1}\right) \leqslant \alpha \max \left\{\operatorname{Red} d\left(u_{n-1}, u_{n}\right), \frac{\operatorname{Red} d\left(u_{n-1}, u_{n+1}\right)}{2}\right\} \\
& \leqslant \alpha \max \left\{\operatorname{Red} d\left(u_{n-1}, u_{n}\right), \frac{\operatorname{Red} d\left(u_{n-1}, u_{n}\right)+\operatorname{Red}\left(u_{n}, u_{n+1}\right)}{2}\right\}
\end{aligned}
$$

We will prove that $\left\{u_{n}\right\}$ is a Cauchy sequence. We distinguish two cases.
Case I. Suppose that

$$
\operatorname{Re} d\left(u_{n}, u_{n+1}\right) \leqslant \alpha \operatorname{Red} d\left(u_{n-1}, u_{n}\right)
$$

so we get that

$$
\operatorname{Red} d\left(u_{n}, u_{n+1}\right) \leqslant \alpha^{n} \operatorname{Red}\left(u_{0}, u_{1}\right)
$$

Therefore for any $m>n$ we have

$$
\begin{gathered}
\operatorname{Red} d\left(u_{n}, u_{m}\right) \leqslant \operatorname{Red} d\left(u_{n}, u_{n+1}\right)+\operatorname{Red} d\left(u_{n+1}, u_{n+2}\right)+\ldots+\operatorname{Red} d\left(u_{m-1}, u_{m}\right) \\
\left.\leqslant \alpha^{n} \operatorname{Red}\left(u_{0}, u_{1}\right)+\alpha^{n+1} \operatorname{Red} d u_{0}, u_{1}\right)+\ldots+\alpha^{m-1} \operatorname{Red} d\left(u_{0}, u_{1}\right) \\
\leqslant\left(\frac{\alpha^{n}}{1-\alpha}\right) \operatorname{Red} d\left(u_{0}, u_{1}\right) \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
\end{gathered}
$$

Case II. Assume that

$$
\begin{array}{r}
\operatorname{Red}\left(u_{n}, u_{n+1}\right) \leqslant \alpha \frac{\operatorname{Red}\left(u_{n-1}, u_{n}\right)+\operatorname{Red}\left(u_{n}, u_{n+1}\right)}{2} \\
\leqslant \frac{\alpha / 2}{1-\alpha / 2} \operatorname{Red}\left(u_{n-1}, u_{n}\right) .
\end{array}
$$

Put $h=\frac{\alpha / 2}{1-\alpha / 2}<1$, so we have that

$$
\operatorname{Red} d\left(u_{n}, u_{n+1}\right) \leqslant h^{n} \operatorname{Red} d\left(u_{0}, u_{1}\right)
$$

It follows that for any $m>n$,

$$
\operatorname{Red} d\left(u_{n}, u_{m}\right) \leqslant\left(\frac{h^{n}}{1-h}\right) \operatorname{Red}\left(u_{0}, u_{1}\right) \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
$$

Similarly we can conclude that for any $m>n$,

$$
\operatorname{Im} d\left(u_{n}, u_{m}\right) \leqslant\left(\frac{\alpha^{n}}{1-\alpha}\right) \operatorname{Im} d\left(u_{0}, u_{1}\right) \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
$$

or

$$
\operatorname{Im} d\left(u_{n}, u_{m}\right) \leqslant\left(\frac{h^{n}}{1-h}\right) \operatorname{Im} d\left(u_{0}, u_{1}\right) \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
$$

This implies that for any $m>n$,

$$
d\left(u_{n}, u_{m}\right) \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
$$

Then $\left\{u_{n}\right\}$ is a Cauchy sequence and since X is complete and A_{0} is closed, there exists $u \in A_{0}$ such that $u_{n} \rightarrow u$. By hypothesis, mappings S and T are commuting proximally and by (2.2) we have that

$$
T u_{n}=S u_{n-1}, \quad \text { for every } n \in N
$$

Since T and S are continuous it implies that

$$
T u=\lim _{n \rightarrow \infty} T u_{n}=\lim _{n \rightarrow \infty} S u_{n-1}=S u
$$

As $S u \in S\left(A_{0}\right) \subseteq B_{0}$, there exists an $x \in A_{0}$ such that

$$
\begin{equation*}
d(x, S u)=d(A, B)=d(x, T u) . \tag{2.3}
\end{equation*}
$$

Since S and T commute proximally, $S x=T x$. Also, $S x \in S\left(A_{0}\right) \subseteq B_{0}$, there exists a $z \in A_{0}$ such that

$$
\begin{equation*}
d(z, S x)=d(A, B)=d(z, T x) \tag{2.4}
\end{equation*}
$$

Since T weakly dominates S then from (2.3) and (2.4) we can conclude that

$$
d(x, z) \preceq \alpha \omega_{x, z, x, z}=\alpha(\operatorname{Re} d(x, z)+i \operatorname{Im} d(x, z))=\alpha d(x, z)
$$

It follows that $x=z$, therefore we have that

$$
\begin{equation*}
d(x, S x)=d(A, B)=d(x, T x) \tag{2.5}
\end{equation*}
$$

We now show that S and T have unique common best proximity point. For this, assume that x^{*} in A is a second common best proximity point of S and T, then

$$
\begin{equation*}
d\left(x^{*}, S x^{*}\right)=d(A, B)=d\left(x^{*}, T x^{*}\right) \tag{2.6}
\end{equation*}
$$

Since T weakly dominate S proximally then from (2.5) and (2.6), we have

$$
d\left(x, x^{*}\right) \preceq \alpha d\left(x, x^{*}\right) .
$$

Consequently, $x=x^{*}$ and S and T have a unique common best proximity point.

Example 2.1. Let us consider the complex valued metric space (X, d) where $X=\mathbb{C}$ and let $d: X \times X \longrightarrow \mathbb{C}$ be given as

$$
d\left(z_{1}, z_{2}\right)=\left|x_{1}-x_{2}\right|+i\left|y_{1}-y_{2}\right|,
$$

where $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$. Let A and B be two subsets of X given by

$$
\begin{aligned}
A & =\{z \in \mathbb{C}: \operatorname{Re}(z)=-1,0 \leqslant \operatorname{Im}(z) \leqslant 1\} \\
& \cup\{z \in \mathbb{C}: \operatorname{Re}(z)=1,0 \leqslant \operatorname{Im}(z) \leqslant 1\}, \\
B & =\{z \in \mathbb{C}: \operatorname{Re}(z)=-2,0 \leqslant \operatorname{Im}(z) \leqslant 1\} \\
& \cup\{z \in \mathbb{C}: \operatorname{Re}(z)=2,0 \leqslant \operatorname{Im}(z) \leqslant 1\} .
\end{aligned}
$$

Then A and B are closed and bounded subsets of X such that

$$
d(A, B)=1, \quad A_{0}=A, \quad B_{0}=B
$$

Let $T, S: A \longrightarrow B$ be defined as

$$
T z=2|x|+i y \text { for each } z=x+i y \in A
$$

and

$$
S z=2|x|+i \frac{y}{2} \text { for each } z=x+i y \in A
$$

Therefore T and S satisfy the properties mentioned in Theorem 2.1. Hence the conditions of Theorem 2.1 are satisfied and $1+0 i$ is the unique common best proximity point of S and T.

By Theorem 2.1 we obtain the following results in the fixed point theorem.
Corollary 2.1. Let (X, d) be a complex valued metric space. Let $T: X \rightarrow X$ be a continuous mapping and S be any self-mapping on X that commutes with T. Further let S and T satisfy $S(X) \subseteq T(X)$ and there exists a constant $\alpha \in[0,1)$ such that for every $x, y \in X$

$$
d(S x, S y) \preceq \alpha \omega_{S x, S y, T x, T y} .
$$

where
$\operatorname{Re} \omega_{S x, S y, T x, T y}$
$=\max \left\{\operatorname{Red} d(T x, T y), \operatorname{Red} d(T x, S x), \operatorname{Red} d(T y, S y), \frac{\operatorname{Red} d(T x, S y)+\operatorname{Red} d(T y, S x)}{2}\right\}$,
and
$\operatorname{Im} \omega_{S x, S y, T x, T y}$
$=\max \left\{\operatorname{Im} d(T x, T y), \operatorname{Im} d(T x, S x), \operatorname{Im} d(T y, S y), \frac{\operatorname{Im} d(T x, S y)+\operatorname{Im} d(T y, S x)}{2}\right\}$.
Then S and T have a unique common fixed point.
If T is assumed to be identity mapping in Corollary 2.1, then we have the following result.

Corollary 2.2. Let (X, d) be a complex valued metric space. Let S be a selfmapping on X and there exists a constant $\alpha \in[0,1)$ such that for every $x, y \in X$

$$
d(S x, S y) \preceq \alpha \omega_{S x, S y, x, y} .
$$

where Re $\omega_{S x, S y, x, y}$
$=\max \left\{\operatorname{Red} d(x, y), \operatorname{Re} d(x, S x), \operatorname{Red} d(y, S y), \frac{\operatorname{Red} d(x, S y)+\operatorname{Red}(y, S x)}{2}\right\}$,
and
Im $\omega_{S x, S y, x, y}$
$=\max \left\{\operatorname{Im} d(x, y), \operatorname{Im} d(x, S x), \operatorname{Im} d(y, S y), \frac{\operatorname{Im} d(x, S y)+\operatorname{Im} d(y, S x)}{2}\right\}$.
Then S has a fixed point.

3. Common Best Proximity Point for L-contractive Condition Mappings

Theorem 3.1. Let (X, d) be a complex valued metric space, A and B be two non-empty closed subsets of X and the pair (A, B) satisfies the weak P-property. Let A_{0} and B_{0} are non-empty. Assume also that $S, T: A \longrightarrow B$ are two non-self mappings satisfying the following conditions:
(a) S and T commute proximally;
(b) S and T are continuous;
(c) $S\left(A_{0}\right) \subseteq B_{0}$ and $S\left(A_{0}\right) \subseteq T\left(A_{0}\right)$;
(d) S and T satisfy L-contractive condition.

Then, there exists a unique point $x \in A$ such that

$$
d(x, T x)=d(A, B)=d(x, S x)
$$

Proof. Let x_{0} be a fixed element in A_{0}. Since $S\left(A_{0}\right) \subseteq T\left(A_{0}\right)$, then there exists an element $x_{1} \in A_{0}$ such that $S x_{0}=T x_{1}$. Then by continuing this process we can choose $x_{n} \in A_{0}$ such that there exists $x_{n+1} \in A_{0}$ satisfying

$$
\begin{equation*}
S x_{n}=T x_{n+1} \text { for each } n \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

Since $S\left(A_{0}\right) \subseteq B_{0}$ there exists an element $u_{n} \in A_{0}$ such that

$$
\begin{equation*}
d\left(S x_{n}, u_{n}\right)=d(A, B) \text { for each } n \in N \tag{3.2}
\end{equation*}
$$

Further, it follows from the choice x_{n} and u_{n} that

$$
d\left(S x_{n}, u_{n}\right)=d(A, B)=d\left(S x_{n+1}, u_{n+1}\right)
$$

By using the weak P-property and L-contractive condition, we have

$$
\begin{gathered}
d\left(u_{n}, u_{n+1}\right) \preceq d\left(S x_{n}, S x_{n+1}\right) \\
\preceq \alpha_{1} d\left(T x_{n}, T x_{n+1}\right)+\alpha_{2} d\left(T x_{n}, S x_{n}\right)+\alpha_{3} d\left(T x_{n+1}, S x_{n+1}\right) \\
+\alpha_{4}\left[d\left(T x_{n+1}, S x_{n}\right)+d\left(S x_{n+1}, T x_{n}\right)\right] \\
\preceq \alpha_{1} d\left(S x_{n-1}, S x_{n}\right)+\alpha_{2} d\left(S x_{n-1}, S x_{n}\right)+\alpha_{3} d\left(S x_{n}, S x_{n+1}\right) \\
+\alpha_{4} d\left(S x_{n-1}, S x_{n}\right)+\alpha_{4} d\left(S x_{n}, S x_{n+1}\right) .
\end{gathered}
$$

Consequently, it implies that

$$
d\left(u_{n}, u_{n+1}\right) \preceq h d\left(S x_{n-1}, S x_{n}\right) \preceq \ldots \preceq h^{n} d\left(S x_{0}, S x_{1}\right),
$$

where $h=\frac{\alpha_{1}+\alpha_{2}+\alpha_{4}}{1-\left(\alpha_{3}+\alpha_{4}\right)}<1$. Therefore, $\left\{u_{n}\right\}$ is a Cauchy sequence and since (X, d) is a complete complex valued metric space and A is closed, then there exists $u \in A$ such that $u_{n} \rightarrow u$ as $n \rightarrow \infty$. Also, we have that

$$
d\left(S x_{n}, u_{n}\right)=d(A, B)=d\left(T x_{n}, u_{n-1}\right)
$$

Since S and T commute proximally we get that

$$
T u_{n}=S u_{n-1} .
$$

Thus, it follows that $T u=S u$, because S and T are continuous. Since $\left\{S x_{n}\right\}$ is also a Cauchy sequence, X is complete and B is closed we can easily prove that $S u \in S\left(A_{0}\right) \subseteq B_{0}$. Therefore, there exists $x \in A_{0}$ such that

$$
\begin{equation*}
d(x, S u)=d(A, B)=d(x, T u) \tag{3.3}
\end{equation*}
$$

Therefore, $T x=S x$, because S and T commute proximally. Since $S x \in S\left(A_{0}\right) \subseteq$ B_{0}, there exists $z \in A_{0}$, it implies that

$$
\begin{equation*}
d(z, S x)=d(A, B)=d(z, T x) \tag{3.4}
\end{equation*}
$$

By L-contractive condition, we get that

$$
\begin{gather*}
d(S u, S x) \preceq \alpha_{1} d(T u, T x)+\alpha_{2} d(S u, T u)+\alpha_{3} d(S x, T x) \\
+\alpha_{4}[d(S u, T x)+d(S x, T u)] \\
=\left(\alpha_{1}+2 \alpha_{4}\right) d(S u, S x) . \tag{3.5}
\end{gather*}
$$

Therefore, $S u=S x$. From (3.3) and (3.4) we have

$$
d(x, S u)=d(A, B)=d(z, S x),
$$

the weak P-property of the pair (A, B) implies

$$
d(x, z) \preceq d(S x, S u)=0 .
$$

So $x=z$ and

$$
\begin{equation*}
d(x, S x)=d(A, B)=d(x, T x) \tag{3.6}
\end{equation*}
$$

Suppose that x^{*} is another common best proximity point of the mappings S and T so that

$$
\begin{equation*}
d\left(x^{*}, S x^{*}\right)=d(A, B)=d\left(x^{*}, T x^{*}\right) . \tag{3.7}
\end{equation*}
$$

Since S and T commute proximally, then $S x=T x$ and $S x^{*}=T x^{*}$. So we have

$$
\begin{gathered}
d\left(S x, S x^{*}\right) \preceq \alpha_{1} d\left(T x, T x^{*}\right)+\alpha_{2} d(T x, S x)+\alpha_{3} d\left(T x^{*}, S x^{*}\right) \\
+\alpha_{4}\left[d\left(T x^{*}, S x\right)+d\left(T x, S x^{*}\right)\right] \\
=\left(\alpha_{1}+2 \alpha_{4}\right) d\left(S x, S x^{*}\right),
\end{gathered}
$$

Which implies that $S x=S x^{*}$. Since the pair (A, B) satisfies weak P-property, from (3.6) and (3.7) we have that

$$
d\left(x, x^{*}\right) \preceq d\left(S x, S x^{*}\right) .
$$

Eventually, we have that $x=x^{*}$. Hence S and T have a unique common best proximity point.

Example 3.1. Let (X, d) be a complex valued metric space defined as in Example 2.1 and A, B be two subsets of X given by

$$
\begin{aligned}
& A=\{z \in \mathbb{C}: \operatorname{Re}(z)=0,0 \leqslant \operatorname{Im}(z) \leqslant 1\}, \\
& B=\{z \in \mathbb{C}: \operatorname{Re}(z)=1,0 \leqslant \operatorname{Im}(z) \leqslant 1\}
\end{aligned}
$$

Let $T, S: A \longrightarrow B$ be defined as

$$
T(0+i y)=1+i y \text { for each } 0 \leqslant y \leqslant 1
$$

and

$$
S(0+i y)=1+i \frac{y}{4} \text { for each } 0 \leqslant y \leqslant 1
$$

Then (A, B) is a pair of nonempty closed and bounded subsets of X such that $A_{0}=A, B_{0}=B$ and $d(A, B)=1+0 i$. It is verified that the (A, B) satisfies the weak P-property. Also T and S satisfy the properties mentioned in Theorem 3.1. Hence the conditions of Theorem 3.1 are satisfied and it is seen that $0=0+i 0$ is the unique common best proximity point of S and T.

If we suppose that S and T are self-mappings, then Theorem 3.1 implies the following common fixed point theorem, that generalizes and complements the results of $[\mathbf{5}],[\mathbf{6}],[\mathbf{1 0}],[\mathbf{1 1}]$ and others in complex valued metric spaces.

Corollary 3.1. Let (X, d) be a complete complex valued metric space. Assume that $S, T: X \longrightarrow X$ are two self mappings satisfying the following conditions:
(a) there exist non-negative numbers α_{i} where $i=1, \ldots, 4$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}+$ $2 \alpha_{4}<1$, such that for each $x, y \in A$,

$$
\begin{aligned}
d(S x, S y) \preceq & \alpha_{1} d(T x, T y)+\alpha_{2} d(T x, S x)+\alpha_{3} d(T y, S y) \\
& +\alpha_{4}[d(T y, S x)+d(S y, T x)] .
\end{aligned}
$$

(b) S and T commute;
(c) T is continuous;
(d) $S(X) \subseteq T(X)$;

Then S and T have a unique common fixed point.

References

[1] J. Ahmad, A. Azam and S. Saejung. Common fixed point results for contractive mappings in complex valued metric spaces. Fixed Point Theory Appl., 2014, 2014:67.
[2] A. Amini-Harandi. Common best proximity points theorems in metric spaces. Optim. Lett., 8(2)(2014). 581589.
[3] A. Azam, B. Fisher and M. Khan. Common fixed point theorems in complex valued metric spaces. Num. Func. Anal. Optim., 32(3)(2011), 243-253.
[4] B. S. Choudhury, N. Metiya and P. Maity. Best proximity point results in complex valued metric spaces. Inter. J. Anal., Volume 2014 (2014), Article ID 827862.
[5] G. E. Hardy and T. D. Rogers. A Generalization of fixed point theorem of Reich. Canad. Math. Bull., 16(1973), 201-206.
[6] G. Jungck. Commuting mappings and fixed points. Amer. Math. Monthly, 83(4)(1976), 261263.
[7] C. Klin-eam and C. Suanoom. Some common fixed point theorems for generalized-contractive type mappings on complex-valued metric spaces. Abstract and Applied Analysis, Volume 2013(2013), Article ID 604215,.
[8] T. S. Kumar and R. J. Hussain. Common fixed point theorems for contractive type mappings in complex valued metric spaces. International Journal of Science and Research (IJSR), 3(8)(2014), 1131-1134.
[9] A. A. Mukheimer. Some common fixed point theorems in complex valued b-metric spaces. The Scientific World Journal, Volume 2014(2014), ID:587825.
[10] S. Reich. Kannan's fixed point theorem. Boll. Un. Mat. Ital., 4(4)(1971), 1-11.
[11] S. Reich. Some remarks concerning contraction mappings. Canad. Math. Bull., 14(1971), 121-124.
[12] F. Rouzkard and M. Imdad. Some common fixed point theorems on complex valued metric spaces. Computers and Mathematics with Applications, 64(6)(2012), 1866-1874.
[13] S. S. Basha. Common best proximity points: global minimal solutions. TOP (An Official Journal of the Spanish Society of Statistics and Operations Research), 21(1)(2013), 182-188.
[14] S. S. Basha. Common best proximity points: global minimization of multi-objective functions. J. Global Optim., 54(2)(2012), 367-373.
[15] W. Sintunavarat and P. Kumam. Generalized common fixed point theorems in complex valued metric spaces and applications. J. Ineq. Appl., 2012, 2012:84.

Received by editors $12.12 .201 ‘ 6$; Revised version 25.04.2017; Available online 08.05.2017.
Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran

E-mail address: masoud.aghayan64@gmail.com
Department of Mathematics, Shahrood University of Technology, P.O.Box 31636155 , Shahrood, Iran

E-mail address: azireh@shahroodut.ac.ir
Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran

E-mail address: ebadian.ali@gmail.com

[^0]: 2010 Mathematics Subject Classification. 54H25, 47H10.
 Key words and phrases. Common best proximity point, Complex valued metric space, Common fixed points.

