BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 505-514 DOI: 10.7251/BIMVI1703505M

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

ir-EXCELLENT GRAPHS

I.Kulrekha Mudartha, R.Sundareswaran, and V.Swaminathan

ABSTRACT. Terasa W. Haynes et. al. [7], introduced the concept of irredundance in graphs. A subset S of V(G) is called an irredundant set of G if for every vertex $u \in S$, $pn[u, S] \neq \phi$. The minimum (maximum)cardinality of a maximal irredundant set of G is called the irredundance number of G (upper irredundance number of G) and is denoted by ir(G)(IR(G)). A subset V(G)is called an ir-set if it is an irredundant set of G of cardinality ir(G). A vertex $u \in V(G)$ is called ir-good if u belongs to an ir-set of G. G is said to be irexcellent if every vertex of G is ir-good. In this paper, a study of the excellent graphs with respect to irredundance is initiated.

1. Introduction

We consider the graphs which are finite, undirected, non - trivial without loops or multiple edges. Let G = (V, E) be a simple graph. For graph theoretic terminology, we refer to [1]. A subset S of V is a dominating set of G if every vertex in V - S is adjacent to some vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. For a set S of vertices in a graph G, the closed neighborhood N[S] of S is defined $N[S] = \bigcup_{v \in S} N[v]$. Each vertex in N[v]N[Sv] is referred to as a private neighbour of $v \in G$ and is denoted by pn(v, S). In [7], a subset S of V(G) is called an *ir*-set if it is an irredundant set of cardinality ir(G) (ir(G) is the minimum cardinality of a maximal irredundant set). Any non empty subset of an irredundant set is irredundant. Hence, the property of irredundance is hereditary.

Let μ be a parameter of a graph. A vertex $v \in V(G)$ is said to be μ -good if v belongs to a μ -minimum (μ -maximum) set of G according as μ is a super hereditary (hereditary) parameter. v is said to be -bad if it is not μ -good. A graph G is said to

²⁰¹⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. Irredundant set, ir -excellent graph, ir-very excellent graph.

be μ -excellent if every vertex of G is μ -good. Excellence with respect to domination and total domination were studied in [2]. In a social network, we may exchange any node inside the network by a node in outside the network, gives a better status in the form of a new group. Such a situation can be modelled as a set S of vertices in the graph G representing the social network such that for every $y \in V(G) - S$ there exists $x \in S$ such that the new social group $S = (S - \{x\}) \cup \{y\}$ has the same property as that of S and is possibly better in terms of external connections as well as its internal organization. This is the motivation for studying excellent graphs with various graph parameters.N. Sridharan and Yamuna [4, 5, 6], have defined various types of excellence.

2. *ir*-excellent graphs

In this section, we define and study a new type of graph, namely ir-excellent graph.

DEFINITION 2.1. Let G = (V, E) be a simple graph. Then G is said to be an *ir*-excellent graph if every vertex belongs to an *ir*-set of G.

EXAMPLE 2.1. *ir*-excellent graphs.

(1) K_n (2) $\overline{K_n}$ (3) C_n

- (4) $K_{n,n}, n \ge 2$
- (5) $K_{m,n}, m, n \ge 2, m < n$
- (6) $D_{r,s}$ is *ir*-excellent if r = s = 1.

EXAMPLE 2.2. Graphs which are not *ir*-excellent 1. $K_{1,n}$

2. $D_{r,s}$ for $r, s \ge 2(ir(D_{r,s}) = 2, IR(D_{r,s}) = r + s).$

Let $V(D_{r,s}) = \{u_1, u_2, \cdots, u_r, u, v, v_1, v_2, v_s\}$ where u is the support of the pendent vertices $u_1, u_2, \cdots, u_r\}$ and v is the support of the pendent vertices $\{v_1, v_2, \cdots, v_s\}$. Let $S = \{u, v\}$. Then S the only *ir*-set of $D_{r,s}$, since all the pendent vertices are not in any *ir*-set of $D_{r,s}$.

PROPOSITION 2.1. If G is vertex transitive then G is ir-excellent.

PROOF. Let D be an *ir*-set of G. Let $u \notin D$. Let $v \in D$. Then there exists an automorphism ϕ such that $\phi(v) = u$. Then $u \in \phi(D)$.

Claim 1: $\phi(D)$ is irredundant.

For: Let $w \in \phi(D)$. Then $w = \phi(y)$ for some $y \in D$. If y is the private neighbourhood of itself with respect to D, then y is an isolate of D, which implies $\phi(y)$ is an isolate of $\phi(D)$. Therefore w is a private neighbourhood of itself with respect to $\phi(D)$. If y_1 is a private neighbourhood of y with respect to D, then y_1 is not adjacent to any vertex of D other than y. Therefore $\phi(y_1)$ is not adjacent to any vertex of $\phi(D)$ other than $\phi(y) = w$. Hence w has a private neighbourhood $\phi(y)$ with respect to $\phi(D)$. Therefore $\phi(D)$ is irredundant.

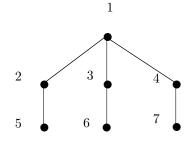
Claim 2: $\phi(D)$ is a maximal irredundant set.

Suppose not. Then there exists $S \subset V(G)$ such that $\phi(D) \subsetneq S$ and S is irredundant. Let $x \in S - \phi(D)$. Let $\phi^{-1}(x) = t$. Then $t \in \phi^{-1}(S)$ and $t \notin D$. Therefore $D \subsetneq \phi^{-1}(S)$ and $\phi^{-1}(S)$ is irredundant, a contradiction to maximality of D. Therefore $\phi(D)$ is a maximal irredundant set of G. $|D| = |\phi(D)| = ir(G)$ and hence $\phi(D)$ is an *ir*-set of G containing u. Therefore u is *ir*-good and G is *ir*-excellent. \Box

OBSERVATION 2.1. Let $\gamma(G) = ir(G)$. If G is γ -excellent, then G is irexcellent.

OBSERVATION 2.2. There exists a graph G in which $\gamma(G) = ir(G)$, G is irexcellent but not γ -excellent.

EXAMPLE 2.3.

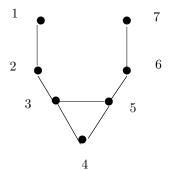


 $\begin{array}{l} \gamma \text{-sets of } G \text{ are: } \{2,3,4\}, \{2,4,6\}, \{2,6,7\}, \{4,5,6\}, \{5,3,7\} \\ ir \text{-sets of } G \text{ are: } \{1,3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,5,7\}, \{1,5,6\}, \{1,6,7\}, \\ \{3,5,7\}, \{2,3,4\}, \{2,3,7\}, \{3,4,5\}, \{2,4,6\}, \{5,6,7\} \end{array}$

1 does not belong to any γ -set. Therefore G is not γ -excellent. But G is *ir*-excellent.

OBSERVATION 2.3. There exists a graph G in which $ir(G) < \gamma(G)$, G is not ir-excellent but γ -excellent.

Consider the Allan Laskar graph(A. L. graph), which is shown below:



ir-set: $\{3, 5\}$

 γ -sets : $\{1, 3, 7\}, \{2, 4, 6\}, \{5, 2, 7\}.$

The graph is γ -excellent but not *ir*-excellent.

In general the above type of graphs with a subgraph as a complete graph have the property $ir < \gamma$, ir = 2 and $\gamma = 3$. Such type of graphs are γ -excellent graphs but not *ir*-excellent.

PROPOSITION 2.2. For any path P_n , $ir(P_n) = \gamma(P_n)$.

PROOF. $\Delta(P_n) = 2$. From [1], we have $\frac{n}{(2\Delta(G)-1)} \leq ir(G)$. Therefore $\frac{2n}{3\times 2} \leq ir(P_n)$, that is $\frac{n}{3} \leq ir(P_n)$. Therefore $\lceil \frac{n}{3} \rceil \leq ir(P_n)$, which means $\gamma(P_n) \leq ir(P_n)$. But $ir(P_n) \leq \gamma(P_n)$. Therefore $\gamma(P_n) = ir(P_n)$.

Proposition 2.3.

(1) P_{3n+1} is ir-excellent for all n.

(2) P_{3n+2} is not ir-excellent for $n \ge 3$.

(3) P_{3n} is not ir-excellent for all n.

PROOF. (1). Let $V(P_{3n+1}) = \{u_1, u_2, \cdots, u_{3n+1}\}$. $\gamma(P_{3n+1}) = ir(P_{3n+1}) = n+1$.

$$D_1 = \{u_1, u_4, u_7, \cdots, u_{3n+1}\}, D_2 = \{u_2, u_5, \cdots, u_{3n-1}, u_{3n} \text{ or } u_{3n+1}\}, \\D_3 = \{u_1, u_3, u_6, \cdots, u_{3n}\}$$

are minimum dominating sets and hence also *ir*-sets of P_{3n+1} . Therefore P_{3n+1} is *ir*-excellent.

(2). Let $V(P_{3n+2}) = \{u_1, u_2, \cdots, u_{3n+2}\}, n \ge 3$. $\gamma(P_{3n+2}) = ir(P_{3n+2}) = n+1$.

$$D_1 = \{u_1, u_4, \cdots, u_{3n+1}\}, D_2 = \{u_2, u_5, u_8, \cdots, u_{3n+2}\}, D_3 = \{u_3, u_4, u_7, \cdots, u_{3n+1}\}, D_4 = \{u_2, u_5, u_8, \cdots, u_{3n-1}, u_{3n}\}$$

are all *ir*-sets and hence u_i , $i \neq 6, 9, \dots, 3n-3$ are not *ir*-good.

When n = 2, both u_3 and u_6 will be *ir*-good and hence P_8 is *ir*-excellent. When n = 1, u_3 is *ir*-good and hence P_5 is *ir*-excellent. Therefore P_{3n+2} is not *ir*-excellent if $n \ge 3$.

(3). Let $V(P_{3n}) = \{u_1, u_2, \cdots, u_{3n}\}.$

When n = 1, P_3 is not *ir*-excellent since $ir(P_3) = 1$ and u_1 is not in any *ir*-set.

When n = 2, we get P_6 . Again u_1 is not in any *ir*-set, since the minimum cardinality of an irredundant set containing u_1 is 3 and $ir(P_6) = 2$. $ir(P_{3n}) = n$ and the minimum cardinality of an irredundant set containing u_1 is n + 1. $(\{u_1, u_3, u_6, \dots, u_{3n}\} \text{ or } \{u_1, u_4, u_7, \dots, u_{3n-2}, u_{3n}\}$ are irredundant sets containing u_1 of minimum cardinality). Therefore P_{3n} is not *ir*-excellent.

PROPOSITION 2.4. If $ir(G) < \gamma(G)$, then any independent set is not an ir-set.

PROOF. Let S be an independent set of G. Suppose S is an *ir*-set of G. Then S is a maximal independent set of G. Therefore S is a minimal dominating set of G. Therefore $ir(G) < \gamma(G) \leq |S| = ir(G)$, a contradiction. Therefore S is not an *ir*-set of G.

COROLLARY 2.1. If $ir(G) < \gamma(G)$, then for any ir-set S of G, number of private neighbours of S lying in V - S is greater than or equal to 2.

PROPOSITION 2.5. For any graph G, G^+ is both ir-excellent and γ -excellent.

PROOF. Let S be an *ir*-set of G^+ . Suppose |S| < n. Then there exists $u \in V(G)$ such that $u, u' \notin S$ where u' is the pendent of u. Then $S \cup \{u\}$ is an irredundant set of G^+ , since u' is the private neighbour of u, a contradiction. Therefore $|S| \ge n$. Since $\gamma(G^+) = n$, |S| = n. Since any γ -set of G^+ is also an *ir*-set of G^+ , G^+ is *ir*-excellent.

OBSERVATION 2.4. Any graph G is an induced graph of an ir-excellent graph.

PROPOSITION 2.6. Let G be a non-ir-excellent graph with a unique ir-bad vertex. Then there exists an ir-excellent graph H such that

(i). G is an induced subgraph of H.

(*ii*). ir(H) = ir(G) + 1.

PROOF. Let u be the unique *ir*-bad vertex of G. Let H be the graph obtained from G by adding a new vertex v and making it adjacent with only u in G.

Claim: ir(H) = ir(G) + 1.

Let ir(G) = k. Note that for any *ir*-set S of G, $u \notin S$. Hence $S \cup \{v\}$ is an irredundant set of H. Clearly it is a maximal irredundant set of H.

Suppose $ir(H) = k' \leq k$. Let T be an *ir*-set of H. If $v \notin T$, then $T \cup \{v\}$ is an irredundant set of H if $u \notin T$, a contradiction. Since T is a maximal irredundant set of H, $u \in T$. Since $T \subseteq V(G)$, T is a maximal irredundant set of G and $k = ir(G) \leq |T| = k' \leq k$. Therefore |T| = k. T is an irredundant set of G containing u, a contradiction, since u is an *ir*-bad vertex of G. Therefore $v \in T$. Let $T_1 = T - \{v\}$. Then $T_1 \subseteq V(G)$. $|T_1| = k' - 1 < k$. Clearly T_1 being a subset of an irredundant set of H is irredundant in H.

Case 1: $u \notin T_1$. Then T_1 is an irredundant set of G. Suppose T_1 is a maximal irredundant set of G. Then $k = ir(G) \leqslant |T_1| < k$, a contradiction. Therefore T_1 is not a maximal irredundant set of G. Therefore there exists $w \in G$ such that $T_1 \cup \{w\}$ is an irredundant set of G. Suppose $w \neq u$. Then $T \cup \{w\} = T_1 \cup \{w\} \cup \{v\}$ is an irredundant set of H contradicting the maximality of T. Therefore w = u. Therefore $T_1 \cup \{u\}$ is an irredundant set of G. If $T_1 \cup \{u\}$ is a maximal irredundant set of G. If $T_1 \cup \{u\}$ is a maximal irredundant set of G. Therefore $T_1 \cup \{u\}$ is an irredundant set of G. If $T_1 \cup \{u\}$ is a maximal irredundant set of G. Therefore $|T_1| + 1 = k$ and hence $T_1 \cup \{u\}$ is an *ir*-set of G implying u is *ir*-good, a contradiction. Therefore $T_1 \cup \{u\}$ is not a maximal irredundant set of G. Thus there exists $z \in V(G) - (T_1 \cup \{u\})$ such that $T_1 \cup \{u\} \cup \{z\}$ is an irredundant set of G. Therefore $T_1 \cup \{z\} \cup \{v\}$ is an irredundant set of H. Thus $T \cup \{z\}$ is an irredundant set of H.

Case 2: $u \in T_1$. Then T_1 is an irredundant set of G. If T_1 is maximal, then $k = ir(G) \leq |T_1| < k$, a contradiction. Therefore T_1 is not a maximal irredundant set of G. Therefore there exists $x \in V(G) - T_1$ such that $T_1 \cup \{x\}$ is irredundant in G. Since $u \in T_1$, we get that $x \neq u$. Therefore $T_1 \cup \{x\} \cup \{v\}$ is an irredundant

set in H. That is $T \cup \{x\}$ is irredundant in H, a contradiction to the maximality of T. Therefore ir(H) > k. That is $ir(H) \ge k + 1$. But $S \cup \{v\}$ for any *ir*-set S of G is a maximal irredundant set of H. Therefore $ir(H) \le |S \cup \{v\}| = k + 1$. Therefore ir(H) = k + 1. Therefore $S \cup \{v\}$ is an *ir*-set of H for any *ir*-set S of G. Therefore every *ir*-good vertex in G as well as v is *ir*-good in H. Moreover for any *ir*-set S of G, $S \cup \{u\}$ is irredundant in H since u has a private neighbour v in H. Therefore $S \cup \{u\}$ is an *ir*-set of H, which implies u is also *ir*-good in H. Therefore H is *ir*-excellent. G is an induced subgraph of H. Further, ir(H) = ir(G) + 1. \Box

Conjecture. There does not exist any graph G which is both γ -excellent and *ir*-excellent and $ir(G) < \gamma(G)$.

COROLLARY 2.2. If G_1 , G_2 are ir-excellent, then $G_1 + G_2$ is ir-excellent if and only if $ir(G_1) = ir(G_2)$.

3. Definition and Properties of just *ir*-excellent graphs

In this section, we introduce the concept of just *ir*-excellent graphs and study its properties.

DEFINITION 3.1. A graph G is said to be just *ir*-excellent graph, if every vertex of G belongs to exactly one *ir*-set of G.

REMARK 3.1. If G is just *ir*-excellent then G admits a partition where each element of the partition is an *ir*-set of G.

EXAMPLE 3.1. $C_{3n}, K_n, H_{5,10}.$

REMARK 3.2. Every just *ir*-excellent graph is *ir*-excellent graph.

REMARK 3.3. If $\gamma(G) = 2$, then ir(G) = 2.

PROOF. Suppose ir(G) = 1. Then G has a full degree vertex. Hence $\gamma(G) = 1$, a contradiction. Therefore $ir(G) \ge 2$. But $ir(G) \le \gamma(G) = 2$. Therefore ir(G) = 2. The converse is not true, since in A.L graph $\gamma(G) = 3$ and ir(G) = 2.

PROPOSITION 3.1. It has been proved in [3] that if G is a graph containing no induced subgraph isomorphic to $K_{1,3}$, or A.L graph, then $ir(G) = \gamma(G) = i(G)$. Since C_n and P_n does not contain $K_{1,3}$ or A.L graph as an induced subgraph, $ir(C_n) = \gamma(C_n) = i(C_n)$ and $ir(P_n) = \gamma(P_n) = i(P_n)$.

OBSERVATION 3.1. C_n is γ -excellent if and only if $n \equiv 0 \pmod{3}$. Therefore C_n is ir-excellent if and only if $n \equiv 0 \pmod{3}$.

PROPOSITION 3.2. Every just ir-excellent graph $G(\neq \overline{K_n})$, is connected.

PROOF. Let G be a disconnected graph, $G \neq \overline{K_n}$. Let G_1 be a component of G. If $|V(G_1)| = 1$, then G is not just *ir*-excellent. Hence $|V(G_1)| \ge 2$.

Claim: G_1 is just *ir*-excellent.

Let S be an *ir*-set of G. Let $S_1 = S \cap V(G_1)$. Clearly S_1 is non-empty. Since S is an *ir*-set, S_1 is an irredundant set of G_1 and clearly it is a maximal irredundant set of G_1 .

Suppose $|S_1| > ir(G)$. Let S' be an *ir*-set of G_1 . Then $S' \cup (S - S_1)$ is an irredundant set of G of cardinality greater than |S|, a contradiction (since S is an *ir*-set of G). Therefore S_1 is an *ir*-set of G_1 . Since G is just *ir*-excellent, G_1 is also just *ir*-excellent. Since G_1 is connected, $ir(G_1) \leq \gamma(G_1) \leq \frac{n}{2}$. As G_1 is just *ir*-excellent, G_1 has at least two *ir*-sets, say T_1 and T_2 . Let D_1 be an *ir*-set of $G - G_1$. Then $D_1 \neq \phi$ and $T_1 \cup D_1$, $T_2 \cup D_2$ are *ir*-sets of G with non-empty intersection, a contradiction, since G is just *ir*-excellent. Therefore G is connected. \Box

PROPOSITION 3.3. Let $G \neq \overline{K_n}$ is just in-excellent. Then for any in-set D of G, $|pn[u, D]| \ge 2$ for all $u \in D$.

PROOF. Case A: Since $G \neq \overline{K_n}$, order of G is greater than or equal to 2.

Since D is an *ir*-set of G, $|pn[u, D]| \ge 1$ for all $u \in D$. Suppose |pn[u, D]| = 1. **Case (i):** |pn[u, D]| = 1. Let $pn(u, D) = \{v\}$ where $v \in V - D$. Let $D_1 = (D - \{u\} \cup \{v\})$. Then v being not adjacent to any vertex of $D - \{u\}, v \in pn[v, (D - \{u\}) \cup \{v\}]$. Also, if $x \in D - \{u\}$, then $pn[x, D] = pn[x, (D - \{u\}) \cup \{v\}]$, since v is not adjacent with x. Therefore D_1 is an irredundant set of G of cardinality ir(G).

Suppose D_1 is not a maximal irredundant set of G. Then there exists a maximal irredundant set say D_2 of G such that $D_1 \subsetneq D_2$. Let $w \in D_2 - D_1$.

Subcase (i): w = u. In this case $D_1 \subsetneq D_2$ and $v \in D_2$. Since u and v are adjacent and D_2 is irredundant, w = u has a private neighbour say x with respect to D_2 outside D_2 . Clearly $x \notin D$. Therefore x and v are two private neighbours of u with respect to D belonging to V - D, a contradiction since |pn(u, D)| = 1.

Subcase (ii): $w \neq u$. Clearly $w \neq v$. Since u is adjacent with $v \in D_2$, u cannot be a private neighbour of w with respect to D_2 . Therefore w is a private neighbour of u with respect to D. Hence $|pn(u, D)| \geq 2$, a contradiction.

Subcase (iii): Suppose u is not a private neighbour of w with respect to D_2 . Then either w is an isolate of D_2 or there exists $y \in V - D_2$ such that $y \in pn(w, D_2)$. Let w be an isolate of D_2 . Consider $D' = D \cup \{w\}$. If w is not adjacent with u then wis an isolate of D' and hence D' is an irredundant set containing D, a contradiction to maximality of D. If w is adjacent with u, then w being not adjacent with any vertex of $D - \{u\}$, is a private neighbour of u with respect to D in V - D. That is u has two private neighbours v, w with respect to D in V - D, a contradiction since |pn(u, D)| = 1. Suppose there exists $y \in V - D_2$ such that $y \in pn(w, D_2)$. Let w be a private neighbour of some $x \in D$ with respect to D. If x = u, then uhas two private neighbours with respect to D, a contradiction. If $x \neq u$, then as $x, w \in D_2$, x has a private neighbour say z outside D_2 with respect to D_2 . Then z is a private neighbour of x with respect to D. Hence $D \cup \{w\}$ is an irredundant set of G, containing D, a contradiction to the maximality of D.

Case (ii): u is an isolate of D. Since u is not an isolate of G (if u is an isolate of G, then u belongs to every irredundant set contradicting just *ir*-excellent), there

exists $v \in V - D$ such that u and v are adjacent. Since $pn[u, D] = \{u\}$, v is not a private neighbour of u with respect to D. Therefore v is adjacent to some vertex say $w \neq u \in D$. Consider $D_1 = (D - \{u\}) \cup \{v\}$. Since u is a private neighbour of v with respect to D_1 and since every vertex of $D - \{u\}$ has a private neighbour not equal to v with respect to D, D_1 is an irredundant set of G strictly containing D_1 . Let $w \in D_2 - D_1$. Suppose w = u. Since u is adjacent with v, w in D_2 is not an isolate of D_2 . w = u has a private neighbour in V - D with respect to D. Therefore $|pn[u, D]| \ge 2$, a contradiction.

Suppose $w \neq u$.

Subcase (i): w is an isolate of D_2 . Then w is not adjacent with any vertex of $(D - \{u\}) \cup \{v\}$. (If w is adjacent with u then w is a private neighbour of u in V - D with respect to D a contradiction). Therefore w is not adjacent with u. w is an isolate of $D \cup \{w\}$. Hence $D \cup \{w\}$ is an irredundant set containing D, a contradiction to the maximality of D.

Subcase (ii): w is not an isolate of D_2 . Then w has a private neighbour say z in $V - D_2$. If z = u, then z is not adjacent with any vertex in $D_2 - w$. But u is adjacent with v in D_2 , a contradiction. Therefore $z \neq u$. Consider $D \cup \{w\}$. If w is not a private neighbour of any vertex of D with respect to D, then $D \cup \{w\}$ is irredundant. If w is a private neighbour of some $x \in D$ with respect to D, then $x \neq u$ (since pn[u, D] = 1). As x and w are adjacent in D_2 , x has a private neighbour say y in $V - D_2$ with respect to D_2 . That is x has a private neighbour y in V - D with respect to D. Therefore $D \cup \{w\}$ is an irredundant set of G is a contradiction to the maximality of D. Therefore $D_1 = (D - \{u\}) \cup \{v\}$ is a maximal irredundant set of G. |D| = 1 implies ir(G) = 1. As G is just excellent and ir(G) = 1, $G = K_n$, a contradiction. Therefore $|D| \ge 2$. Hence $\phi \neq D - \{u\}$, is contained in two *ir*-sets namely D and D_1 , a contradiction to just excellence. Therefore $|pn[u, D]| \ge 2$ for all $u \in D$.

Case B: $G = K_n$, $n \ge 2$. Here ir(G) = 1 and every verex constitutes an *ir*-set of G. Let D be any *ir*-set of G. Then $D = \{u\}$ for some $u \in V(G)$. $|pn[u, D]| = n \ge 2$.

REMARK 3.4. Let G be the graph obtained from $K_{n,n}$ by removing a 1-factor. Then G is just *ir*-excellent.

PROOF. If V_1 and V_2 are the partite sets and if $V_1 = \{u_1, u_2, \dots, u_n\}, V_2 = \{v_1, v_2, \dots, v_n\}$ and u_i and v_i are not adjacent $(1 \le i \le n)$, then the *ir*-sets are $\{u_1, v_1\}, \{u_2, v_2\}, \dots, \{u_n, v_n\}$.

THEOREM 3.1. Let G be a graph of order n. Then G is ir-excellent if and only if the following conditions hold.

(i) ir(G) divides n.

(ii) G has exactly $\frac{n}{ir(G)}$ distinct ir-sets.

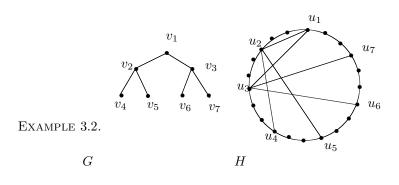
PROOF. (i) Let G be just *ir*-excellent. Then G can be partitioned into t sets each of which is an *ir*-set. Therefore t ir(G) = n. Therefore ir(G) divides n.

(ii): $V(G) = S_1 \cup S_2 \cup, \dots, \cup S_m$ where each S_i is an *ir*-set of G and these sets are pairwise disjoint. Therefore there are m distinct *ir*-sets of G where $m = \frac{n}{ir(G)}$. Suppose there exists a *ir*-set T different from S_1, S_2, \dots, S_m . Since $S_1 \cup S_2 \cup, \dots, \cup S_m = V(G) \supseteq T$, every element $x \in T$ belongs to some $S_i, 1 \leq i \leq m$. Therefore x belongs to two *ir*-sets of G, a contradiction. Conversely, suppose the three conditions hold. Let $m = \frac{n}{ir(G)}$. By (iii) G has

exactly *m* distinct *ir*-sets. Suppose $V = S_1 \cup S_2 \cup \cdots \cup S_m$ is a decomposition of V(G) where each S_i is a maximal irredundant set, $1 \leq i \leq m$. Then $n = \sum_{i=1}^m |S_i| \geq m$ ir(G). But n = m ir(G). Therefore each S_i is an *ir*-set of *G*. Since *G* has exactly *m* distinct *ir*-sets, S_1, S_2, \cdots, S_m are the distinct *ir*-sets of *G* and hence $V = S_1 \cup S_2 \cup \cdots \cup S_m$ is a partition into disjoint *ir*-sets of *G*. Therefore each vertex *v* belongs to exactly one S_i , for some *i*, $1 \leq i \leq m$. Therefore *G* is just *ir*-excellent.

THEOREM 3.2. Every graph is an induced subgraph of a just ir-excellent graph.

PROOF. Let G be a given graph. If G is just *ir*-excellent, then there is nothing to prove. Assume that G is not just *ir*-excellent. Let $V(G) = \{v_1, v_2, \dots, v_n\}$. Consider the cycle C_{3n} . It is just *ir*-excellent. Let S_1, S_2, S_3 be the distinct *ir*-sets of C_{3n} . Label the vertices of S_1 by $u_1, u_2, u_3, \dots, u_n$. Now in C_{3n} we add edges $u_i u_j$ if and only if $v_i v_j$ is an edge in G. Let the resulting graph be H. Then the induced subgraph $\langle S_1 \rangle$ in H is isomorphic to G. By theorem 4.12 in [**6**], H is just *ir*-excellent and ir(H) = n. Every *ir*-set is a γ set. Thus the given graph G is an induced subgraph of a just *ir*-excellent graph H.



G is an induced subgraph of H which is a just *ir*-excellent graph.

References

- [1] J. A. Bondy and U. S. R Murthy. Graph theory with applications. Macmillan press, 1976.
- [2] G. H. Fricke, T. W. Haynes and S. T. Hetniemi, S. M. Hedetniemi and R. C. Laskar. Excellent trees. Bull. Inst. Combin. Appl., 34(2002), 27-38.
- [3] R. Laskar and K. Peters. Domination and irredundance in graph. Technical Report 434, Dept. Mathematical Sciences, Clemson Univ., 1983.

- [4] N. Sridharan and M. Yamuna. Excellent-Just Excellent-Very Excellent Graphs. Journal of Math. Phy. Sci., 14(5)(1980), 471-475.
- [5] N. Sridharan and M. Yamuna. A Note on Excellent Graphs. Ars Combinatoria, 78(2006), 267-276.
- [6] N. Sridharan and M. Yamuna. Excellent-Just Excellent-Very Excellent Graphs. Ph.D Thesis, Alagappa University, 2003.
 [7] T. W. Haynes, S. T. Hedetneimi and P. J. Slater. Fundamentals of Domination in Graphs.
- [7] T. W. Haynes, S. T. Hedetneimi and P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker Inc. 1998.
- [8] T. W. Haynes and M. A. Henning. A characterization of *i*-excellent trees. Discrete Math., 248(1-3)(2002), 69-77.

Received by editors 28.02.2017; Revised version 10.04.2017; Available online 17.04.2017.

Department of Mathematics, Maris Stella college, Vijayawada,India E-mail address: kmudartha@gmail.com

Department of Mathematics, SSN College of Engineering, Chennai, India E-mail address: sundareswaranr@ssn.edu.in

RAMANUJAN RESEARCH CENTER IN MATHEMATICS, SARASWATHI NARAYANAN COLLEGE, MADURAI, INDIA

E-mail address: swaminathan.sulanesri@gmail.com