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ir-EXCELLENT GRAPHS

I.Kulrekha Mudartha, R.Sundareswaran, and V.Swaminathan

Abstract. Terasa W. Haynes et. al. [7], introduced the concept of irredun-
dance in graphs. A subset S of V (G) is called an irredundant set of G if for
every vertex u ∈ S, pn[u, S] ̸= ϕ. The minimum (maximum)cardinality of a
maximal irredundant set of G is called the irredundance number of G (upper

irredundance number of G) and is denoted by ir(G)(IR(G)). A subset V (G)
is called an ir-set if it is an irredundant set of G of cardinality ir(G). A vertex
u ∈ V (G) is called ir-good if u belongs to an ir-set of G. G is said to be ir-
excellent if every vertex of G is ir-good. In this paper, a study of the excellent

graphs with respect to irredundance is initiated.

1. Introduction

We consider the graphs which are finite, undirected, non - trivial without loops
or multiple edges. Let G = (V,E) be a simple graph. For graph theoretic termi-
nology, we refer to [1]. A subset S of V is a dominating set of G if every vertex in
V − S is adjacent to some vertex in S. The domination number γ(G) of G is the
minimum cardinality of a dominating set of G. For a set S of vertices in a graph
G, the closed neighborhood N [S] of S is defined N [S] =

∪
v∈S

N [v]. Each vertex

in N [v]N [Sv] is referred to as a private neighbour of v ∈ G and is denoted by
pn(v, S). In [7], a subset S of V (G) is called an ir-set if it is an irredundant set of
cardinality ir(G) (ir(G) is the minimum cardinality of a maximal irredundant set).
Any non empty subset of an irredundant set is irredundant. Hence, the property
of irredundance is hereditary.

Let µ be a parameter of a graph. A vertex v ∈ V (G) is said to be µ-good if v
belongs to a µ-minimum (µ-maximum) set of G according as µ is a super hereditary
(hereditary) parameter. v is said to be -bad if it is not µ-good. A graph G is said to
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be µ-excellent if every vertex of G is µ-good. Excellence with respect to domination
and total domination were studied in [2]. In a social network , we may exchange
any node inside the network by a node in outside the network, gives a better status
in the form of a new group. Such a situation can be modelled as a set S of vertices
in the graph G representing the social network such that for every y ∈ V (G) − S
there exists x ∈ S such that the new social group S = (S−{x})∪{y} has the same
property as that of S and is possibly better in terms of external connections as well
as its internal organization. This is the motivation for studying excellent graphs
with various graph parameters.N. Sridharan and Yamuna [4, 5, 6], have defined
various types of excellence.

2. ir-excellent graphs

In this section, we define and study a new type of graph, namely ir-excellent
graph.

Definition 2.1. Let G = (V,E) be a simple graph. Then G is said to be an
ir-excellent graph if every vertex belongs to an ir-set of G.

Example 2.1. ir-excellent graphs.

(1) Kn

(2) Kn

(3) Cn

(4) Kn,n, n > 2

(5) Km,n, m, n > 2, m < n

(6) Dr,s is ir-excellent if r = s = 1.

Example 2.2. Graphs which are not ir-excellent
1. K1,n

2. Dr,s for r, s > 2( ir(Dr,s) = 2, IR(Dr,s) = r + s).
Let V (Dr,s) = {u1, u2, · · · , ur, u, v, v1, v2, vs} where u is the support of the pendent
vertices u1, u2, · · · , ur} and v is the support of the pendent vertices {v1, v2, · · · , vs}.
Let S = {u, v}. Then S the only ir-set of Dr,s, since all the pendent vertices are
not in any ir-set of Dr,s.

Proposition 2.1. If G is vertex transitive then G is ir-excellent.

Proof. Let D be an ir-set of G. Let u /∈ D. Let v ∈ D. Then there exists an
automorphism ϕ such that ϕ(v) = u. Then u ∈ ϕ(D).

Claim 1: ϕ(D) is irredundant.
For: Let w ∈ ϕ(D). Then w = ϕ(y) for some y ∈ D. If y is the private neighbour-
hood of itself with respect to D, then y is an isolate of D, which implies ϕ(y) is
an isolate of ϕ(D). Therefore w is a private neighbourhood of itself with respect
to ϕ(D). If y1 is a private neighbourhood of y with respect to D, then y1 is not
adjacent to any vertex of D other than y. Therefore ϕ(y1) is not adjacent to any
vertex of ϕ(D) other than ϕ(y) = w. Hence w has a private neighbourhood ϕ(y)
with respect to ϕ(D). Therefore ϕ(D) is irredundant.
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Claim 2: ϕ(D) is a maximal irredundant set.
Suppose not. Then there exists S ⊂ V (G) such that ϕ(D) $ S and S is irredundant.
Let x ∈ S − ϕ(D). Let ϕ−1(x) = t. Then t ∈ ϕ−1(S) and t /∈ D. Therefore D $
ϕ−1(S) and ϕ−1(S) is irredundant, a contradiction to maximality of D. Therefore
ϕ(D) is a maximal irredundant set of G. |D| = |ϕ(D)| = ir(G) and hence ϕ(D) is
an ir-set of G containing u. Therefore u is ir-good and G is ir-excellent. �

Observation 2.1. Let γ(G) = ir(G). If G is γ-excellent, then G is ir-
excellent.

Observation 2.2. There exists a graph G in which γ(G) = ir(G), G is ir-
excellent but not γ-excellent.

Example 2.3.

u
uu u

uuu

1

2 3 4

5 6 7

γ-sets of G are: {2, 3, 4}, {2, 4, 6}, {2, 6, 7}, {4, 5, 6}, {5, 3, 7}
ir-sets of G are: {1, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 5, 7}, {1, 5, 6}, {1, 6, 7},

{3, 5, 7}, {2, 3, 4}, {2, 3, 7}, {3, 4, 5}, {2, 4, 6}, {5, 6, 7}
1 does not belong to any γ-set. Therefore G is not γ-excellent. But G is
ir-excellent.

Observation 2.3. There exists a graph G in which ir(G) < γ(G), G is not
ir-excellent but γ-excellent.

Consider the Allan Laskar graph(A. L. graph), which is shown below:

u u
uu

u u
u

1

2

3

4

5

6

7

ir-set: {3, 5}



508 I.K.MUDARTHA, R.SUNDARESWARAN, AND V.SWAMINATHAN

γ-sets : {1, 3, 7}, {2, 4, 6}, {5, 2, 7}.
The graph is γ-excellent but not ir-excellent.

In general the above type of graphs with a subgraph as a complete graph have
the property ir < γ, ir = 2 and γ = 3. Such type of graphs are γ-excellent graphs
but not ir-excellent.

Proposition 2.2. For any path Pn, ir(Pn) = γ(Pn).

Proof. ∆(Pn) = 2. From [1], we have n
(2∆(G)−1) 6 ir(G). Therefore 2n

3×2 6
ir(Pn), that is

n
3 6 ir(Pn). Therefore

⌈
n
3

⌉
6 ir(Pn), which means γ(Pn) 6 ir(Pn).

But ir(Pn) 6 γ(Pn). Therefore γ(Pn) = ir(Pn). �
Proposition 2.3.

(1) P3n+1 is ir-excellent for all n.
(2) P3n+2 is not ir-excellent for n > 3.
(3) P3n is not ir-excellent for all n.

Proof. (1). Let V (P3n+1) = {u1, u2, · · · , u3n+1}. γ(P3n+1) = ir(P3n+1) =
n+ 1.

D1 = {u1, u4, u7, · · · , u3n+1}, D2 = {u2, u5, · · · , u3n−1, u3n or u3n+1},
D3 = {u1, u3, u6, · · · , u3n}

are minimum dominating sets and hence also ir-sets of P3n+1. Therefore P3n+1 is
ir-excellent.

(2). Let V (P3n+2) = {u1, u2, · · · , u3n+2}, n > 3. γ(P3n+2) = ir(P3n+2) =
n+ 1.

D1 = {u1, u4, · · · , u3n+1}, D2 = {u2, u5, u8, · · · , u3n+2},
D3 = {u3, u4, u7, · · · , u3n+1}, D4 = {u2, u5, u8, · · · , u3n−1, u3n}

are all ir-sets and hence ui, i ̸= 6, 9, · · · , 3n− 3 are not ir-good.
When n = 2, both u3 and u6 will be ir-good and hence P8 is ir-excellent.
When n = 1, u3 is ir-good and hence P5 is ir-excellent. Therefore P3n+2 is not

ir-excellent if n > 3.

(3). Let V (P3n) = {u1, u2, · · · , u3n}.
When n = 1, P3 is not ir-excellent since ir(P3) = 1 and u1 is not in any ir-set.

When n = 2, we get P6. Again u1 is not in any ir-set, since the minimum
cardinality of an irredundant set containing u1 is 3 and ir(P6) = 2. ir(P3n) =
n and the minimum cardinality of an irredundant set containing u1 is n + 1.
({u1, u3, u6, · · · , u3n} or {u1, u4, u7, · · · , u3n−2, u3n} are irredundant sets contain-
ing u1 of minimum cardinality). Therefore P3n is not ir-excellent. �

Proposition 2.4. If ir(G) < γ(G), then any independent set is not an ir-set.

Proof. Let S be an independent set of G. Suppose S is an ir-set of G. Then
S is a maximal independent set of G. Therefore S is a minimal dominating set of
G. Therefore ir(G) < γ(G) 6 |S| = ir(G), a contradiction. Therefore S is not an
ir-set of G. �
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Corollary 2.1. If ir(G) < γ(G), then for any ir-set S of G, number of
private neighbours of S lying in V − S is greater than or equal to 2.

Proposition 2.5. For any graph G, G+ is both ir-excellent and γ-excellent.

Proof. Let S be an ir-set of G+. Suppose |S| < n. Then there exists u ∈
V (G) such that u, u

′
/∈ S where u

′
is the pendent of u. Then S ∪ {u} is an

irredundant set of G+, since u
′
is the private neighbour of u, a contradiction.

Therefore |S| > n. Since γ(G+) = n, |S| = n. Since any γ-set of G+ is also an
ir-set of G+, G+ is ir-excellent. �

Observation 2.4. Any graph G is an induced graph of an ir-excellent graph.

Proposition 2.6. Let G be a non-ir-excellent graph with a unique ir-bad ver-
tex. Then there exists an ir-excellent graph H such that

(i). G is an induced subgraph of H.
(ii). ir(H) = ir(G) + 1.

Proof. Let u be the unique ir-bad vertex of G. Let H be the graph obtained
from G by adding a new vertex v and making it adjacent with only u in G.

Claim: ir(H) = ir(G) + 1.

Let ir(G) = k. Note that for any ir-set S of G, u /∈ S. Hence S ∪ {v} is an
irredundant set of H. Clearly it is a maximal irredundant set of H.

Suppose ir(H) = k′ 6 k. Let T be an ir-set of H. If v /∈ T , then T ∪ {v} is an
irredundant set of H if u /∈ T , a contradiction. Since T is a maximal irredundant
set of H, u ∈ T . Since T ⊆ V (G), T is a maximal irredundant set of G and
k = ir(G) 6 |T | = k′ 6 k. Therefore |T | = k. T is an irredundant set of G
containing u, a contradiction, since u is an ir-bad vertex of G. Therefore v ∈ T .
Let T1 = T − {v}. Then T1 ⊆ V (G). |T1| = k′ − 1 < k. Clearly T1 being a subset
of an irredundant set of H is irredundant in H.

Case 1: u /∈ T1. Then T1 is an irredundant set of G. Suppose T1 is a maximal
irredundant set of G. Then k = ir(G) 6 |T1| < k, a contradiction. Therefore
T1 is not a maximal irredundant set of G. Therefore there exists w ∈ G such that
T1∪{w} is an irredundant set of G. Suppose w ̸= u. Then T ∪{w} = T1∪{w}∪{v}
is an irredundant set of H contradicting the maximality of T . Therefore w = u.
Therefore T1∪{u} is an irredundant set of G. If T1∪{u} is a maximal irredundant
set of G, Then k = ir(G) 6 |T1| + 1 = k′ 6 k. Therefore |T1| + 1 = k and hence
T1∪{u} is an ir-set of G implying u is ir-good, a contradiction. Therefore T1∪{u}
is not a maximal irredundant set of G. Thus there exists z ∈ V (G) − (T1 ∪ {u})
Such that T1 ∪ {u} ∪ {z} is an irredundant set of G. Therefore T1 ∪ {z} is an
irredundant set of G. Therefore T1 ∪ {z} ∪ {v} is an irredundant set of H. Thus
T ∪ {z} is an irredundant set of H.

Case 2: u ∈ T1. Then T1 is an irredundant set of G. If T1 is maximal, then
k = ir(G) 6 |T1| < k, a contradiction. Therefore T1 is not a maximal irredundant
set of G. Therefore there exists x ∈ V (G) − T1 such that T1 ∪ {x} is irredundant
in G. Since u ∈ T1, we get that x ̸= u. Therefore T1 ∪ {x} ∪ {v} is an irredundant
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set in H. That is T ∪ {x} is irredundant in H, a contradiction to the maximality
of T . Therefore ir(H) > k. That is ir(H) > k + 1. But S ∪ {v} for any ir-set
S of G is a maximal irredundant set of H. Therefore ir(H) 6 |S ∪ {v}| = k + 1.
Therefore ir(H) = k+1. Therefore S ∪ {v} is an ir-set of H for any ir-set S of G.
Therefore every ir-good vertex in G as well as v is ir-good in H. Moreover for any
ir-set S of G, S ∪ {u} is irredundant in H since u has a private neighbour v in H.
Therefore S∪{u} is an ir-set of H, which implies u is also ir-good in H. Therefore
H is ir-excellent. G is an induced subgraph of H. Further, ir(H) = ir(G) + 1. �

Conjecture. There does not exist any graph G which is both γ-excellent and
ir-excellent and ir(G) < γ(G).

Corollary 2.2. If G1, G2 are ir-excellent, then G1+G2 is ir-excellent if and
only if ir(G1) = ir(G2).

3. Definition and Properties of just ir-excellent graphs

In this section, we introduce the concept of just ir-excellent graphs and study
its properties.

Definition 3.1. A graph G is said to be just ir-excellent graph, if every vertex
of G belongs to exactly one ir-set of G.

Remark 3.1. If G is just ir-excellent then G admits a partition where each
element of the partition is an ir-set of G.

Example 3.1.
C3n, Kn, H5,10.

Remark 3.2. Every just ir-excellent graph is ir-excellent graph.

Remark 3.3. If γ(G) = 2, then ir(G) = 2.

Proof. Suppose ir(G) = 1. Then G has a full degree vertex. Hence γ(G) = 1,
a contradiction. Therefore ir(G) > 2. But ir(G) 6 γ(G) = 2. Therefore ir(G) = 2.
The converse is not true, since in A.L graph γ(G) = 3 and ir(G) = 2. �

Proposition 3.1. It has been proved in [3] that if G is a graph containing no
induced subgraph isomorphic to K1,3, or A.L graph, then ir(G) = γ(G) = i(G).
Since Cn and Pn does not contain K1,3 or A.L graph as an induced subgraph,
ir(Cn) = γ(Cn) = i(Cn) and ir(Pn) = γ(Pn) = i(Pn).

Observation 3.1. Cn is γ-excellent if and only if n ≡ 0(mod 3). Therefore
Cn is ir-excellent if and only if n ≡ 0(mod 3).

Proposition 3.2. Every just ir-excellent graph G( ̸= Kn) ,is connected.

Proof. Let G be a disconnected graph, G ̸= Kn. Let G1 be a component of
G. If |V (G1)| = 1, then G is not just ir-excellent. Hence |V (G1)| > 2.

Claim: G1 is just ir-excellent.
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Let S be an ir-set of G. Let S1 = S∩V (G1). Clearly S1 is non-empty. Since S
is an ir-set, S1 is an irredundant set of G1 and clearly it is a maximal irredundant
set of G1.

Suppose |S1| > ir(G). Let S′ be an ir-set of G1. Then S′ ∪ (S − S1) is an
irredundant set of G of cardinality greater than |S|, a contradiction (since S is an
ir-set of G). Therefore S1 is an ir-set of G1. Since G is just ir-excellent, G1 is also
just ir-excellent. Since G1 is connected, ir(G1) 6 γ(G1) 6 n

2 . As G1 is just ir-
excellent, G1 has at least two ir-sets, say T1 and T2. Let D1 be an ir-set of G−G1.
Then D1 ̸= ϕ and T1 ∪D1, T2 ∪D2 are ir-sets of G with non-empty intersection,
a contradiction, since G is just ir-excellent. Therefore G is connected. �

Proposition 3.3. Let G ̸= Kn is just ir-excellent. Then for any ir-set D of
G, |pn[u,D]| > 2 for all u ∈ D.

Proof. Case A: Since G ̸= Kn, order of G is greater than or equal to 2.

Since D is an ir-set of G, |pn[u,D]| > 1 for all u ∈ D. Suppose |pn[u,D]| = 1.

Case (i): |pn[u,D]| = 1. Let pn(u,D) = {v} where v ∈ V − D. Let D1 =
(D−{u}∪{v}. Then v being not adjacent to any vertex of D−{u}, v ∈ pn[v, (D−
{u})∪{v}]. Also, if x ∈ D−{u}, then pn[x,D] = pn[x, (D−{u})∪{v}], since v is
not adjacent with x. Therefore D1 is an irredundant set of G of cardinality ir(G).

SupposeD1 is not a maximal irredundant set of G. Then there exists a maximal
irredundant set say D2 of G such that D1 ( D2. Let w ∈ D2 −D1.

Subcase (i): w = u. In this case D1 ( D2 and v ∈ D2. Since u and v are
adjacent and D2 is irredundant, w = u has a private neighbour say x with respect
to D2 outside D2. Clearly x /∈ D. Therefore x and v are two private neighbours of
u with respect to D belonging to V −D, a contradiction since |pn(u,D)| = 1.

Subcase (ii): w ̸= u. Clearly w ̸= v. Since u is adjacent with v ∈ D2, u
cannot be a private neighbour of w with respect to D2. Therefore w is a private
neighbour of u with respect to D. Hence |pn(u,D)| > 2, a contradiction.

Subcase (iii): Suppose u is not a private neighbour of w with respect to D2.
Then either w is an isolate ofD2 or there exists y ∈ V −D2 such that y ∈ pn(w,D2).
Let w be an isolate ofD2. ConsiderD

′ = D∪{w}. If w is not adjacent with u then w
is an isolate of D′ and hence D′ is an irredundant set containing D, a contradiction
to maximality of D. If w is adjacent with u, then w being not adjacent with any
vertex of D − {u}, is a private neighbour of u with respect to D in V −D. That
is u has two private neighbours v, w with respect to D in V −D, a contradiction
since |pn(u,D)| = 1. Suppose there exists y ∈ V − D2 such that y ∈ pn(w,D2).
Let w be a private neighbour of some x ∈ D with respect to D. If x = u, then u
has two private neighbours with respect to D, a contradiction. If x ̸= u, then as
x, w ∈ D2, x has a private neighbour say z outside D2 with respect to D2. Then
z is a private neighbour of x with respect to D. Hence D ∪ {w} is an irredundant
set of G, containing D, a contradiction to the maximality of D.

Case (ii): u is an isolate of D. Since u is not an isolate of G (if u is an isolate
of G, then u belongs to every irredundant set contradicting just ir-excellent), there
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exists v ∈ V −D such that u and v are adjacent. Since pn[u,D] = {u}, v is not a
private neighbour of u with respect to D. Therefore v is adjacent to some vertex
say w ̸= u ∈ D. Consider D1 = (D − {u}) ∪ {v}. Since u is a private neighbour
of v with respect to D1 and since every vertex of D − {u} has a private neighbour
not equal to v with respect to D, D1 is an irredundant set of G strictly containing
D1. Let w ∈ D2 − D1. Suppose w = u. Since u is adjacent with v, w in D2 is
not an isolate of D2. w = u has a private neighbour in V −D with respect to D.
Therefore |pn[u,D]| > 2, a contradiction.

Suppose w ̸= u.

Subcase (i): w is an isolate of D2. Then w is not adjacent with any vertex
of (D − {u}) ∪ {v}. (If w is adjacent with u then w is a private neighbour of u
in V −D with respect to D a contradiction). Therefore w is not adjacent with u.
w is an isolate of D ∪ {w}. Hence D ∪ {w} is an irredundant set containing D, a
contradiction to the maximality of D.

Subcase (ii): w is not an isolate of D2. Then w has a private neighbour say
z in V − D2. If z = u, then z is not adjacent with any vertex in D2 − w. But u
is adjacent with v in D2, a contradiction. Therefore z ̸= u. Consider D ∪ {w}. If
w is not a private neighbour of any vertex of D with respect to D, then D ∪ {w}
is irredundant. If w is a private neighbour of some x ∈ D with respect to D,
then x ̸= u (since pn[u,D] = 1). As x and w are adjacent in D2, x has a private
neighbour say y in V −D2 with respect to D2. That is x has a private neighbour
y in V − D with respect to D. Therefore D ∪ {w} is an irredundant set of G is
a contradiction to the maximality of D. Therefore D1 = (D − {u}) ∪ {v} is a
maximal irredundant set of G. |D| = 1 implies ir(G) = 1. As G is just excellent
and ir(G) = 1, G = Kn, a contradiction. Therefore |D| > 2. Hence ϕ ̸= D − {u},
is contained in two ir-sets namely D and D1, a contradiction to just excellence.
Therefore |pn[u,D]| > 2 for all u ∈ D.

Case B: G = Kn, n > 2. Here ir(G) = 1 and every verex constitutes an
ir-set of G. Let D be any ir-set of G. Then D = {u} for some u ∈ V (G).
|pn[u,D]| = n > 2. �

Remark 3.4. Let G be the graph obtained from Kn,n by removing a 1-factor.
Then G is just ir-excellent.

Proof. If V1 and V2 are the partite sets and if V1 = {u1, u2, · · · , un}, V2 =
{v1, v2, · · · , vn} and ui and vi are not adjacent (1 6 i 6 n), then the ir-sets are

{u1, v1}, {u2, v2}, · · · , {un, vn}. �

Theorem 3.1. Let G be a graph of order n. Then G is ir-excellent if and only
if the following conditions hold.

(i) ir(G) divides n.
(ii) G has exactly n

ir(G) distinct ir-sets.

Proof. (i) Let G be just ir-excellent. Then G can be partitioned into t sets each
of which is an ir-set. Therefore t ir(G) = n. Therefore ir(G) divides n.
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(ii): V (G) = S1 ∪ S2∪, · · · ,∪Sm where each Si is an ir-set of G and these sets
are pairwise disjoint. Therefore there are m distinct ir-sets of G where m =

n
ir(G) . Suppose there exists a ir-set T different from S1, S2, · · · , Sm. Since S1 ∪
S2∪, · · · ,∪Sm = V (G) ⊇ T , every element x ∈ T belongs to some Si, 1 6 i 6 m.
Therefore x belongs to two ir-sets of G, a contradiction.
Conversely, suppose the three conditions hold. Let m = n

ir(G) . By (iii) G has

exactly m distinct ir-sets. Suppose V = S1 ∪ S2∪, · · · ,∪Sm is a decomposition of

V (G) where each Si is a maximal irredundant set, 1 6 i 6 m. Then n =
m∑
i=1

|Si| >
m ir(G). But n = m ir(G). Therefore each Si is an ir-set of G. Since G has
exactly m distinct ir-sets, S1, S2, · · · , Sm are the distinct ir-sets of G and hence
V = S1 ∪ S2∪, · · · ,∪Sm is a partition into disjoint ir-sets of G. Therefore each
vertex v belongs to exactly one Si, for some i, 1 6 i 6 m. Therefore G is just
ir-excellent. �

Theorem 3.2. Every graph is an induced subgraph of a just ir-excellent graph.

Proof. Let G be a given graph. If G is just ir-excellent, then there is nothing
to prove. Assume that G is not just ir-excellent. Let V (G) = {v1, v2, · · · , vn}.
Consider the cycle C3n. It is just ir-excellent. Let S1, S2, S3 be the distinct ir-sets
of C3n. Label the vertices of S1 by u1, u2, u3, · · · , un. Now in C3n we add edges
uiuj if and only if vivj is an edge in G. Let the resulting graph be H. Then the
induced subgraph ⟨S1⟩ in H is isomorphic to G. By theorem 4.12 in [6], H is just
ir-excellent and ir(H) = n. Every ir-set is a γ set. Thus the given graph G is an
induced subgraph of a just ir-excellent graph H. �

Example 3.2.
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G H

G is an induced subgraph of H which is a just ir-excellent graph.
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