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POLYGON DISSECTIONS COMPLEXES

ARE SHELLABLE

Duško Jojić

Abstract. All dissections of a convex (mn + 2)-gons into (m + 2)-gons are
facets of a simplicial complex. This complex is introduced by S. Fomin and
A.V. Zelevinsky in [7]. We reprove the result of E. Tzanaki about shellability
of such complex by finding a concrete shelling order. Also, we use this shelling

order to find a combinatorial interpretation of h-vector and to describe the
generating facets of these complexes.

1. Introduction

The problem of enumeration of triangulations of a convex polygon by noncross-
ing diagonals goes back to Leonhard Euler, who first found a closed formula for
what we now call the Catalan numbers, see Appendix B in [14]. The enumeration
of certain special types of dissections of a polygon by its diagonals are interest-
ing combinatorial problems. The paper by Przytycki and Sikora [11] offers a nice
review of the problems of this type.

In our paper we will consider all dissections of a convex (mn+2)-gon Pmn+2 by
non-crossing diagonals into (m+2)-gons. A set of non-crossing diagonals of Pmn+2

is m-divisible if the partial dissection of Pmn+2 defined by these diagonals can be
completed to a dissection of Pmn+2 into (m+ 2)-gons.

The number of m-divisible sets with exactly i-diagonals in Pmn+2 is (see Corol-
lary 2 in [11]) given by

(1.1)
1

i+ 1

(
mn+ i+ 1

i

)(
n− 1

i

)
.
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The above numbers are known as Fuss-Kirkman numbers.
The investigation of geometrical and topological questions related to the tri-

angulations of a convex polygon started by Tamari, Milnor, Stasheff and others in
the mid-twentieth century. The associahedron Kn+2 is a well-known n-dimensional
convex polytope whose vertices correspond to the triangulations of a convex (n+3)-
gon. The facets of Kn+2 correspond to the diagonals of this (n + 3)-gon. For the
history of the construction and some generalization of associahedron see chapter 9
in [16] and [12].

An abstract simplicial complex is a collection ∆ of finite nonempty subsets
such that A ⊆ B ∈ ∆ ⇒ A ∈ ∆. The element F of ∆ is called a face (or
simplex ) of ∆ and its dimension is |F | − 1. The dimension of the complex ∆ is
defined as the largest dimension of any of its faces. For a d-dimensional simplicial
complex ∆ we denote the number of i-dimensional faces of ∆ by fi, and call f(∆) =
(f−1, f0, f1, . . . , fd) the f -vector. A new invariant, the h-vector of d-dimensional
complex ∆ is h(∆) = (h0, h1, . . . , hd, hd+1) defined by the formula

hk =

k∑
i=0

(−1)k−i

(
d+ 1− i

d+ 1− k

)
fi−1.

A simplicial complex is pure if all its maximal sets (facets) have the same cardi-
nality. The interested reader can find more about simplicial complexes and other
topological concepts used in this paper in [3] and [10].

Very often we define a simplicial complex in a natural way from a combi-
natorial or a geometrical object: graph, poset, polytope, matroid, etc. Finding
relations between some properties of a combinatorial object X and the topology
of the corresponding simplicial complex ∆(X) is a great source of the problems in
combinatorial topology, see in [8].

An easy combinatorial way to obtain lots of information about algebraic, com-
binatorial and topological properties of a simplicial complex is to establishing the
shellability of this complex, see [4] or [5]. A simplicial complex is shellable if it
is pure and its facets can be ordered so that each one (other than the first) inter-
sects the union of its predecessors in a nonempty union of maximal proper faces.
Formally, this can be described by the following definition.

Definition 1.1. A simplicial complex ∆ is shellable if ∆ is pure and there
exists a linear ordering (shelling order) of its facets F1, F2, . . . , Fk such that for all
i < j 6 k, there exists some l < j and a vertex v of Fj, such that

Fi ∩ Fj ⊆ Fl ∩ Fj = Fj r {v}.

For a fixed shelling order F1, F2, . . . , Fk of ∆, the restriction R(Fj) of the facet
Fj is defined by:

R(Fj) = {v is a vertex of Fj : Fj r {v} ⊂ Fi for some 1 6 i < j}.

Geometrically, if we build up ∆ from its facets according to the shelling order, then
R(Fj) is the unique minimal new face added at the j-th step.
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The type of the facet Fj in the given shelling order is type(Fj) = |R(Fj)|. If a
simplicial complex ∆ is shellable, there is a nice combinatorial interpretation of its
h-vector:

hk(∆) = |{F is a facet of ∆ : type(F ) = k}|.
This interpretation of the h-vector was the key argument in the proof of the upper-
bound theorem and in the characterization of f -vectors of simplicial polytopes
(see chapter 8 in [16]). Further, a shellable d-dimensional simplicial complex is
homotopy equivalent to a wedge of hd+1 spheres of dimension d. For a given
shelling order of a complex ∆ we can describe a set of generating simplices of ∆ (a
set of facets of ∆ such that the removal of their interiors makes ∆ contractible).
A facet F is a generating facet if and only if R(F ) = F , or equivalently:

(1.2) ∀v ∈ F there exists a facet F ′ before F such that F ∩ F ′ = F r {v}.

2. Shelling of dissection complexes

Definition 2.1. For a convex polygon Pmn+2 with mn + 2 vertices let ∆m
n

denote the abstract simplicial complex whose vertices are the diagonals that divide
Pmn+2 into an (sm+ 2)-gon and an ((n− s)m+ 2)-gon, for some 1 6 s 6 n− 1.
The facets of ∆m

n are the sets of non-crossing diagonals that dissect Pmn+2 into
(m+ 2)-gons.

Note that each dissection of Pmn+2 into (m + 2)-gons contains exactly n − 1
appropriate diagonals, and therefore ∆m

n is a pure (n − 2)-dimensional simplicial
complex. Further, there is an obvious correspondence between the set of (i −
1)-dimensional faces of ∆m

n and all m-divisible sets with exactly i non-crossing
diagonals of Pmn+2. In other words, the faces of ∆m

n are all partial dissection that
can be completed to a dissection of Pmn+2 into (m+ 2)-gons.

So, we can recognize that the entries of f -vector of ∆m
n are Fuss-Kirkman

numbers given by (1.1).
It is well-known that for m = 1 the complex ∆1

n is the boundary of the dual
of associahedron, i.e., ∆1

n
∼= ∂K∗

n+1. The complex ∆m
n also appears in [7] as the

generalized cluster complex (a simplicial complex associated to a crystallographic
root system). E. Tzanaki proved that ∆m

n is vertex-decomposable (Proposition 4.1
in [15]) and therefore shellable. Athanasiadis and Tzanaki later proved in [2] that
generalized cluster complexes are shellable for all finite root systems.

Theorem 2.1 (Tzanaki, [15]). The complex ∆m
n is shellable.

We reprove this result by finding a concrete shelling order for ∆m
n .

Proof. Assume that the vertices of Pmn+2 are labelled by v1, v2, . . . , vmn+2

in the clockwise direction, and fix the linear order

v1 < v2 < . . . < vmn+1 < vmn+2

on the vertices of Pmn+2. Recall that the vertices of ∆m
n are appropriate diagonals

xy, where x and y are vertices of Pmn+2. In this notation we always assume that
x < y, and we say that the diagonal xy starts from x.
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Now,we use the above defined linear order < on the set of vertices of Pmn+2 to
define the lexicographical order <L on the set of vertices of ∆m

n :

vavb <L vcvd ⇐⇒ va < vc or va = vc, vb < vd.

Finally, we order the set of facets of ∆m
n (these facets are (n − 1)-element subsets

of appropriate non-crossing diagonals of Pmn+2) anti-lexicographically:
For two facets F and F ′ we let

(2.1) F <AL F ′ ⇔ max<L(F△F ′) ∈ F ′.

Now, we prove that the linear order defined in (2.1) satisfies the conditions described
in Definition 1.1, i.e., <AL is a shelling order for ∆m

n .

Remark 2.1. Assume that vpvq = max<L(F△F ′) ∈ F ′. In the partition of
Pmn+2 into (m + 2)-gons defined by (n − 1) diagonals from F ′, the diagonal vpvq
lies at the boundary of exactly two convex (m + 2)-gons. We assume that these
(m+2)-gons are labeled by x1x2 . . . xm+2 and y1y2 . . . ym+2, where x1 = vp = ym+2

and xm+2 = vq = y1, see Figure 1.
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Figure 1. Polygons that contain vpvq and all facets containing
F ′ r {vpvq}

Note that F ′r{vpvq} is an (n−2)-dimensional face of Γm
n contained in exactly

(m+ 1) facets

F ′, F ′ r {vpvq} ∪ {x2y2}, . . . , F ′ r {vpvq} ∪ {xm+1ym+1}.
All of these facets of ∆m

n are obtained by “rotation“ of the diagonal vpvq inside
(2m+ 2)-gon vpx2 . . . xm+1vqy2 . . . ym+1, see Figure 1.

If there exists xjyj <L vpvq for some j (in that case we have xj = vr for
some vr < vp), then we let F ′′ = F ′ r {vpvq} ∪ {xjyj}. Obviously, we have that
F ′′ <AL F ′ and

F ∩ F ′ ⊆ F ′ ∩ F ′′ = F ′ r {vpvq}.
We obtain the same if there is a diagonal yjxj <L vpvq.
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If vp < xi (for all i > 2) and vp < yj (for all j < m + 2), then (because we
know that vpvq = max<L

(F△F ′)) all of segments

x2x3, x3x4, . . . , xm+1vq, vqy2, . . . , ym+1vr

are edges of Pmn+2, or appropriate diagonals contained in both F and F ′.
As we know that vpvq /∈ F , and the diagonals from F dissect Pmn+2 into

(m+ 2)-gons, then there exist a vertex xi such that vp < xi and the diagonal xiyi
is contained in F . But xiyi is not contained in F ′ (otherwise it would cross vpvq),
and this is a contradiction with assumption that F <AL F ′. �

The shelling order defined in (2.1) enables us to determine the restriction for
each facets of ∆m

n in this order. If F = {x1y1, x2y2, . . . , xn−1yn−1} is a facet of ∆m
n

recall that xiyi ∈ R(F ) if and only if we can exchange xiyi with a diagonal xy such
that F ′ = F r {xiyi} ∪ {xy} <AL F .

In other words, xiyi ∈ R(F ) if and only if we can rotate xiyi inside a (2m+2)-
gon defined by partition of Pmn+2 by F (see Remark 2.1 and Figure 1) in order to
obtain an antilexicographically smaller facet. Therefore, we conclude that xiyi ∈
R(F ) if and only if:

xi ̸= v1, and there is no xiy ∈ F for some y > yi.

Now, we obtain the following combinatorial interpretation for the h-vector of ∆m
n :

hi(∆
m
n ) counts the number of dissections F of Pmn+2 into (m + 2)-gons by n − 1

diagonals so that there are exactly i of diagonals xy ∈ F starting with x > v1 for
which does not exist the diagonal xz ∈ F such that x < y < z.

The h-vector of ∆m
n is obtained in [15] by elementary calculation, and its entries

are

(2.2) hi =
1

i+ 1

(
mn

i

)(
n− 1

i

)
.

In [15] (see also in [1] and [13]) these numbers are called generalized Narayana
numbers. However, these numbers appeared in many situations. We point out
some of their combinatorial interpretation mentioned in [6].

(a) An r-ary tree is a finite set of nodes consists of a root s that is connected
with exactly r disjoint r-ary trees R1, R2, . . . , Rr (some of them may be
empty) in this order. The edge connecting an inner node with Rj is
labelled by j. We say that this edge is strong if Rj ̸= ∅. An r-ary tree
with n inner nodes has n(r − 1) + 1 leaves and n − 1 strong edges. The
formula (2.2) counts the number of (m+ 1)-ary trees with n inner nodes
and exactly n− i− 1 strong edges labelled by a fixed label, see Theorem
1 and Theorem 2 in [6].

(b) The (m + 1)-Catalan path is a nonnegative path in the integer lattice
from (0, 0) to (0, (m+ 1)n) with steps (1, 1) and (1, 1−m). The number
of (m + 1)-Catalan paths with exactly i + 1 peaks is given by (2.2), see
Theorem 2 in [6].
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(c) The number of noncrossing partitions of [n] into i blocks B1, B2, . . . , Bi

(there do not exist a < b < c < d such that a, c ∈ Bi and b, d ∈ Bj for i ̸=
j) in which the cardinality of each block is divisible bym. These partitions
correspond with Catalan permutations (in the sense of D. Knuth, see [9]).

The bijections between all of the above defined sets are non-trivial and can
be found in [6]. Our consideration of h-vector of ∆m

n offers another combinatorial
interpretation for the numbers given by (2.2).

At the end of this section we describe a bijection between the facets of ∆m
n

and the set of (m + 1)-ary trees with n-nodes. For a given dissection F ∈ ∆m
n we

associate the (m+ 1)-ary tree T (F ) in the following way:

• Let the edge v1v2 be the root of T (F ).

• Choose the unique (m+ 2)-gon M = v1v2x1 . . . xm that contains v1v2.

• Connect v1v2 with segments v1xm, xm−1xm, . . . , v2x3 in this order
(the edge that connect v1v2 and v1xm is the most left edge in T (F ),
labeled by 1).

• For each diagonal xy ∈ M , we continue to build T (F ) in the same way
taking into account the orientation of diagonals.

Assume that the diagonal xy is a new inner node of T (F ). If its neighbors
are segments in the (m + 2)-gon xyz1z2, . . . , zm, the leftmost edge from the node
xy (this edge of T (F ) is labeled by 1) is xzm and the rightmost edge from xy is
yz1 (recall that x < y). It is not too complicated to define the inverse map for
F 7→ T (F ).

The above bijection is graded in the following sense: A dissection of Pmn+2

defined by F ∈ ∆m
n of the type i maps to the (m + 1)-ary tree T (F ) with exactly

n− i− 1 strong edges labelled by 1.

3. Generating facets of dissection complexes

In this section we describe the set of generating facets of ∆m
n in our shelling

order.

Remark 3.1. From (1.2) and Remark 2.1 we have the following characteriza-
tion:
A facet F ∈ ∆m

n is a generating facet if and only if

(a) there is no diagonal in F starting from v1; and
(b) for any vertex vi > v1 there is at most one diagonal in F starting from

vi, i.e., there is at most one vivj ∈ F (recall that here vi < vj).

Further, from the formulas (1.1) and (2.2) we easily obtain that hn−1(∆
m+1
n ) =

fn−2(∆
m
n ), i.e., the number of generating facets of ∆m+1

n is equal to the number
of all facets of ∆m

n . In particular, we conclude that the Betti number of ∆2
n is the

Catalan number Cn.

Theorem 3.1. There is a bijection between all facets of ∆m
n and generating

facets of ∆m+1
n .
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We will prove the above theorem by using our combinatorial interpretation of
generating facets of ∆m+1

n .

Proof. A generating facet F of ∆m+1
n defines the dissection of P(m+1)n+2 into

(m+3)-gons. Each of these (m+3)-gons (there are exactly n of them) contains at
least one edge of P(m+1)n+2.

Indeed, assume that in the dissection defined by generating facet F there is an
(m+ 3)-gon vi1vi2 . . . vim+3 such that all of its edges are diagonal of P(m+1)n+2.
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Figure 2. A generating facet of ∆2
6 and corresponding facet of ∆1

6

In that case we have that two diagonals in F started from the smallest vertex
in vi1vi2 . . . vim+3 , and this is a contradiction with the assumption that F is a
generating facet, see (b) in Remark 3.1.

Now, for each of the (m + 3)-gon in the considered dissection, we choose the
minimal vertex vi such that the edge vivi+1 is in this (m + 3)-gon, and contract
this edge. In the example on Figure 2 all of the thick edges of 14-gon will be
contracted. After this operation, we obtain a dissection of an convex (mn+2)-gon
into (m+ 2)-gons by n− 1 diagonals.

We label the vertices of this new polygon with w1, w2, . . . , wmn+2, starting
with v1 = v2 = w1. Note that the edge v1v2 is contained in an (m + 3)-gon in
the dissection of P(m+1)n+2 defined by a generating facet F , see (a) in Remark 3.1.
Also, we take into account that all of identified vertices share the same new label,
see right part of Figure 2.

It is easy to describe the inverse of the above defined map. Consider a dissection
of Pmn+2 defined by a facet F ∈ ∆m

n . We describe a geometric way to construct
corresponding generating facet of ∆m+1

n . If F contains k diagonals from v1, first
we draw a small arc around v1. Now, we take the end points of this arc and its
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intersections with diagonals from v1 to define k + 2 new vertices of P(m+1)n+2, see
right part of Figure 2.

We continue in a similar manner. For each vertex vi, i > 1 that is the beginning
of s diagonals, we draw a small arc around vi that intersects all diagonals from vi
except the diagonal with the largest end vertex. There are s intersection points (we
count the end point of this arc on the edge of Pmn+2), and these s points are new
vertices of P(m+1)n+2. Note that each (m + 2)-gon of dissection of Pmn+2 defined

by F now is transformed into an generating facet of ∆m+1
n . �
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