POLYGON DISSECTIONS COMPLEXES ARE SHELLABLE

Duško Jojić

Abstract

All dissections of a convex $(m n+2)$-gons into $(m+2)$-gons are facets of a simplicial complex. This complex is introduced by S. Fomin and A.V. Zelevinsky in [7]. We reprove the result of E. Tzanaki about shellability of such complex by finding a concrete shelling order. Also, we use this shelling order to find a combinatorial interpretation of h-vector and to describe the generating facets of these complexes.

1. Introduction

The problem of enumeration of triangulations of a convex polygon by noncrossing diagonals goes back to Leonhard Euler, who first found a closed formula for what we now call the Catalan numbers, see Appendix B in $[\mathbf{1 4}]$. The enumeration of certain special types of dissections of a polygon by its diagonals are interesting combinatorial problems. The paper by Przytycki and Sikora [11] offers a nice review of the problems of this type.

In our paper we will consider all dissections of a convex $(m n+2)$-gon $P_{m n+2}$ by non-crossing diagonals into $(m+2)$-gons. A set of non-crossing diagonals of $P_{m n+2}$ is m-divisible if the partial dissection of $P_{m n+2}$ defined by these diagonals can be completed to a dissection of $P_{m n+2}$ into $(m+2)$-gons.

The number of m-divisible sets with exactly i-diagonals in $P_{m n+2}$ is (see Corollary 2 in [11]) given by

$$
\begin{equation*}
\frac{1}{i+1}\binom{m n+i+1}{i}\binom{n-1}{i} \tag{1.1}
\end{equation*}
$$

[^0]The above numbers are known as Fuss-Kirkman numbers.
The investigation of geometrical and topological questions related to the triangulations of a convex polygon started by Tamari, Milnor, Stasheff and others in the mid-twentieth century. The associahedron K_{n+2} is a well-known n-dimensional convex polytope whose vertices correspond to the triangulations of a convex $(n+3)$ gon. The facets of K_{n+2} correspond to the diagonals of this $(n+3)$-gon. For the history of the construction and some generalization of associahedron see chapter 9 in $[16]$ and [12].

An abstract simplicial complex is a collection Δ of finite nonempty subsets such that $A \subseteq B \in \Delta \Rightarrow A \in \Delta$. The element F of Δ is called a face (or simplex) of Δ and its dimension is $|F|-1$. The dimension of the complex Δ is defined as the largest dimension of any of its faces. For a d-dimensional simplicial complex Δ we denote the number of i-dimensional faces of Δ by f_{i}, and call $f(\Delta)=$ $\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{d}\right)$ the f-vector. A new invariant, the h-vector of d-dimensional complex Δ is $h(\Delta)=\left(h_{0}, h_{1}, \ldots, h_{d}, h_{d+1}\right)$ defined by the formula

$$
h_{k}=\sum_{i=0}^{k}(-1)^{k-i}\binom{d+1-i}{d+1-k} f_{i-1}
$$

A simplicial complex is pure if all its maximal sets (facets) have the same cardinality. The interested reader can find more about simplicial complexes and other topological concepts used in this paper in [3] and [10].

Very often we define a simplicial complex in a natural way from a combinatorial or a geometrical object: graph, poset, polytope, matroid, etc. Finding relations between some properties of a combinatorial object X and the topology of the corresponding simplicial complex $\Delta(X)$ is a great source of the problems in combinatorial topology, see in $[8]$.

An easy combinatorial way to obtain lots of information about algebraic, combinatorial and topological properties of a simplicial complex is to establishing the shellability of this complex, see [4] or [5]. A simplicial complex is shellable if it is pure and its facets can be ordered so that each one (other than the first) intersects the union of its predecessors in a nonempty union of maximal proper faces. Formally, this can be described by the following definition.

Definition 1.1. A simplicial complex Δ is shellable if Δ is pure and there exists a linear ordering (shelling order) of its facets $F_{1}, F_{2}, \ldots, F_{k}$ such that for all $i<j \leqslant k$, there exists some $l<j$ and a vertex v of F_{j}, such that

$$
F_{i} \cap F_{j} \subseteq F_{l} \cap F_{j}=F_{j} \backslash\{v\}
$$

For a fixed shelling order $F_{1}, F_{2}, \ldots, F_{k}$ of Δ, the restriction $\mathcal{R}\left(F_{j}\right)$ of the facet F_{j} is defined by:

$$
\mathcal{R}\left(F_{j}\right)=\left\{v \text { is a vertex of } F_{j}: F_{j} \backslash\{v\} \subset F_{i} \text { for some } 1 \leqslant i<j\right\} .
$$

Geometrically, if we build up Δ from its facets according to the shelling order, then $\mathcal{R}\left(F_{j}\right)$ is the unique minimal new face added at the j-th step.

The type of the facet F_{j} in the given shelling order is type $\left(F_{j}\right)=\left|\mathcal{R}\left(F_{j}\right)\right|$. If a simplicial complex Δ is shellable, there is a nice combinatorial interpretation of its h-vector:

$$
h_{k}(\Delta)=\mid\{F \text { is a facet of } \Delta: \operatorname{type}(F)=k\} \mid .
$$

This interpretation of the h-vector was the key argument in the proof of the upperbound theorem and in the characterization of f-vectors of simplicial polytopes (see chapter 8 in $[\mathbf{1 6}]$). Further, a shellable d-dimensional simplicial complex is homotopy equivalent to a wedge of h_{d+1} spheres of dimension d. For a given shelling order of a complex Δ we can describe a set of generating simplices of Δ (a set of facets of Δ such that the removal of their interiors makes Δ contractible). A facet F is a generating facet if and only if $\mathcal{R}(F)=F$, or equivalently:
(1.2) $\quad \forall v \in F$ there exists a facet F^{\prime} before F such that $F \cap F^{\prime}=F \backslash\{v\}$.

2. Shelling of dissection complexes

Definition 2.1. For a convex polygon $P_{m n+2}$ with $m n+2$ vertices let Δ_{n}^{m} denote the abstract simplicial complex whose vertices are the diagonals that divide $P_{m n+2}$ into an $(s m+2)$-gon and an $((n-s) m+2)$-gon, for some $1 \leqslant s \leqslant n-1$. The facets of Δ_{n}^{m} are the sets of non-crossing diagonals that dissect $P_{m n+2}$ into $(m+2)$-gons.

Note that each dissection of $P_{m n+2}$ into $(m+2)$-gons contains exactly $n-1$ appropriate diagonals, and therefore Δ_{n}^{m} is a pure ($n-2$)-dimensional simplicial complex. Further, there is an obvious correspondence between the set of $(i-$ 1)-dimensional faces of Δ_{n}^{m} and all m-divisible sets with exactly i non-crossing diagonals of $P_{m n+2}$. In other words, the faces of Δ_{n}^{m} are all partial dissection that can be completed to a dissection of $P_{m n+2}$ into ($m+2$)-gons.

So, we can recognize that the entries of f-vector of Δ_{n}^{m} are Fuss-Kirkman numbers given by (1.1).

It is well-known that for $m=1$ the complex Δ_{n}^{1} is the boundary of the dual of associahedron, i.e., $\Delta_{n}^{1} \cong \partial K_{n+1}^{*}$. The complex Δ_{n}^{m} also appears in [7] as the generalized cluster complex (a simplicial complex associated to a crystallographic root system). E. Tzanaki proved that Δ_{n}^{m} is vertex-decomposable (Proposition 4.1 in $[\mathbf{1 5}]$) and therefore shellable. Athanasiadis and Tzanaki later proved in [2] that generalized cluster complexes are shellable for all finite root systems.

Theorem 2.1 (Tzanaki, [15]). The complex Δ_{n}^{m} is shellable.
We reprove this result by finding a concrete shelling order for Δ_{n}^{m}.
Proof. Assume that the vertices of $P_{m n+2}$ are labelled by $v_{1}, v_{2}, \ldots, v_{m n+2}$ in the clockwise direction, and fix the linear order

$$
v_{1}<v_{2}<\ldots<v_{m n+1}<v_{m n+2}
$$

on the vertices of $P_{m n+2}$. Recall that the vertices of Δ_{n}^{m} are appropriate diagonals $x y$, where x and y are vertices of $P_{m n+2}$. In this notation we always assume that $x<y$, and we say that the diagonal $x y$ starts from x.

Now, we use the above defined linear order $<$ on the set of vertices of $P_{m n+2}$ to define the lexicographical order $<_{L}$ on the set of vertices of Δ_{n}^{m} :

$$
v_{a} v_{b}<_{L} v_{c} v_{d} \Longleftrightarrow v_{a}<v_{c} \text { or } v_{a}=v_{c}, v_{b}<v_{d}
$$

Finally, we order the set of facets of Δ_{n}^{m} (these facets are ($n-1$)-element subsets of appropriate non-crossing diagonals of $P_{m n+2}$) anti-lexicographically:

For two facets F and F^{\prime} we let

$$
\begin{equation*}
F<_{A L} F^{\prime} \Leftrightarrow \max _{<_{L}}\left(F \triangle F^{\prime}\right) \in F^{\prime} . \tag{2.1}
\end{equation*}
$$

Now, we prove that the linear order defined in (2.1) satisfies the conditions described in Definition 1.1, i.e., $<_{A L}$ is a shelling order for Δ_{n}^{m}.

Remark 2.1. Assume that $v_{p} v_{q}=\max _{<_{L}}\left(F \triangle F^{\prime}\right) \in F^{\prime}$. In the partition of $P_{m n+2}$ into $(m+2)$-gons defined by $(n-1)$ diagonals from F^{\prime}, the diagonal $v_{p} v_{q}$ lies at the boundary of exactly two convex $(m+2)$-gons. We assume that these $(m+2)$-gons are labeled by $x_{1} x_{2} \ldots x_{m+2}$ and $y_{1} y_{2} \ldots y_{m+2}$, where $x_{1}=v_{p}=y_{m+2}$ and $x_{m+2}=v_{q}=y_{1}$, see Figure 1 .

Figure 1. Polygons that contain $v_{p} v_{q}$ and all facets containing $F^{\prime} \backslash\left\{v_{p} v_{q}\right\}$

Note that $F^{\prime} \backslash\left\{v_{p} v_{q}\right\}$ is an $(n-2)$-dimensional face of Γ_{n}^{m} contained in exactly $(m+1)$ facets

$$
F^{\prime}, F^{\prime} \backslash\left\{v_{p} v_{q}\right\} \cup\left\{x_{2} y_{2}\right\}, \ldots, F^{\prime} \backslash\left\{v_{p} v_{q}\right\} \cup\left\{x_{m+1} y_{m+1}\right\} .
$$

All of these facets of Δ_{n}^{m} are obtained by "rotation" of the diagonal $v_{p} v_{q}$ inside $(2 m+2)$-gon $v_{p} x_{2} \ldots x_{m+1} v_{q} y_{2} \ldots y_{m+1}$, see Figure 1.

If there exists $x_{j} y_{j}<_{L} v_{p} v_{q}$ for some j (in that case we have $x_{j}=v_{r}$ for some $v_{r}<v_{p}$), then we let $F^{\prime \prime}=F^{\prime} \backslash\left\{v_{p} v_{q}\right\} \cup\left\{x_{j} y_{j}\right\}$. Obviously, we have that $F^{\prime \prime}<_{A L} F^{\prime}$ and

$$
F \cap F^{\prime} \subseteq F^{\prime} \cap F^{\prime \prime}=F^{\prime} \backslash\left\{v_{p} v_{q}\right\}
$$

We obtain the same if there is a diagonal $y_{j} x_{j}<_{L} v_{p} v_{q}$.

If $v_{p}<x_{i}$ (for all $i>2$) and $v_{p}<y_{j}$ (for all $j<m+2$), then (because we know that $v_{p} v_{q}=\max _{<_{L}}\left(F \triangle F^{\prime}\right)$) all of segments

$$
x_{2} x_{3}, x_{3} x_{4}, \ldots, x_{m+1} v_{q}, v_{q} y_{2}, \ldots, y_{m+1} v_{r}
$$

are edges of $P_{m n+2}$, or appropriate diagonals contained in both F and F^{\prime}.
As we know that $v_{p} v_{q} \notin F$, and the diagonals from F dissect $P_{m n+2}$ into $(m+2)$-gons, then there exist a vertex x_{i} such that $v_{p}<x_{i}$ and the diagonal $x_{i} y_{i}$ is contained in F. But $x_{i} y_{i}$ is not contained in F^{\prime} (otherwise it would cross $v_{p} v_{q}$), and this is a contradiction with assumption that $F<_{A L} F^{\prime}$.

The shelling order defined in (2.1) enables us to determine the restriction for each facets of Δ_{n}^{m} in this order. If $F=\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n-1} y_{n-1}\right\}$ is a facet of Δ_{n}^{m} recall that $x_{i} y_{i} \in \mathcal{R}(F)$ if and only if we can exchange $x_{i} y_{i}$ with a diagonal $x y$ such that $F^{\prime}=F \backslash\left\{x_{i} y_{i}\right\} \cup\{x y\}<_{A L} F$.

In other words, $x_{i} y_{i} \in \mathcal{R}(F)$ if and only if we can rotate $x_{i} y_{i}$ inside a ($2 m+2$)gon defined by partition of $P_{m n+2}$ by F (see Remark 2.1 and Figure 1) in order to obtain an antilexicographically smaller facet. Therefore, we conclude that $x_{i} y_{i} \in$ $\mathcal{R}(F)$ if and only if:

$$
x_{i} \neq v_{1}, \text { and there is no } x_{i} y \in F \text { for some } y>y_{i}
$$

Now, we obtain the following combinatorial interpretation for the h-vector of Δ_{n}^{m} : $h_{i}\left(\Delta_{n}^{m}\right)$ counts the number of dissections F of $P_{m n+2}$ into $(m+2)$-gons by $n-1$ diagonals so that there are exactly i of diagonals $x y \in F$ starting with $x>v_{1}$ for which does not exist the diagonal $x z \in F$ such that $x<y<z$.

The h-vector of Δ_{n}^{m} is obtained in [15] by elementary calculation, and its entries are

$$
\begin{equation*}
h_{i}=\frac{1}{i+1}\binom{m n}{i}\binom{n-1}{i} . \tag{2.2}
\end{equation*}
$$

In $[\mathbf{1 5}]$ (see also in $[\mathbf{1}]$ and $[\mathbf{1 3}]$) these numbers are called generalized Narayana numbers. However, these numbers appeared in many situations. We point out some of their combinatorial interpretation mentioned in [6].
(a) An r-ary tree is a finite set of nodes consists of a root s that is connected with exactly r disjoint r-ary trees $R_{1}, R_{2}, \ldots, R_{r}$ (some of them may be empty) in this order. The edge connecting an inner node with R_{j} is labelled by j. We say that this edge is strong if $R_{j} \neq \emptyset$. An r-ary tree with n inner nodes has $n(r-1)+1$ leaves and $n-1$ strong edges. The formula (2.2) counts the number of ($m+1$)-ary trees with n inner nodes and exactly $n-i-1$ strong edges labelled by a fixed label, see Theorem 1 and Theorem 2 in [6].
(b) The $(m+1)$-Catalan path is a nonnegative path in the integer lattice from $(0,0)$ to $(0,(m+1) n)$ with steps $(1,1)$ and $(1,1-m)$. The number of $(m+1)$-Catalan paths with exactly $i+1$ peaks is given by (2.2), see Theorem 2 in [6].
(c) The number of noncrossing partitions of $[n]$ into i blocks $B_{1}, B_{2}, \ldots, B_{i}$ (there do not exist $a<b<c<d$ such that $a, c \in B_{i}$ and $b, d \in B_{j}$ for $i \neq$ j) in which the cardinality of each block is divisible by m. These partitions correspond with Catalan permutations (in the sense of D. Knuth, see [9]).
The bijections between all of the above defined sets are non-trivial and can be found in [6]. Our consideration of h-vector of Δ_{n}^{m} offers another combinatorial interpretation for the numbers given by (2.2).

At the end of this section we describe a bijection between the facets of Δ_{n}^{m} and the set of $(m+1)$-ary trees with n-nodes. For a given dissection $F \in \Delta_{n}^{m}$ we associate the $(m+1)$-ary tree $T(F)$ in the following way:

- Let the edge $v_{1} v_{2}$ be the root of $T(F)$.
- Choose the unique $(m+2)$-gon $M=v_{1} v_{2} x_{1} \ldots x_{m}$ that contains $v_{1} v_{2}$.
- Connect $v_{1} v_{2}$ with segments $v_{1} x_{m}, x_{m-1} x_{m}, \ldots, v_{2} x_{3}$ in this order (the edge that connect $v_{1} v_{2}$ and $v_{1} x_{m}$ is the most left edge in $T(F)$, labeled by 1).
- For each diagonal $x y \in M$, we continue to build $T(F)$ in the same way taking into account the orientation of diagonals.
Assume that the diagonal $x y$ is a new inner node of $T(F)$. If its neighbors are segments in the $(m+2)$-gon $x y z_{1} z_{2}, \ldots, z_{m}$, the leftmost edge from the node $x y$ (this edge of $T(F)$ is labeled by 1) is $x z_{m}$ and the rightmost edge from $x y$ is $y z_{1}$ (recall that $x<y$). It is not too complicated to define the inverse map for $F \mapsto T(F)$.

The above bijection is graded in the following sense: A dissection of $P_{m n+2}$ defined by $F \in \Delta_{n}^{m}$ of the type i maps to the $(m+1)$-ary tree $T(F)$ with exactly $n-i-1$ strong edges labelled by 1 .

3. Generating facets of dissection complexes

In this section we describe the set of generating facets of Δ_{n}^{m} in our shelling order.

Remark 3.1. From (1.2) and Remark 2.1 we have the following characterization:
A facet $F \in \Delta_{n}^{m}$ is a generating facet if and only if
(a) there is no diagonal in F starting from v_{1}; and
(b) for any vertex $v_{i}>v_{1}$ there is at most one diagonal in F starting from v_{i}, i.e., there is at most one $v_{i} v_{j} \in F$ (recall that here $v_{i}<v_{j}$).

Further, from the formulas (1.1) and (2.2) we easily obtain that $h_{n-1}\left(\Delta_{n}^{m+1}\right)=$ $f_{n-2}\left(\Delta_{n}^{m}\right)$, i.e., the number of generating facets of Δ_{n}^{m+1} is equal to the number of all facets of Δ_{n}^{m}. In particular, we conclude that the Betti number of Δ_{n}^{2} is the Catalan number C_{n}.

Theorem 3.1. There is a bijection between all facets of Δ_{n}^{m} and generating facets of Δ_{n}^{m+1}.

We will prove the above theorem by using our combinatorial interpretation of generating facets of Δ_{n}^{m+1}.

Proof. A generating facet F of Δ_{n}^{m+1} defines the dissection of $P_{(m+1) n+2}$ into $(m+3)$-gons. Each of these $(m+3)$-gons (there are exactly n of them) contains at least one edge of $P_{(m+1) n+2}$.

Indeed, assume that in the dissection defined by generating facet F there is an $(m+3)$-gon $v_{i_{1}} v_{i_{2}} \ldots v_{i_{m+3}}$ such that all of its edges are diagonal of $P_{(m+1) n+2}$.

Figure 2. A generating facet of Δ_{6}^{2} and corresponding facet of Δ_{6}^{1}

In that case we have that two diagonals in F started from the smallest vertex in $v_{i_{1}} v_{i_{2}} \ldots v_{i_{m+3}}$, and this is a contradiction with the assumption that F is a generating facet, see (b) in Remark 3.1.

Now, for each of the $(m+3)$-gon in the considered dissection, we choose the minimal vertex v_{i} such that the edge $v_{i} v_{i+1}$ is in this $(m+3)$-gon, and contract this edge. In the example on Figure 2 all of the thick edges of 14 -gon will be contracted. After this operation, we obtain a dissection of an convex $(m n+2)$-gon into ($m+2$)-gons by $n-1$ diagonals.

We label the vertices of this new polygon with $w_{1}, w_{2}, \ldots, w_{m n+2}$, starting with $v_{1}=v_{2}=w_{1}$. Note that the edge $v_{1} v_{2}$ is contained in an $(m+3)$-gon in the dissection of $P_{(m+1) n+2}$ defined by a generating facet F, see (a) in Remark 3.1. Also, we take into account that all of identified vertices share the same new label, see right part of Figure 2.

It is easy to describe the inverse of the above defined map. Consider a dissection of $P_{m n+2}$ defined by a facet $F \in \Delta_{n}^{m}$. We describe a geometric way to construct corresponding generating facet of Δ_{n}^{m+1}. If F contains k diagonals from v_{1}, first we draw a small arc around v_{1}. Now, we take the end points of this arc and its
intersections with diagonals from v_{1} to define $k+2$ new vertices of $P_{(m+1) n+2}$, see right part of Figure 2.

We continue in a similar manner. For each vertex $v_{i}, i>1$ that is the beginning of s diagonals, we draw a small arc around v_{i} that intersects all diagonals from v_{i} except the diagonal with the largest end vertex. There are s intersection points (we count the end point of this arc on the edge of $P_{m n+2}$), and these s points are new vertices of $P_{(m+1) n+2}$. Note that each $(m+2)$-gon of dissection of $P_{m n+2}$ defined by F now is transformed into an generating facet of Δ_{n}^{m+1}.

References

[1] C. A. Athanasiadis. On a refinement of the generalized Catalan numbers for Weyl group. Trans. Amer. Math. Soc., 357 (1)(2005), 179-196
[2] C. A. Athanasiadis and E. Tzanaki. Shellability and higher Cohen-Macaulay connectivity of generalized cluster complexes. Israel J. Math., $\mathbf{1 6 7}(1)(2008), 177-191$.
[3] A. Björner. Topological methods. In: R. L. Graham, M. Grötschel and L. Lovász (Eds.). Handbook of combinatorics (pp. 1819-1872), Elsevier, Amsterdam, 1995.
[4] A. Björner. Shellable and Cohen-Macaulay partially ordered sets. Trans. Amer. Math. Soc., 260(1)(1980), 159-183.
[5] A. Björner and M. L. Wachs. Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., 348(4)(1996), 1299-1327.
[6] J. Cigler. Some remarks on Catalan families. European J. Combin., 8(3)(1987), 261-267.
[7] S. Fomin and A. Zelevinsky. Y-systems and generalized associahedra. Ann. Math., 158(3)(2003), 977-1018.
[8] J. Jonsson. Simplicial complexes of graphs. Lecture Notes in Mathematics, 1928. SpringerVerlag, Berlin, 2008.
[9] D. E. Knuth. The art of computer programming Vol. 1: Fundamental algorithms. AddisonWesley Publishing Co., 1969
[10] J. R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park CA, 1984.
[11] J. H. Przytycki and A. S. Sikora. Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers. J. Combin. Theory Ser. A, 92(1)(2000), 68-76.
[12] A. Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Notices, 2009 (6)(2009), 1026-1106.
[13] B. Rhoades. Alexander duality and rational associahedra SIAM J. Discrete Math., 29(1)(2015), 431-460.
[14] R. P. Stanley. Catalan numbers. Cambridge University Press, New York, 2015.
[15] E. Tzanaki. Polygon dissections and some generalizations of cluster complexes. J. Combin. Theory Ser. A, 113(6)(2006), 1189-1198.
[16] G. M. Ziegler. Lectures on polytopes. Graduate Texts in Mathematics, 152. Springer-Verlag, New York, 1995

Received by editors 30.12.2016; Revised version 05.04.2017; Available online 10.04.2017.
Faculty of Science, University of Banja Luka, 78000 Banja Luka, Bosnia and HerzeGOVINA

E-mail address: ducci68@blic.net

[^0]: 2010 Mathematics Subject Classification. 52B22, 52B05.
 Key words and phrases. shellability, Fuss-Kirkman numbers, generating facets.

