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BI-CONDITIONAL DOMINATION RELATED

PARAMETERS OF A GRAPH-I

V. R. Kulli, B. Chaluvaraju, and C. Appajigowda

Abstract. In a graph G = (V,E), a set D ⊆ V is a dominating set of G. The

Bi-conditional domination number γ(G : Pi) for 1 6 i 6 6, is the minimum
cardinality of a dominating set D such that induced subgraph ⟨D⟩ and ⟨V −D⟩
satisfy the following property:

P1: ⟨D⟩ and ⟨V −D⟩ are totally disconnected.
P2: ⟨D⟩ and ⟨V −D⟩ have no isolated vertices.
P3: ⟨D⟩ and ⟨V −D⟩ have a perfect matching.
P4: ⟨D⟩ and ⟨V −D⟩ are complete graphs.

P5: ⟨D⟩ and ⟨V −D⟩ are the union of vertex disjoint cycles.
P6: ⟨D⟩ and ⟨V −D⟩ are acyclic.
In this paper, we initiate a study of these new parameters and obtain some
bounds and properties on these parameters.

1. Introduction

All graphs considered here are finite, nontrivial, undirected with no loops and
multiple edges. As usual p = |V | and q = |E| denote the number of vertices and
edges of a graph G, respectively. In general, we use ⟨X⟩ to denote the subgraph
induced by the set of vertices X. N(v) and N [v] denote the open and closed
neighborhoods of a vertex v, respectively. Let deg(v) be the degree of a vertex
v and as usual δ(G), the minimum degree and △(G), the maximum degree of a
graph G. A vertex of degree one is called a leaf and its neighbor is a support
vertex. Unless defined or mentioned otherwise, we refer to the reader to Harary [8]
for standard terminology and notation in graph theory.
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A set D ⊆ V is a dominating set of G if every vertex in V −D is adjacent to
some vertex in D. The minimum cardinality taken over all dominating sets in G is
called the domination number and is denoted by γ(G). The concept of domination
has existed and studied for a long time. Books on domination [9], [10] and [18]
have stimulated sufficient inspiration leading to the expansive growth of this field.

Let D ⊆ V be a dominating set of G. Then
P1: ⟨D⟩ and ⟨V −D⟩ are totally disconnected.
P2: ⟨D⟩ and ⟨V −D⟩ have no isolated vertices.
P3: ⟨D⟩ and ⟨V −D⟩ have a perfect matching.
P4: ⟨D⟩ and ⟨V −D⟩ are complete graphs.
P5: ⟨D⟩ and ⟨V −D⟩ are the union of vertex disjoint cycles.
P6: ⟨D⟩ and ⟨V −D⟩ are acyclic.

A dominating set Di of G is called a bi-conditional dominating set if Di satisfies
the property Pi, 1 6 i 6 6. The Bi-conditional domination number γ(G : Pi) for
1 6 i 6 6, is the minimum cardinality of a dominating set Di of G. A graph G
is called a Pi-graph if it has a bi-conditional dominating set D with respect to Pi

for 1 6 i 6 6. For more details on Bi-conditional domination related parameters
on connected domination due to Cyman et al. [7] and other domination related
parameters, refer [2], [3] and [16].

2. Bi-independent Domination

A set D ⊆ V is a bi-independent dominating (BID) set of G, if it satisfies
the property P1. The minimum cardinality taken over all BID-sets is called the
bi-independent domination number and is denoted by γ(G : P1). For more details,
refer [1], [14] and [17].

First, we start with couple of Propositions, which are starightforward.

Proposition 2.1. For any path Pp with p > 2 vertices,

γ(Pp : P1) =

{
p
2 , if p is even

p−1
2 , if p is odd.

Proposition 2.2. For any cycle Cp with p = 2n;n > 2 vertices,

γ(Cp : P1) =
p

2
.

Proposition 2.3. For a complete bipartite graph Kr,s with 1 6 r 6 s vertices,

γ(Kr,s : P1) = r.

Theorem 2.1. A nontrivial graph G is a P1-graph if and only if G is bipartite.

Proof. Let G be a bipartite graph and let (V1, V2) be a bipartition of G with
V1 contains all the isolated vertices. It is clear that V1 is an independent dominating
set and V2 = V − V1 is also an independent set. Hence V1 satisfy the property P1.
Hence G is a P1-graph.
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Conversely, suppose, the graph G is not a bipartite, then it contains an odd
cycle. So we can not partition V into two independent vertex subsets. Hence, there
exists no a BID-set, a contradiction to the fact that G is a P1-graph. Therefore,
G is bipartite. �

By above theorem, we characterize an independent dominating set and BID-
set of a graph G.

Observation 2.1. If G is a P1- graph then γi(G) = γ(G : P1), where γi(G) is
the independent domination number of G.

Proposition 2.4. Let G be a P1-graph. Then the difference γ(G : P1)− γ(G)
can be arbitrary large.

Proof. Consider a complete bipartite graph Kr,s with 1 6 r 6 s vertices. By
the definition of domination number, we have γ(Kr,s) = 2 and by Proposition 2.3,
we have γ(Kr,s : P1) = r. Thus γ(Kr,s : P1)−γ(Kr,s) = r−2 for r > 3 vertices. �

3. Bi-Total Domination

A set D ⊆ V is a bi-total dominating (BTD) set of G, if it satisfies the prop-
erty P2. The minimum cardinality taken over all BTD-sets is called the bi-total
domination number and is denoted by γ(G : P2). For more details, we refer to [5]
and [15].

Bi-total domination is defined only for graphs without isolated vertices. In this
section, we consider BTD- set D such that | V −D |≠ ϕ, which is possible only for
graphs of order at least four.

Observation 3.1. For any graph G with no isolated vertices,

γ(G) 6 γt(G) 6 γ(G : P2).

Proposition 3.1. For any complete graph Kp, fan graph Fp = K1 + Pp−1,
wheel Wp = K1 + Cp−1 and complete bipartite graph Km,n, with p > 4 and 2 6
m 6 n vertices,

γ(Kp : P2) = γ(Wp : P2) = γ(Fp : P2) = γ(Km,n : P2) = 2.

Proposition 3.2. Let Cp be a cycle. If p = 4m+k with m > 1 and 0 6 k 6 3,
then γ(Cp : P2) = 2m+ k.

Proof. Let Cp be a cycle with labeled as Cp : v1, v2, v3, v4, . . . , vp, v1. Now we
construct a minimum BTD-set. Since, D is the BTD-set of Cp , and necessary to
choose the adjacent vertices v1, v2 ∈ D and v3, v4 ∈ V −D ; v5, v6 ∈ D and so on.
To complete the formation of D, here the following cases arise.

Case 1. If p = 4m, m > 1, it has to end up with a pair of vertices v4m−1, v4m ∈
V −D, and the resulting set D is a minimum BTD-set containing 2m vertices.

Case 2. If p = 4m + 1, m > 1, it has to ends up with a pair of adjacent vertices
v4m−1, v4m ∈ V −D. The left out vertex p = 4m+ 1 is dominated by a vertex v1,
but the vertex v4m which we have already belongs in V −D is not dominated by any
of the vertices in D. Hence, it is necessary to choose the vertex p = 4m + 1 ∈ D.
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Hence, the constructed set D is the minimum BTD-set containing 2m+1 vertices.

Case 3. If p = 4m + 2, m > 1, it has to end up with a pair of adjacent vertices
v4m+1, v4m+2 ∈ D. Hence the constructed set D is the minimum BTD-set contain-
ing 2m+ 2 vertices.

Case 4. If p = 4m + 3, m > 1, it has to end up with a pair of adjacent vertices
v4m+1, v4m+2 in D. Now D contains 2m+ 2 vertices and V −D contains 2m ver-
tices. The left out vertex 4m+3 is dominated by the vertex v1 which is in D. Now,
let v4m+3 in to V −D that will give isolated vertex in V −D. Hence, it is necessary
to choose 4m+3 also in D. Hence D is the γbt-set containing 2m+2+1 = 2m+3
vertices. Hence the proof. �

Theorem 3.1. Let G be a r-regular graph. If r > (p− 2) with p > 4 vertices,
then γ(G : P2) = 2.

Proof. Let G be a regular graph with regularity at least p−2. First we prove,
the set D ⊂ V (G) consisting of two adjacent vertices forms a minimum BTD-set.
Here D can not be minimize further, because D does not contain isolated vertex.
Since, the degree of each vertex in V −D is at least p−2 depending on the regularity
of G, each vertex in V −D is adjacent to at least one vertex of D. Hence, D is a
minimum dominating set such that ⟨D⟩ has no isolated vertices.
Now we prove ⟨V −D⟩ also has no isolated vertices. The following two cases arise:

Case 1. Suppose G is a (p − 1)-regular graph. Then the graph G is a complete
graph with at least four vertices. Clearly, V − D contains at least two vertices.
Hence, ⟨V −D⟩ has no isolated vertices.

Case 2. Suppose G is a (p− 2)-regular graph. On the contrary ⟨V −D⟩ contains
an isolated vertex. If p = 4 then G = C4. If p > 5 then each vertex of G has degree
at least three. Let u be an isolated vertex in ⟨V −D⟩. Then even if u is adjacent to
all the vertices in D we have deg(u) = 2, which is a contradiction. Hence ⟨V −D⟩
has no isolates. Thus the result follows. �

Theorem 3.2. Let G be a graph with p > 4 vertices. Then G has a BTD-set
if and only if there exist at least two vertices u, v ∈ V (G) such that uv ∈ E(G),
deg(u) > 2, deg(v) > 2, u and v are not the support vertices.

Proof. Suppose D is a BTD-set of G. On contrary, if there exist at least two
adjacent vertices u and v in V (G), does not satisfy the given condition, then it is
necessary to take all the pendant vertices and their respective adjacent vertices in to
the set D. The remaining vertices (if any) are dominated and form an independent
set, but V −D does not contain any of these remaining vertices, otherwise we have
isolates in V −D. Hence, D contains all the vertices of G, which is a contradiction
to the fact that V −D is nonempty. This proves the necessity.
The sufficiency is straightforward. �
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4. Bi-Paired Domination

A set D ⊆ V is a bi-paired dominating (BPD) set of G, if it satisfies the
property P3. The minimum cardinality taken over all BPD-sets is called the bi-
paired domination number and is denoted by γ(G : P3). For more details, we refer
to [11].

Observation 4.1. If G is a P3-graph, then G contains even number of vertices
and |V (G)| > 4.

Observation 4.2. For any nontrivial graph G,

γ(G) 6 γp(G) 6 γ(G : P3).

Theorem 4.1. If a graph G is a P3-graph then G contains no support vertex
which supports at least two vertices.

Proof. Suppose u be a support vertex of v and w. Let D be any BPD-set of
G. If v or w ∈ V − D then ⟨V − D⟩ has no perfect matching. Hence v, w ∈ D.
Let F be a matching in ⟨D⟩. If uv ∈ F then there is no edge in F to cover w. If
uv ∈ F then there is no edge in F to cover v. Hence F is not a perfect matching
of ⟨D⟩. Thus D is not a BID-set. This proves the necessity.

The sufficiency is obvious. �

By above theorem we conclude that not all trees are P3 - graphs. In the
following results we construct different classes of trees which are P3-graphs.

Theorem 4.2. A path Pp is a P3 - graph if and only if p = 4n+ 2, n > 1.

Proof. Let Pp be a P3 - graph. Then there exist a BPD-set D of a graph G.
Clearly, D contains pair of consecutive vertices and V −D contains the remaining
pairs of consecutive vertices and hence both D and V −D contains even number
of vertices, whose induced subgraph contains perfect matching, respectively. Thus
the number of vertices in Pp is |D∪(V −D)|. This implies that p = |D∪(V −D)| =
2 + 2n+ 2n = 4n+ 2.

Conversely, let Pp be a path on p = 4n+2, n > 1 vertices. The set D containing
first pair of consecutive vertices and every alternating pairs of consecutive vertices
form a BPD-set D. Hence, Pp is a P3 - graph. �

Proposition 4.1. If G is a path Pp with p = 4n+ 2, n > 1 vertices, then

γ(Pp : P3) = 2(n+ 1).

Now we give a class of trees other than paths which are P3-graphs.

Theorem 4.3. Let T be a tree with p = 4n + 6, n > 1, vertices. Then T is a
P3-graph.

Proof. Since every BPD-set D of a tree T is formed by taking both end
vertices of all pendant edges into th set D and other vertices into the set V −D.
Clearly the graph ⟨D⟩ has a perfect matching. The construction of tree T by using
Theorem 4.2, we have ⟨V −D⟩ is also a perfect matching. Further, every vertex in
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V −D is adjacent to some vertex in D, hence D is a dominating set such that both
⟨D⟩ and ⟨V −D⟩ have perfect matchings. Hence the result follows. �

Observation 4.3. A BPD-set D consists of pendant vertices and their respec-
tive support vertices.

Consider the graph C6 is not a P3-graph. For this instance, in our next result,
we characterize cycles which are P3-graphs.

Theorem 4.4. A cycle Cp is a P3-graph if and only if p = 4n, n > 1.

Proof. Let a cycle Cp be a P3 - graph. Then Cp contains a BPD-set D such
that both ⟨D⟩ and ⟨V −D⟩ contain a perfect matching. The number of edges in ⟨D⟩
is same as the number of edges in ⟨V −D⟩, otherwise ⟨D⟩ or ⟨V −D⟩ does not contain
a perfect matching. Also ⟨D⟩ and ⟨V −D⟩ both consist of only independent edges,
implies |D| = 2n and |V −D| = 2n. Hence |V | = |D|+ |V −D| = 2n+ 2n = 4n.

Conversely, let Cp be a cycle on p = 4n, n > 1 vertices. Choosing the vertices
v4m−3 and v4m−2, where 1 6 m 6 n, into the set D and the other vertices into
the set V −D, we get a dominating set D such that both ⟨D⟩ and ⟨V −D⟩ have a
perfect matching. Therefore, D is a BPD-set in Cp. Hence, Cp is a P3-graph. �

Corollary 4.1. For any positive integer l > 1, there exists a P3 - graph such
that γ(G : P3) = 2l.

Observation 4.4. Theorem 4.4 shows the existence of graphs other than trees
which are P3-graphs.

Definition 4.1. A P3-graph G is said to be a P ′

3-graph if both E(⟨D⟩) and
E(⟨V −D⟩) are perfect matchings in ⟨D⟩ and ⟨V −D⟩ respectively.

Remark 4.1. In a P3-graph, ⟨D⟩ and ⟨V − D⟩ may contain more than one

perfect matching, That is |M | 6 |E(⟨D⟩)| and |M ′ | 6 |E(⟨V −D⟩)| where M and

M
′
are perfect matchings in ⟨D⟩ and ⟨V −D⟩ respectively. In P ′

3-graph M = E(⟨D⟩)
and M

′
= E(⟨V −D⟩) where M and M

′
are perfect matchings in ⟨D⟩ and ⟨V −D⟩

respectively.

Theorem 4.5. If G is a P ′

3-graph with γ(G : P3) = k, then

3p− 2k

2
6 q 6 p+ 2k(p− k)

2

Proof. Let G be a P ′

3-graph of order p. If D is a BPD-set of G, then the
number of edges in ⟨D⟩ ∪ ⟨V −D⟩ is p

2 . Since D is a dominating set of G and each
vertex in V −D should have at least one vertex in D adjacent to it. Therefore the
number of edges between D and V −D is at least p−k. Hence the number of edges

in any P ′

3-graph is at least p
2 + p− k =

3p− 2k

2
. Thus the lower bound follows.

Since every vertex in V −D can be adjacent to at most k vertices in D, the number
of edges between D and V −D is at most k(p− k). Then the number of edges in

a P ′

3-graph is at most
p+ 2k(p− k)

2
. Thus the upper bound follows. �
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Theorem 4.6. If G is a P ′

3-graph with δ(G) > 2, then

γ(G : P3) 6
p

2
.

Proof. Let G be a P ′

3-graph with δ(G) > 2. Let D be a BPD-set of G.
Then ⟨D⟩ and ⟨V −D⟩ are perfect matching. Since δ(G) > 2, every vertex in D is
adjacent to some vertex in V −D and every vertex in V −D is adjacent to some
vertex in D. Hence, both D and V −D are dominating sets. If D is the smallest
among D and V −D, we have |D| 6 |V −D|, otherwise renaming V −D as D and
D as V −D, we get |D| 6 |V −D|. Thus the result follows. �

Theorem 4.7. If G is a P ′

3-graph with γ(G : P3) = k and δ(G) > 2, then
deg(v) 6 p− k + 1, for all v ∈ V (G).

Proof. Let G be a P ′

3-graph with γ(G : P3) = k and δ(G) > 2. Then there
exists a minimum BPD - set D with |D| = k and |V −D| = p − k. By Theorem
4.6, we have |D| 6 |V − D| and each vertex v ∈ D is adjacent to at most p − k
vertices of V −D and exactly one vertex in D. Hence deg(v) 6 p − k + 1, for all
v ∈ D. Also, each vertex v ∈ V − D is adjacent to at most k vertices of D and
exactly one vertex of V −D. Hence, deg(v) 6 k + 1 6 p− k + 1 for all v ∈ V −D.
Hence deg(v) 6 p− k + 1 for all v ∈ V (G). �

5. Bi-Clique Domination

A set D ⊆ V is a bi-clique dominating (BCLD) set of G, if it satisfies the
property P4. The minimum cardinality taken over all BCLD-sets is called the
bi-clique domination number and is denoted by γ(G : P4). For more details, we
refer to [6].

Theorem 5.1. For any graph G, γ(G : P4) = 1 if and only if G = Kp.

Proof. Let γ(G : P4) = 1 and D = {u}, where u is any vertex in G. Suppose,
G is not a complete graph then there exist at least two non adjacent vertices, say
v, w other than u in V −D, which is a contradiction to the fact that D is a minimum
BCLD-set of a graph G. Hence, G must be a complete graph.

Conversely, suppose G is a complete graph, then any singleton subset of V (G)
forms a BCLD-set of a graph G. Hence the result follows. �

To prove our next result we make use of the definition.

Definition 5.1. The sequential join of the graphs G1, G2, G3, . . . , Gk, k > 3
is G1 +G2 +G3 + . . .+Gk=(G1 +G2) ∪ (G2 +G3) ∪ . . . ∪ (Gk−1 +Gk).

In order to prove the next result for finding the minimum BCLD-set, we con-
sider the sequential join graph with k = 3.

Theorem 5.2. For any sequential join graph,

γ(Km +K1 +Kn : P4) =

{
m+ 1, if m 6 n
n+ 1, if n 6 m.
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Proof. Let G be a sequential join graph. If, we consider G1 = Km, G2 = K1

and G3 = Kn, then the following cases arise.

Case 1. If m = n, then a BCLD-set, D = V (Km)∪{u} forms a minimum BCLD-
set of G. Hence, γ(Km +K1 +Kn : P4) = m+ 1 = n+ 1.

Case 2. If m < n, then a BCLD-set, D = V (Km)∪{u} forms a minimum BCLD-
set of G. Hence, γ(Km +K1 +Kn : P4) = m+ 1.

Case 3. If m > n, then a BCLD-set, D = V (Kn) ∪ {u} forms a minimum
BCLD-set of G. Hence, γ(Km +K1 +Kn : P4) = n+ 1. �

Theorem 5.3. Let G be a P4-graph. Then

max{diam(G), β0(G)} 6 2.

Proof. Let D be a BCLD-set of a graph G. If the eccentricity of a vertex in
D is less than or equal to two, then the following cases arise.

Case 1. If a vertex u ∈ D is adjacent to every vertex in V − D, then e(u) = 1,
since ⟨D⟩ is a complete subgraph.

Case 2. If V − D contains a vertex, say v, not adjacent to u, then d(u, v) = 2,
since there exists a vertex say w ∈ D adjacent to v.

Hence, the eccentricity of every vertex in D is less than or equal to 2.
Similarly, we can prove eccentricity of every vertex in V −D is also less than

or equal two. Hence, diam(G) 6 2.
Now, we show β0(G) 6 2. Suppose on the contrary β0(G) > 3 then every

dominating set D or its complements contains at least two vertices of β0-set of a
graph G. Hence there does not exist a BCLD-set, which is a contradiction. Hence
β0(G) 6 2. Thus the result follows. �

6. Bi-Cyclic Domination

A set D ⊆ V is a bi-cyclic dominating (BCD) set of G, if it satisfy the prop-
erty P5. The minimum cardinality taken over all BCD-sets is called the bi-cyclic
domination number and is denoted by γ(G : P5). For more details, we refer to [16].

Observation 6.1. If G is a P5-graph, then |V (G)| > 6 and |E(G)| > 9.

Proposition 6.1. For any graph G,

γ(G) 6 γc(G) 6 γ(G : P5).

Theorem 6.1. Let G be a P5-graph with p > 6 vertices. If γ(G : P5) = k,
where k > 3 is a positive integer, then

2p− k 6 q 6 p+ k(p− k).

Proof. Let G be a P5-graph of order p and D be a BCD-set. The number
of edges in ⟨D⟩ + ⟨V − D⟩ = p. Since D is a dominating set for each vertex in
V −D should have at least one neighbor in D, the number of edges between D and
V − D is at least p − k. Hence the number of edges in any P5-graph is at least
p+ p− k = 2p− k. That is q > 2p− k.
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For upper bound each vertex in V −D can be adjacent to at most k vertices in
D. Then the number of edges between D and V −D is at most k(p−k). Hence, the
number of edges in P5-graph is at most p+ k(p− k). Thus the result follows. �

To prove our next result we make use of the following definition.

The cartesian product of two graphs G and H, denoted by G�H, is a graph
with vertex set V (G�H) = V (G) × V (H), that is, the set {(g, h)/g ∈ G,h ∈
H}. The edge set of G�H consists of all pairs [(g1, h1), (g2, h2)] of vertices with
[g1, g2] ∈ E(G) and h1 = h2, or g1 = g2 and [h1, h2] ∈ E(H). The prism of a
graph G∗ is defined as the cartesian product of G�K2.

Theorem 6.2. Let G∗ = Cp�K2 be a prism graph. Then G∗ satisfies the
following conditions:

(i) P5-graph,

(ii) γ(G∗ : P5) = p.

Proof. Let G∗ be the prism of Cp. If C
′

p and C
′′

p are two copies of Cp in

the prism G∗, then the set of vertices of C
′

p forms a dominating set such that both

V (C
′

p) and V (G∗)−V (C
′

p) are cyclic. Hence, V (C
′

p) is a BCD- set of G∗. Therefore
G∗ is a P5-graph. Thus, we have γ(G∗ : P5) = p.

To prove γ(G∗ : P5) > p, we assert that γ(G∗ : P5) 6 p − 1. Let S ⊂ V (G∗)
be a set consisting of at most p− 1 vertices. The the following cases arise.

Case 1. S ⊂ V (C
′

p).

Let X = V (C
′

p)− S, then the set of vertices in V (C
′′

p ), which is the image set of T
are not dominated. Hence S is not a dominating set.

Case 2. S ⊂ V (C
′′

p ).

Let X = V (C
′′

p )− S, then the set of vertices in V (C
′

p), which is the pre-image set
of X are not dominated. Hence, S is not a dominating set.

Case 3. S ∩ V (C
′

p) ̸= ϕ and S ∩ V (C
′′

p ) ̸= ϕ.

Let S ∩ V (C
′

p) = A, S ∩ V (C
′′

p ) = B and A′ ⊂ V (C
′′

p ) be the mirror image of A. If
A′ ∩B = ∅, then ⟨A∪B⟩ is not two regular. If A′ ∩B ̸= ∅, then also ⟨A∪B⟩ is not
two regular. Hence, there exists no BCD-set S, with |S| 6 p− 1. Hence, V (C

′

p) is
a minimum BCD-set satisfying property P5. Hence, γ(G∗ : P5) = p. �

Theorem 6.3. Let G be a P5-graph. Then

3 6 γ(G : P5) 6 p− 3.

Proof. Let G be a P5- graph. Clearly, γ(G : P5) > 3 because the subgraph
induced by a BCD-set D of G is cyclic. Further, we construct cycle C3 and Cp;
p > 3 and make all the vertices of Cp adjacent to a single vertex of C3. The set of
vertices of C3 in the obtained graph is the minimum dominating set D such that
both ⟨D⟩ and ⟨V −D⟩ are cyclic. Therefore, D is the BCD-set of P5-graph with
γ(G : P5) > 3. Hence, γ(G : P5) = 3. Thus the lower bound follows.
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Now we prove γ(G : P5) 6 p− 3. Suppose on the contrary γ(G : P5) > p− 3.
Then the subgraph induced by complement of D contains at most two vertices and
hence ⟨V −D⟩ can not be cyclic, which is a contradiction. Also, consider the cycle
C3 and cycle Cp; p > 3 and make all the vertices of C3 adjacent to a single vertex
of Cp. The set of vertices of Cp in the obtained graph is the minimum dominating
set D such that both ⟨D⟩ and ⟨V − D⟩ are cyclic. Therefore, D is the minimum
BCD-set. Hence, γ(G : P5) = p− 3. Thus the upper bound follows. �

To prove our next result we make use of the following definition.

An (n− p)-cycle net is the graph obtained by taking n copies of a cycle Cp one
inside the other and joining the corresponding copies of the vertices in every two
consecutive cycles.

Theorem 6.4. Let G be a P5-graph with (n− p)-cycle net. Then

γ(G : P5) =


np

2
, if n is even

p(n− 1)

2
, if n is odd.

Proof. In a (n− p)-cycle net, take the vertices of first cycle and the vertices
of every alternate cycles into the set V −D and the vertices of all other cycles into
the set D, we get D as minimum BCD-set of G. Therefore, every (n − p)- cycle
net is a P5-graph. Further, if n is even, then both ⟨D⟩ and ⟨V −D⟩ contain equal

number of cycles and hence γ(G : P5) = |D| = np

2
.

If n is odd, then ⟨D⟩ contains
n− 1

2
cycles and hence γ(G : P5) = |D| =

p(n− 1)

2
. �

7. Bi-Acyclic Domination

A set D ⊆ V is a bi-acyclic dominating (BAD) set of G, if it satisfies the
property P6. The minimum cardinality taken over all BAD-sets is called the bi-
acyclic domination number and is denoted by γ(G : P6). For more details, we refer
to [4], [12] and [13].

Observation 7.1. Not all graphs have a BAD-set.
For example, complete graph Kp with p > 5 vertices, has no BAD-set. We

can reduce a graph G which has no BAD-set to a graph H having BAD- set, by
deleting edges.

Proposition 7.1. For any graph G,

γ(G) 6 γa(G) 6 γ(G : P6).

Theorem 7.1. Let G be a P6-graph. If s is the number of components in D
and t is the number of components in V −D with {s, t} > 2. Then

2p− q − s− t 6 γ(G : P6).
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Further more, the lower bound is attained if and only if there exists a BAD-set D
of a graph G such that every vertex in V −D is adjacent to exactly one vertex in
D.

Proof. Let D be a BAD-set. If the number of edges in ⟨D⟩ and ⟨V −D⟩ are
|D| − s and |V − D| − t respectively. Hence, the lower bound for the number of
edges in a graph G is given by

q > |D| − s+ |V −D| − t+ |V −D|
> |D|+ 2|V −D| − s− t

2|D|+ q > |D|+ 2|D|+ 2|V −D| − s− t

2|D|+ q > |D|+ 2p− s− t

|D| > 2p− q − s− t

Hence the lower bound follows.
Now we prove the next part of the theorem. Suppose the lower bound is

attained. On contrary, suppose there exists a vertex in V −D adjacent to at least
two vertices in D, then clearly q > |D| − s + |V − D| − t + |V − D|, which is a
contradiction. Hence, every vertex in V − D is adjacent to exactly one vertex in
D. Hence the result follows.

Conversely, suppose every vertex in V −D is adjacent to exactly one vertex in
D, then the number of edges in the graph G is given by |D| − s + 2|V − D| − t.
Thus the result follows. �

Theorem 7.2. If a graph G contains Kp with p > 5 vertices, as its induced
subgraph, then G has no a BAD-set.

Proof. For any complete graph Kp with p > 5, γ(Kp : P6) does not ex-
ist because in Kp, every three vertices form a cycle (i.e, C3), which is not a tree
(acyclic). �

To prove our next result we make use of the following definition.

The minimum number of edges to be removed from a graph G, which has no a
BAD-set, to get a graph H which has a BAD-set, is called the bi-acyclic number
and is denoted by ξa(G).

Theorem 7.3. For any complete graph Kp,

ξa(Kp) =


(
p

2
− 1)(p2 − 2), if p > 4 is even

1

4
(p− 3)2, if p > 5 is odd

1, if p = 3

Proof. Let Kp be a complete graph. Then the following cases arise.

Case 1. Suppose p is even. Then split the vertex set of Kp into two disjoint

subsets S1 and S2 with cardinalities
p

2
and

p

2
, respectively, to get a BAD-set of Kp

with p > 4 vertices, the induced subgraphs ⟨S1⟩ and ⟨S2⟩ must be acyclic. Since
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⟨S1⟩ ∼= K p
2
and ⟨S2⟩ ∼= K p

2
, the number of edges to be removed from ⟨S1⟩ is given

by
1

2

p

2

(p
2
− 1

)
−
(p
2
− 1

)
=

1

2

(p
2
− 1

)(p
2
− 2

)
.

Similarly the number of edges to be removed from ⟨S2⟩ is given by

1

2

(p
2
− 1

)(p
2
− 2

)
.

So, the total number of edges to be removed from Kp is given by(p
2
− 1

)(p
2
− 2

)
.

Case 2. Suppose p is odd. Then split the vertex set of Kp into two disjoint subsets

S1 and S2 with cardinalities p−1
2 and p−1

2 + 1, respectively, and to get a BAD-set
of Kp with p > 4 vertices, the induced subgraphs ⟨S1⟩ and ⟨S2⟩ must be acyclic.
Since ⟨S1⟩ ∼= K p−1

2
and ⟨S2⟩ ∼= K p−1

2 +1, the number of edges to be removed from

⟨S1⟩ is given by
1

2

(
p− 1

2

)(
p− 1

2
− 1

)
−

(
p− 1

2
− 1

)
.

This implies
1

2

(
p− 1

2
− 1

)(
p− 1

2
− 2

)
.

Similarly the number of edges to be removed from ⟨S2⟩ is given by

1

2

(
p− 1

2
+ 1

)(
p− 1

2
+ 1− 1

)
−
(
p− 1

2
+ 1− 1

)
.

This implies
1

2

(
p− 1

2

)(
p+ 1

2
− 2

)
.

So, the total number of edges to be removed from Kp is given by

1

2

[(
p− 1

2
− 1

)(
p− 1

2
− 2

)
+

(
p− 1

2

)(
p+ 1

2
− 2

)]
=

1

4
(p− 3)2.

�
To prove our next result we make use of the following definition.

Definition 7.1. The corona G1 ◦ G2 is the graph G obtained by taking one
copy of G1 of order p1 and p1 copies of G2, and then joining the ith vertex of G1

to every vertex in the ith copy of G2.

Theorem 7.4. Let G1 and G2 be two k-regular graphs. Then the corona graph
G = G1 ◦G2 is

(i) P1 - graph if k = 0
(ii) P3 - graph if k = 1
(iii) P5 - graph if k = 2
(iv) γ(G : P1) = γ(G : P3) = γ(G : P5) = m,

where m is the order of G1.
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Proof. Let G1 and G2 be any two k-regular graphs of order m and n, re-
spectively. In G1 ◦ G2, D = V (G1) is the minimum dominating set and ⟨V (G1 ◦
G2)− V (G1)⟩ is the subgraph consisting of disjoint copies of G2. Hence, both ⟨D⟩
and ⟨V (G1 ◦G2)−D⟩ are k-regular. Hence, G1 ◦G2 is a P1-graph, P3-graph and
P5-graph for k = 0, 1, 2 respectively. Thus (i)− (iii) follow.

Since D = V (G1) is the minimum dominating set of a corona graph G1 ◦ G2,
γ(G : P1) = γ(G : P3) = γ(G : P5) = m. Hence (iv) follows. �

Theorem 7.5. Let G be a nontrivial graph. Then prism of Pi - graph is a Pi+2

- graph, i = 1, 3.

Proof. For i = 1, let G be a P1 - graph and H be the prism of G. In G, there
exists a dominating set D such that both D and V (G) −D are independent sets.

Hence in H, D
′
= D ∪ f(D), where f(D) is the mirror image of D in the prism, is

the dominating set such that both ⟨D′⟩ and ⟨V (H) −D
′⟩ have perfect matching.

Hence, H is a P3 - graph.
For i = 3, let G be a P3-graph and H be the prism of G. In G, there exists

a dominating set D such that both ⟨D⟩ and ⟨V (G) − D⟩ have perfect matching.

Hence in H, D
′
= D∪f(D), is dominating set such that both ⟨D′⟩ and ⟨V (H)−D

′⟩
contain only cycles of length four. Hence H is a P5-graph. �
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