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APPLICATION OF ELZAKI TRANSFORM TO

FIRST ORDER CONSTANT COEFFICIENTS

COMPLEX EQUATIONS

Murat Düz

Abstract. In this work, we present a reliable Elzaki transform method to
solve first order constant coefficients complex equations.. This method pro-
vides an effective and efficient way of solving a wide range of linear operator
equations.

1. Introduction

In real, general solutions of some equations, especially type of elliptic, are not
found. For example,

uxx + uyy = 0

Laplace equation hasn’t got general solution in R2, but it can be written

uzz = 0

and the solution of this equation is

u = f (z) + g (z)

where f is analytic, g is anti analytic arbitrary functions [6]. That is, an equation
which has not general solution in real can has general solution in complex space.
A partial differential equation system which has two real dependant and two real
independant variables can be transformed to a complex equation. For example,

ux − vy = 0

uy + vx = 0

Couchy - Riemann system transforms to complex equation

wz = 0
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where w = u + iv, z = x + iy. All solutions of this complex equation are analytic
functions [6].

Moreover any order complex differential equation can be transformed to real
partial differential equation system which has two unknowns, two independent vari-
ables by seperating the real and imaginer parts. The solution of complex equation
can be put forward helping solutions of this real system [6].

Elzaki transform method which is used several areas of mathematics is a in-
tegral transform. We can solve linear differential equations, integral equations,
integro-differantial equations with elzaki transform [1, 2, 3]. This method can
not suitable for solution of nonlinear differential because of nonlinear terms. But
nonlinear differential equations can be solved by using elzaki transform aid with dif-
ferential transform method and homotopy perturbation method [4,5]. In this study,
we investigate solutions of first order constant coeffients complex equations. These
equations were solved by laplace transform in [6]. The above mentioned equations
are solved by Elzaki transform method in this paper. We obtain a formulazition for
general first order constant coeffients complex equations. This paper is organized
as follows: In Section 2, basic definitions and theorems are given. In Section 3,
we get a formulazition for solve the first order constant coeffients complex partial
differential equations and some examples were given.

2. Basic Definitions and Theorems

Definition 2.1. Let F (t) be a function for t > 0. Elzaki transform of F (t)

(2.1) E(F (t)) = s ·
∞∫
0

e−
t
s · f (t) dt

is defined.

Theorem 2.1. Elzaki transforms of some functions are given in following.

F (t) E(f(t)) = T (s)

1 s2

t s3

tn n!sn+2

cos at s2

1+a2s2

sin at as3

1+a2s2

Theorem 2.2. Elzaki transforms of partial derivatives of f(x, t) are following.

i) E
[
∂f
∂t

]
= 1

sT (x, s)− sf(x, 0)

ii) L
[
∂f
∂x

]
= ∂T (x,s)

∂x ,

where T (x, s) = E [f(x, t)] .
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2.1. Complex Derivatives. Let w = w(z, z) be a complex function. Here

z = x+ iy, w(z, z) = u(x, y) + i · v(x, y).
First order derivatives according to z and z of w(z, z) are defined as following:

(2.2)
∂w

∂z
=

1

2
(
∂w

∂x
− i

∂w

∂y
),

(2.3)
∂w

∂z
=

1

2
(
∂w

∂x
+ i

∂w

∂y
).

3. Solution of complex differential equations from first order which is
constant coeffients

Theorem 3.1. Let A,B,C are real constants, F (z, z) is a polynomial of z, z
and w = u+ iv is a complex function. Then the real and imaginal parts of solution
of

A
∂w

∂z
+B

∂w

∂z
+ Cw = F (z, z)

w (x, 0) = f (x)

are

u = Rew = E−1

[
(A+B) ∂

∂x (2T3 + (A−B) · s · v(x, 0))
[(A+B)D + 2C]

2
+ (A−B

s )2

+
2C (2T3 + (A−B) · s · v(x, 0))−

(
A−B

s

)
(2T4 + (B −A) · s · u(x, 0))

[(A+B)D + 2C]
2
+ (A−B

s )2

]
,

v = Imw = E−1

[
(A+B) ∂

∂x (2F
∗
2 + (B −A)u(x, 0)) + 2C

[(A+B)D]
2
+ s2(A−B)2

+
2C (2F ∗

2 + (B −A)u(x, 0))− s(B −A)(2F ∗
1 + (A−B)v(x, 0))

[(A+B)D + 2C]
2
+ s2(A−B)2

]
.

Proof.

(3.1) A
∂w

∂z
+B

∂w

∂z
+ Cw = F (z, z)

If it is used equalities (2.2), (2.3) in equality (3.1), following equality is obtained .

(3.2) A · 1
2
(
∂w

∂x
− i

∂w

∂y
) +B · 1

2
(
∂w

∂x
+ i

∂w

∂y
) + Cw = F1(x, y) + iF2(x, y)

If w = u+ iv is written in (3.2) , then following equality is obtained .

(3.3) A(
∂u

∂x
+ i

∂v

∂x
− i

∂u

∂y
+

∂v

∂y
) +B(

∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y
)
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If (3.3) is separated to real and imaginer parts, then following equation system
is obtained

(3.4) (A+B)
∂u

∂x
+ (A−B)

∂v

∂y
+ 2Cu = 2F1(x, y)

(3.5) (A+B)
∂v

∂x
+ (B −A)

∂u

∂y
+ 2Cv = 2F2(x, y)

If we use Elzaki transform for above equalities (3.4), (3.5), then we get following
equalities

(3.6) (A+B)
∂T1

∂x
+ (A−B)(

T2

s
− sv(x, 0)) + 2CT1 = 2T3

(3.7) (A+B)
∂T2

∂x
+ (B −A)(

T1

s
− su(x, 0)) + 2CT2 = 2T4,

where T1, T2, T3, T4 are Elzaki transform transforms of u, v, F1, F2 respectively. If
(3.6) , (3.7) is rerugulate and is used Cramer rule, then equalities (3.8) , (3.9) are
obtained.

(A+B)
∂T1

∂x
+ 2CT1 +

A−B

s
T2 = 2T3 + (A−B) · s · v(x, 0)

B −A

s
T1 + (A+B)

∂T2

∂x
+ 2CT2 = 2T4 + (B −A) · s · u(x, 0)

∣∣∣∣ (A+B)D + 2C A−B
s

B−A
s (A+B)D + 2C

∣∣∣∣ = [(A+B)D + 2C]
2
+ (

A−B

s
)2

T1 =

∣∣∣∣∣ 2T3 + (A−B) · s · v(x, 0) A−B
s

2T4 + (B −A) · s · u(x, 0) (A+B)D + 2C

∣∣∣∣∣
[(A+B)D + 2C]

2
+ (A−B

s )2

T1 =
(A+B) ∂

∂x (2T3 + (A−B) · s · v(x, 0)) + 2C (2T3 + (A−B) · s · v(x, 0))
[(A+B)D + 2C]

2
+ (A−B

s )2

−
(
A−B

s

)
(2T4 + (B −A) · s · u(x, 0))

[(A+B)D + 2C]
2
+ (A−B

s )2
(3.8)
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T2 =

∣∣∣∣∣ (A+B)D + 2C 2T3 + (A−B) · s · v(x, 0)
B−A

s 2T4 + (B −A) · s · u(x, 0)

∣∣∣∣∣
[(A+B)D + 2C]

2
+ (A−B

s )2

T2 =
(A+B) ∂

∂x (2T4 + (B −A) · s · u(x, 0)) + 2C (2T4 + (B −A) · s · u(x, 0))
[(A+B)D + 2C]

2
+ (A−B

s )2

−
(B−A)

s (2T3 + (A−B) · s · v(x, 0))
[(A+B)D + 2C]

2
+ (A−B

s )2
(3.9)

Followings are obtained from inverse Elzaki of (3.8) , (3.9)

u(x, y) = E−1

[
(A+B) ∂

∂x (2T3 + (A−B) · s · v(x, 0))
[(A+B)D + 2C]

2
+ (A−B

s )2

+
2C (2T3 + (A−B) · s · v(x, 0))−

(
A−B

s

)
(2T4 + (B −A) · s · u(x, 0))

[(A+B)D + 2C]
2
+ (A−B

s )2

]
(3.10)

v(x, y) = E−1

[
(A+B) ∂

∂x (2T4 + (B −A) · s · u(x, 0))
[(A+B)D + 2C]

2
+ (A−B

s )2

+
2C (2T4 + (B −A) · s · u(x, 0))− (B−A)

s (2T3 + (A−B) · s · v(x, 0))
[(A+B)D + 2C]

2
+ (A−B

s )2

]
.(3.11)

�

Example 3.1. Solve the following initial value problem 4wz +wz = 0 with the
condition w (x, 0) = − 1

3x .

Solution 3.1. Coefficients of equation are A = 4, B = 1, C = 0 and F (z, z) =
0. From theorem 3.1

u(x, y) = E−1[
− 9

3x

25D2 + 9
s2

]

= E−1[
− 3

x
9
s2

(
1 + 25s2D2

9

) ]
= E−1[−s2

3
(1− 25s2D2

9
+

(
5s

3

)4

D4 −
(
5s

3

)6

D6 + ...)
1

x
]

= E−1[−s2

3
(
1

x
−
(
5s

3

)2

.
2

x3
+

(
5s

3

)4

.
4!

x5
−
(
5s

3

)6

.
6!

x7
+ ...)]
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and

= E−1[− s2

3x
] + E−1[

(
5

3

)2
2s4

3x3
]− E−1[

(
5

3

)4
4!s6

3x5
] + E−1[

(
5

3

)6
6!.s8

3x7
]− ...

= − 1

3x
+

52

33
y2

x3
− 54

35
y4

x5
+

56

37
y6

x7
− ...

= − 1

3x

(
1−

(
5y

3x

)2

+

(
5y

3x

)4

−
(
5y

3x

)6

+ ...

)
= −

1
3x

1 + 25y2

9x2

= − 3x

9x2 + 25y2
.

Similarly,

v(x, y) = E−1[
5 · ∂

∂x (
−3s
−3x )

25D2 + 9
s2

]

= E−1[
− 5s

x2

9
s2

(
1 + 25s2D2

9

) ]
= E−1[

−5s3

9
(1− 25s2D2

9
+

(
5s

3

)4

D4 −
(
5s

3

)6

D6 + ...)
1

x2
]

= E−1[
−5s3

9
(
1

x2
−
(
5

3

)2
s2.3!

x4
+

(
5

3

)4
s4.5!

x6
−
(
5

3

)6
s6.7!

x8
+ ...)]

= E−1[
−5s3

9x2
+

53.s5

34
3!

x4
− 55.s7

36
5!

x6
+ ...] =

−5y

9x2
+

53.y3

34.x4
− 55.y5

36.x6
+ ...

=
−5y

9x2

(
1− 52.y2

32.x2
+

54.y4

34.x4
− 56.y6

36.x6
+ ...

)

=
−5y

9x2

(
1

1 + 25y2

9x2

)
= − 5y

9x2 + 25y2
.

Hence

w = u+ iv = − 3x

9x2 + 25y2
− 5iy

9x2 + 25y2

= − 1

3x− 5iy
=

1

z − 4z
.

Example 3.2. Solve the following problem

∂w

∂z
− ∂w

∂z
− w = 0

with the condition

w (x, 0) = e3x.

Solution 3.2. Coefficients of equation are A = 1, B = −1, C = 1 and F (z, z)
= 0. From theorem 3.1 we have obtained that
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u (x, y) = E−1

(
e3x.s2

s2 + 1

)
= e3x · E−1

(
s2

s2 + 1

)
= e3x · cos y.

Similarly,

v (x, y) = E−1

(
e3x.s3

s2 + 1

)
= e3x · E−1

(
s3

s2 + 1

)
= e3x · sin y.

Hence

w = u+ iv = e3x. cos y + ie3x · sin y

= e3x+iy = e3(
z+z
2 )+i( z−z

2i )

= e2z+z.
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