(S,T)-NORMED INTUITIONISTIC FUZZY β-SUBALGEBRAS

P Muralikrishna, K Sujatha, and M Chandramouleeswaran

Abstract

This paper deals about Intuitionistic Fuzzy β-subalgebras of β-algebras using (S,T) norms. Further the notion of product and level subset on Intuitionistic Fuzzy β-subalgebras of β-algebras using (S, T) norms are introduced. Some interesting and elegant related results are being discussed.

1. Introduction

In 2002, J.Neggers and Kim [4], [5] introduced new class of algebras: β - algebras arising from the classical and non-classical propositional logic. In 1965, L.A.Zadeh [9] introduced a notion of fuzzy sets. The notion of fuzzy algebraic structures was initiated by A.Rosenfeld [7], K.T.Atanassov [2], introduced the notion of intuitionistic fuzzy set a generalization of fuzzy set.

Recently, in 2013 the authors introduced the concept of Fuzzy β-subalgebras of β-algebras [1]. Motivated by this the authors [8] introduced Intuitionistic Fuzzy β-subalgebras. T-norms were introduced by Schweizer and Sklar in 1961. In 2007, Kyong. Ho. Kim, introduced Intuitionistic (T, S) normed subalgebras of BCK-algebras [3]. In this paper, we introduce (S, T) normed Intuitionistic Fuzzy β-subalgebras and some properties and simple results.

The paper has been organised as follows: Section 2 provides the preliminaries. In section $3(S, T)$ - Intuitionistic fuzzy β - subalgebra is discussed, in section 4 , Product of (S, T) - Intuitionistic fuzzy β - subalgebras is studied and section 5 gives the notion of Level subset of (S,T) Intuitionistic fuzzy β-subalgebras. Finally the section 6 ends with the conclusion.

[^0]
2. Preliminaries

In this section we recall some basic definitions that are required in the sequel.
Definition 2.1. A β-algebra is a non-empty set X with a constant 0 and two binary operations + and - satisfying the following axioms:
(1) $x-0=x$
(2) $(0-x)+x=0$
(3) $(x-y)-z=x-(z+y) \forall x, y, z \in X$.

Example 2.2. From the following Caley's tables, $(X=\{0,1,2\},+,-, 0)$ is a β - algebra.

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

-	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Definition 2.3. The function $S:[0,1] \times[0,1] \rightarrow[0,1]$ is called a S-norm, if it satisfies the following conditions,
(1) $S(x, 1)=x$
(2) $S(x, y)=S(y, x)$
(3) $S(S(x, y), z)=S(x, S(y, z))$
(4) $S(x, y) \leqslant S(x, z)$ if $y \leqslant z \forall x, y, z \in[0,1]$.

If norm S has the property, $S(x, y)=\min (x, y)$, then
(1) $S(x, 0)=0$
(2) $S(S(u, v), S(x, y))=S(S(u, x), S(v, y)) \forall x, y, u, v \in[0,1]$
(3) $S(x, x)=x$.

Definition 2.4. The function $T:[0,1] \times[0,1] \rightarrow[0,1]$ is called a T-norm, if it satisfies the following conditions,
(1) $T(x, 0)=x$
(2) $T(x, y)=T(y, x)$
(3) $T(T(x, y), z)=T(x, T(y, z))$
(4) $T(x, y) \leqslant T(x, z)$ if $y \leqslant z \forall x, y, z \in[0,1]$.

If norm T has the property, $T(x, y)=\max (x, y)$, then
(1) $T(x, 0)=x$
(2) $T(T(u, v), T(x, y))=T(T(u, x), T(v, y)) \forall x, y, u, v \in[0,1]$
(3) $T(x, x)=x$.

Definition 2.5. Let $(X, *, 0)$ be any algebra. Let μ be a fuzzy set with respect to S-norm [T-norm] is said to be a $S-F u z z y$ subalgebra[T-Fuzzy subalgebra] of X, if $\mu(x * y) \geqslant S(\mu(x), \mu(y))[\mu(x * y) \leqslant T(\mu(x), \mu(y))], \forall x, y \in X$.

Definition 2.6. Let $(X, *, 0)$ be any algebra. An Intuitionistic fuzzy set $A=\left\{x, \mu_{A}(x), \nu_{A}(x) \mid x \in X\right\}$ is called a (S,T) Intuitionistic Fuzzy subalgebra of X, if it satisfies the following conditions,
(1) $\mu_{A}(x * y) \geqslant S\left(\mu_{A}(x), \mu_{A}(y)\right)$
(2) $\nu_{A}(x * y) \leqslant T\left(\nu_{A}(x), \nu_{A}(y)\right), \forall x, y \in X$, where $0 \leqslant \mu_{A}(x)+\nu_{A}(x) \leqslant 1$

Definition 2.7. Let A be an Intuitionistic Fuzzy subaset of X, and $s, t \in[0,1]$. Then $A_{s, t}=\left\{x, \mu_{A}(x) \geqslant s, \nu_{A}(x) \leqslant t \mid x \in X\right\}$ where $0 \leqslant \mu_{A}(x)+\nu_{A}(x) \leqslant 1$ is called a level intuitionistic fuzzy subset of X.

3. (S,T)- Intuitionistic fuzzy β - subalgebras

In this section we introduce the notion of (S,T)- Intuitionistic fuzzy β - subalgebra of a β - algebra and prove some related results. Also, in the rest of the paper, X is a β-algebra unless, otherwise specified.

Definition 3.1. Let $(X,+,-, 0)$ be a β algebra. An Intuitionistic fuzzy set $A=\left\{x, \mu_{A}(x), \nu_{A}(x) \mid x \in X\right\}$ is called a (S,T)- Intuitionistic fuzzy β subalgebra of X, if it satisfies the following conditions.
(1) $\mu_{A}(x+y) \geqslant S\left(\mu_{A}(x), \mu_{A}(y)\right)$ and $\nu_{A}(x+y) \leqslant T\left(\nu_{A}(x), \nu_{A}(y)\right)$
(2) $\mu_{A}(x-y) \geqslant S\left(\mu_{A}(x), \mu_{A}(y)\right)$ and $\nu_{A}(x-y) \leqslant T\left(\nu_{A}(x), \nu_{A}(y)\right), \forall x, y \in X$, where $0 \leqslant \mu_{A}(x)+\nu_{A}(x) \leqslant 1$.

Example 3.2. Let $X=\{0,1,2,3\}$ be a β-algebra with constant 0 and two binary operations + and - are defined on X with the Cayley's table

+	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	1	0
3	3	2	0	1

-	0	1	2	3
0	0	1	3	2
1	1	0	2	3
2	2	3	0	1
3	3	2	1	0

Now, A is defined as,

$$
\mu_{A}(x)=\left\{\begin{array}{cc}
.7 & x=0,1 \\
.6 & \text { otherwise }
\end{array} \text { and } \nu_{A}(x)=\left\{\begin{array}{cc}
.1 & x=0,1 \\
.3 & \text { otherwise }
\end{array}\right.\right.
$$

Then A is (S, T) Intuitionistic fuzzy β-subalgebra of X.
Theorem 3.3. Let A be (S, T) Intuitionistic fuzzy β - subalgebra of X. Let $\chi_{A}=\{\mu(x)=\mu(0)$ and $\nu(x)=\nu(0)\}$. Then χ_{A} is a $\beta-$ subalgebra of X.

Proof. For any $x, y \in \chi_{A}$, we have $\mu(x)=\mu(0)=\mu(y)$ and $\nu(x)=\nu(0)=$ $\nu(y)$. Now,

$$
\mu_{A}(x+y) \geqslant S\left(\mu_{A}(x), \mu_{A}(y)\right)=S\left(\mu_{A}(0), \mu_{A}(0)\right)=\mu(0) \cdots(1)
$$

and

$$
\begin{gathered}
\mu_{A}(x-y) \geqslant S\left(\mu_{A}(x), \mu_{A}(y)\right)=S\left(\mu_{A}(0), \mu_{A}(0)\right)=\mu(0) \cdots(2) \\
\mu_{A}(0)=\mu(0+0) \geqslant S\left(\mu_{A}(0), \mu_{A}(0)\right)=S\left(\mu_{A}(x), \mu_{A}(y)\right)=\mu_{A}(x+y) \cdots(3) \\
\mu_{A}(0)=\mu(0-0) \geqslant S\left(\mu_{A}(0), \mu_{A}(0)\right)=S\left(\mu_{A}(x), \mu_{A}(y)\right)=\mu_{A}(x-y) \cdots(4)
\end{gathered}
$$

(1) and (3) implies $\mu_{A}(x+y)=\mu_{A}(0)$, and (2) and (4) implies $\mu_{A}(x-y)=\mu_{A}(0)$. Hence $\mu_{A}(x-y)=\mu_{A}(0)=\mu_{A}(x+y)$. Similarly, we can prove for non membership function, $\nu_{A}(x-y)=\nu_{A}(0)=\nu_{A}(x+y)$. Thus $x+y$ and $x-y \in \chi_{A}$ proving that χ_{A} is β - subalgebra of X.

From above theorem we can obtain the following
Corollary 3.4. Let A be (S, T) Intuitionistic fuzzy β - subalgebra of X. Let $\chi_{A}=\{\mu(x)=\mu(0)$ and $\nu(x)=1-\nu(0)\}$. Then χ_{A} is a $\beta-$ subalgebra of X.

One can easily prove the following
Theorem 3.5. Let A and B be (S, T) Intuitionistic fuzzy β - subalgebras of X. Then $A \cap B$ is also $a(S, T)$ Intuitionistic fuzzy β - subalgebra of X. In general, the intersection of a family of (S, T) Intuitionistic fuzzy β - subalgebras of X is also a (S, T) Intuitionistic fuzzy $\beta-$ subalgebra of X.

Theorem 3.6. If A is (S, T) Intuitionistic fuzzy $\beta-$ subalgebra of X, then $\mu(x) \leqslant \mu(x-0)$ and $\nu(x) \geqslant \nu(x-0)$.

Proof.

$$
\begin{aligned}
\mu_{A}(x-0) & \geqslant S\left(\mu_{A}(x), \mu_{A}(0)\right) \\
& =S\left(\mu_{A}(x), \mu_{A}(x-x)\right) \\
& \geqslant S\left\{\left(\mu_{A}(x), S\left(\mu_{A}(x), \mu_{A}(x)\right)\right\}\right. \\
& =S\left(\mu_{A}(x), \mu_{A}(x)\right) \\
& =\mu_{A}(x) .
\end{aligned}
$$

Corresponding to T-norm, we can prove that, $\nu_{A}(x-0) \leqslant \nu_{A}(x)$.
Theorem 3.7. If A is a (S, T) Intuitionistic fuzzy β-subalgebraof X, then μ_{A} and $\bar{\nu}_{A}$ are S-fuzzy β-subalgebras of X.

Proof. Let $A=(\mu, \nu)$ be a (S, T) Intuitionistic fuzzy β-subalgebra of X. Clearly, μ_{A} is a S-fuzzy β-subalgebra of X. For every $x, y \in X$, we have

$$
\begin{aligned}
\bar{\nu}_{A}(x+y) & =1-\nu_{A}(x+y) \\
& \leqslant 1-T\left\{\nu_{A}(x), \nu_{A}(y)\right\} \\
& \geqslant S\left\{1-\nu_{A}(x), 1-\nu_{A}(y)\right\} \\
& \geqslant S\left\{\bar{\nu}_{A}(x), \bar{\nu}_{A}(y)\right\}
\end{aligned}
$$

Similarly, we can prove that $\bar{\nu}_{A}(x-y) \geqslant \min \left\{\bar{\nu}_{A}(x), \bar{\nu}_{A}(y)\right\}$. Hence $\bar{\nu}_{A}$ is a S-fuzzy β-subalgebra of X.

Theorem 3.8. If μ_{A} and $\bar{\nu}_{A}$ are S-fuzzy β-subalgebras of X, then $A=\left(\mu_{A}, \nu_{A}\right)$ is a (S, T) IF β-subalgebra of X.

Proof. Let μ_{A} and $\bar{\nu}_{A}$ be S-fuzzy β-subalgebras of X. We get $\mu_{A}(x+y) \geqslant$ $S\left\{\mu_{A}(x), \mu_{A}(y)\right\}$ and $\mu_{A}(x-y) \geqslant S\left\{\mu_{A}(x), \mu_{A}(y)\right\}$ Now, for every $x, y \in X$, we
have

$$
\begin{aligned}
1-\nu_{A}(x+y) & \\
& =\bar{\nu}_{A}(x+y) \\
& \geqslant S\left\{\bar{\nu}_{A}(x), \bar{\nu}_{A}(y)\right\} \\
& =S\left\{1-\nu_{A}(x), 1-\nu_{A}(y)\right\} \\
& =1-T\left\{\nu_{A}(x), \nu_{A}(y)\right\}
\end{aligned}
$$

That is, $\nu_{A}(x+y) \leqslant T\left\{\nu_{A}(x), \nu_{A}(y)\right\}$. Similarly, we can prove that, $\nu_{A}(x-y) \leqslant$ $T\left\{\nu_{A}(x), \nu_{A}(y)\right\}$. Hence $A=\left(\mu_{A}, \nu_{A}\right)$ is a (S,T) Intuitionistic fuzzy β-subalgebras of X.

Definition 3.9. Let $f: X \rightarrow Y$ be a β-homomorphism. Let A and B be two (S, T) Intuitionistic fuzzy β-subalgebras in X and Y respectively. Then inverse image of B under f is defined by

$$
f^{-1}(B)=\left\{f^{-1}\left(\mu_{B}(x)\right), f^{-1}\left(\nu_{B}(x)\right) \mid x \in X\right\}
$$

such that $f^{-1}\left(\mu_{B}(x)\right)=\left(\mu_{B}(f(x))\right)$ and $f^{-1}\left(\nu_{B}(x)\right)=\left(\nu_{B}(f(x))\right)$.
Theorem 3.10. Let $f: X \rightarrow Y$ be a β-homomorphism. If A is $a(S, T)$ IF β-subalgebra of Y, then $f^{-1}(A)$ is a (S, T) IF β-subalgebra of X.

Proof. Let A be a (S, T) IF β-subalgebra of $Y, x, y \in Y$.

$$
\begin{aligned}
f^{-1}\left(\mu_{A}(x+y)\right) & =\mu_{A}(f(x+y)) \\
& =\mu_{A}(f(x)+f(y)) \\
& \geqslant S\left\{\mu_{A}(f(x)), \mu_{A}(f(y))\right\} \\
& =S\left\{f^{-1}\left(\mu_{A}(x)\right), f^{-1}\left(\mu_{A}(y)\right)\right\}
\end{aligned}
$$

and $f^{-1}\left(\mu_{A}(x-y)\right) \geqslant S\left\{f^{-1}\left(\mu_{A}(x)\right), f^{-1}\left(\mu_{A}(y)\right)\right\}$. Similarly, we can prove,

$$
\begin{aligned}
f^{-1}\left(\nu_{A}(x+y)\right) & =\nu_{A}(f(x+y)) \\
& =\nu_{A}(f(x)+f(y)) \\
& \leqslant T\left\{\nu_{A}(f(x)), \nu_{A}(f(y))\right\} \\
& =T\left\{f^{-1}\left(\nu_{A}(x)\right), f^{-1}\left(\nu_{A}(y)\right)\right\}
\end{aligned}
$$

and $f^{-1}\left(\nu_{A}(x-y)\right) \leqslant T\left\{f^{-1}\left(\nu_{A}(x)\right), f^{-1}\left(\nu_{A}(y)\right)\right\}$. Hence $f^{-1}(A)$ is a (S, T) IF β-subalgebra of X.

Theorem 3.11. Let X and Y be two β-subalgebras. Let $f: X \rightarrow Y$ be an endomorphism of β-algebra. If A is (S, T) IF β-subalgebra of X, then $f(A)$ is a (S, T) IF β - subalgebra of Y.

Proof. Let A be a (S, T) IF β-subalgebra of $Y, x, y \in X$.

$$
\begin{aligned}
\mu_{f}(x+y) & =\mu(f(x+y)) \\
& =\mu(f(x))+\mu(f(y)) \\
& \geqslant S\{\mu(f(x)), \mu(f(y))\} \\
& =S\left\{\mu_{f}(x), \mu_{f}(y)\right\}
\end{aligned}
$$

and $\left.\left.\left(\mu_{f}(x-y)\right) \geqslant S\left\{\mu_{f}(x)\right), \mu_{f}(y)\right)\right\}$ Similarly, we can prove that

$$
\begin{aligned}
\nu_{f}(x+y) & =\nu(f(x+y)) \\
& =\nu(f(x))+\nu(f(y)) \\
& \leqslant T\{\nu(f(x)), \nu(f(y))\} \\
& =T\left\{\nu_{f}(x), \nu_{f}(y)\right\}
\end{aligned}
$$

and $\nu_{f}(x-y) \leqslant T\left\{\nu_{f}(x), \nu_{f}(y)\right\}$. Hence $f(A)$ is a (S,T) IF β-subalgebra of Y.

4. Product of (S,T)- Intuitionistic fuzzy β - subalgebras

In this section, we discuss the product of (S, T) - Intuitionistic fuzzy β - subalgebras

Definition 4.1. Let $A=\left\{x, \mu_{A}(x), \nu_{A}(x) \mid x \in X\right\}$ and $B=$ $\left\{x, \mu_{B}(x), \nu_{B}(x) \mid x \in Y\right\}$ be two (S, T) - Intuitionistic fuzzy β - subalgebras of X and Y respectively. Then we define

$$
A \times B=\left\{\left(\mu_{A} \times \mu_{B}\right)(x, y) \text { and }\left(\nu_{A} \times \nu_{B}\right)(x, y) \mid x, y \in X \times Y\right\}
$$

where
$\left(\mu_{A} \times \mu_{B}\right)(x, y)=S\left(\mu_{A}(x), \mu_{B}(y)\right)$ and $\left(\nu_{A} \times \nu_{B}\right)(x, y)=T\left(\nu_{A}(x), \nu_{B}(y)\right)$.
Theorem 4.2. Let A and B be (S, T) Intuitionistic fuzzy $\beta-$ subalgebras of X and Y respectively. Then $A \times B$ is a (S, T) - Intuitionistic fuzzy β - subalgebra of $X \times Y$.

Proof. Take $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in X \times Y$ and $\mu=\mu_{A} \times \mu_{B}$ and $\nu=\nu_{A} \times \nu_{B}$.

$$
\begin{aligned}
\mu(x+y) & =\mu\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right) \\
& \left.=\left(\mu_{A} \times \mu_{B}\right)\left(x_{1}+y_{1}\right),\left(x_{2}+y_{2}\right)\right) \\
& =\min \left\{\mu_{A}\left(x_{1}+y_{1}\right), \mu_{B}\left(x_{2}+y_{2}\right)\right\} \\
& \geqslant \min \left\{S\left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(y_{1}\right)\right), S\left(\mu_{B}\left(x_{2}\right), \mu_{B}\left(y_{2}\right)\right)\right\} \\
& =\min \left\{S\left(\mu_{A}\left(x_{1}\right), \mu_{B}\left(x_{2}\right)\right), S\left(\mu_{A}\left(y_{1}\right), \mu_{B}\left(y_{2}\right)\right)\right\} \\
& =S\left\{\left(\mu_{A} \times \mu_{B}\right)\left(x_{1}, x_{2}\right),\left(\mu_{A} \times \mu_{B}\right)\left(y_{1}, y_{2}\right)\right\} \\
& =S\left\{\left(\mu_{A} \times \mu_{B}\right)(x),\left(\mu_{A} \times \mu_{B}\right)(y)\right\}
\end{aligned}
$$

Similarly, $\mu(x-y) \geqslant S\left\{\left(\mu_{A} \times \mu_{B}\right)(x),\left(\mu_{A} \times \mu_{B}\right)(y)\right\}$. Analogously, we can prove for the non-membership function,

$$
\nu(x+y) \leqslant T\left\{\left(\nu_{A} \times \nu_{B}\right)(x),\left(\mu_{A} \times \nu_{B}\right)(y)\right\}
$$

and $\nu(x-y) \leqslant T\left\{\left(\nu_{A} \times \nu_{B}\right)(x),\left(\mu_{A} \times \nu_{B}\right)(y)\right\}$ proving the theorem.
Corollary 4.3. Let A_{1}, \cdots, A_{n} be (S, T) Intuitionistic fuzzy β - subalgebras of X_{1}, \cdots, X_{n} respectively. Then $\prod_{i=1}^{n} A_{i}$ is also a (S, T) Intuitionistic fuzzy β subalgebra of $\prod_{i=1}^{n} X_{i}$.

5. Level subset of (S,T) Intuitionistic fuzzy β-subalgebras

In this section we intend to apply the notion level intuitionistic fuzzy subset on (S,T) Intuitionistic fuzzy β-subalgebras.

Definition 5.1. Let A be (S, T) Intuitionistic fuzzy β-subalgebras of X. Let $\alpha, \beta \in[0,1]$. Then

$$
A_{\alpha, \beta}=\left\{x, \mu_{A}(x) \geqslant \alpha, \nu_{A}(x) \leqslant \beta \mid x \in X\right\}
$$

where $0 \leqslant \mu_{A}(x)+\nu_{A}(x) \leqslant 1$, is called a level subset of (S, T) IF- β subalgebra A. The level subset of (S, T) IF β-subalgebra $A \times B$ of $X \times X$ is defined as,
$(A \times B)_{\alpha, \beta}=\left\{\left(\mu_{A} \times \mu_{B}\right)(x, y) \geqslant \alpha\right.$ and $\left.\left(\nu_{A} \times \nu_{B}\right)(x, y) \leqslant \beta \mid x, y \in X \times Y\right\}$ where $\left(\mu_{A} \times \mu_{B}\right)(x, y)=S\left(\mu_{A}(x), \mu_{B}(y)\right)$ and $\left(\nu_{A} \times \nu_{B}\right)(x, y)=T\left(\nu_{A}(x), \nu_{B}(y)\right.$.

THEOREM 5.2. If $A=\left\{x, \mu_{A}(x), \nu_{A}(x) \mid x \in X\right\}$ is a (S,T) IF β-subalgebra of X, then the set $A_{\alpha, \beta}$ is β-subalgebra of X, for every $\alpha, \beta \in[0,1]$.

Proof. Let $x, y \in A_{\alpha, \beta}$. It is implies $\mu_{A}(x) \geqslant \alpha, \mu_{A}(y) \geqslant \alpha$ and $\nu_{A}(x) \leqslant \beta$, $\nu_{A}(y) \leqslant \beta$. Further on, have

$$
\begin{gathered}
\mu_{A}(x+y) \geqslant S\left\{\mu_{A}(x), \mu_{A}(y)\right\} \geqslant S\{\alpha, \alpha\}=\alpha \cdots(1) \\
\nu_{A}(x+y) \leqslant T\left\{\nu_{A}(x), \nu_{A}(y)\right\} \leqslant T\{\beta, \beta\}=\beta \cdots(2)
\end{gathered}
$$

From (1) and (2) we get $x+y \in A_{\alpha, \beta}$. In a similar way one can prove that $x-y \in$ $A_{\alpha, \beta}$, proving that $A_{\alpha, \beta}$ is β-subalgebra of X.

The converse of the above theorem is also true as seen from the following
Theorem 5.3. Let $A=\left\{x, \mu_{A}(x), \nu_{A}(x) \mid x \in X\right\}$ is an IF set in X such that $A_{\alpha, \beta}$ is subalgebra of X for every $\alpha, \beta \in[0,1]$. Then A is (S, T) Intuitionistic fuzzy β-subalgebra of X.

Combining the two results above we obtain
Theorem 5.4. Any β-subalgebra of X can be realized as a level of β-subalgebra for some (S, T) Intuitionistic fuzzy β-subalgebra of X.

THEOREM 5.5. Let $A_{s, t}$ and $B_{s_{1}, t 1}$ two level set of (S, T) Intuitionistic fuzzy $\beta-$ subalgebras A and B where $s \leqslant s_{1}$ and $t \geqslant t_{1}$ of X. If $\mu_{A}(x) \leqslant \mu_{B}(x)$ and $\nu_{A}(x) \geqslant \nu_{B}(x)$, then $A \subseteq B$.

Proof. Now,

$$
A_{s, t}=\left\{x, \mu_{A}(x) \geqslant s \text { and } \nu_{A}(x) \leqslant t \mid x \in A\right\}
$$

and

$$
B_{s_{1}, t_{1}}=\left\{x, \mu_{B}(x) \geqslant s_{1} \text { and } \nu_{B}(x) \leqslant t_{1} \mid x \in B\right\} .
$$

If $x \in \mu_{B}\left(s_{1}\right)$, then $\mu_{B}(x) \geqslant s_{1} \geqslant s \Longrightarrow x \in \mu_{A}(s)$. Therefore $\mu_{B}(x) \geqslant \mu_{A}(x)$. And if $x \in \nu_{B}\left(t_{1}\right)$, then $\nu_{B}(x) \leqslant t_{1} \leqslant t \Longrightarrow x \in \nu_{A}(t)$. Therefore $\nu_{B}(x) \leqslant \nu_{A}(x)$. Hence $A \subseteq B$.

One can easily prove the following

Theorem 5.6. Let A be a (S,T) Intuitionistic fuzzy β-subalgebra of $X, \alpha \in$ $[0,1]$. Then
(1) if $\alpha=1$, then upper-level set $U\left(\mu_{A}, \alpha\right)$ is either empty or β-subalgebra of X.
(2) if $\beta=0$, then lower-level set $L\left(\nu_{A}, \beta\right)$ is either empty or β-subalgebra of X.
(3) if $S=$ min, then upper-level set $U\left(\mu_{A}, \alpha\right)$ is either empty or β-subalgebra of X.
(4) if $T=$ max, then lower-level set $L\left(\nu_{A}, \beta\right)$ is either empty or β-subalgebra of X.
Theorem 5.7. Let $A_{\alpha, \beta}$ and $B_{\alpha, \beta}$ be two level (S, T) Intuitionistic fuzzy β-subalgebras of X and Y respectively. Then the level of $(A \times B)_{\alpha, \beta}$ is also a level (S, T) Intuitionistic fuzzy β-subalgebra of $X \times Y$.

Proof. Take $X=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in X \times X$ and $\mu=\mu_{A} \times \mu_{B}$

$$
\begin{aligned}
\mu(x+y) & =\mu\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right) \\
& \left.=\left(\mu_{A} \times \mu_{B}\right)\left(x_{1}+y_{1}\right),\left(x_{2}+y_{2}\right)\right) \\
& =S\left\{\mu_{A}\left(x_{1}+y_{1}\right), \mu_{B}\left(x_{2}+y_{2}\right)\right\} \\
& \geqslant S\left\{S\left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(y_{1}\right)\right), S\left(\mu_{B}\left(x_{2}\right), \mu_{B}\left(y_{2}\right)\right)\right\} \\
& =S\left\{S\left(\mu_{A}\left(x_{1}\right), \mu_{B}\left(x_{2}\right)\right), S\left(\mu_{A}\left(y_{1}\right), \mu_{B}\left(y_{2}\right)\right)\right\} \\
& \left.=S\left\{\left(\mu_{A} \times \mu_{B}\right)\left(x_{1}, x_{2}\right),\left(\mu_{A} \times \mu_{B}\right)\left(y_{1}, y_{2}\right)\right)\right\} \\
& =S\left\{\left(\mu_{A} \times \mu_{B}\right)(x),\left(\mu_{A} \times \mu_{B}\right)(y)\right\} \\
& =S\{\alpha, \alpha\} \\
& =\alpha
\end{aligned}
$$

Similarly, $\mu(x-y) \geqslant \alpha$ and also, we can prove that, $\nu(x-y) \leqslant \beta$. Hence the Cartesian product of $A \times B$ is also level (S, T) Intuitionistic fuzzy β - subalgebra of $X \times Y$.

6. Conclusion

An investigation on (S, T) Intuitionistic fuzzy β - subalgebra of β-algebrs is done and several interesting results are observed. One can extend this concept for various substructures of a β-algebra.

References

[1] M.Aub Ayub Anasri and M.Chandramouleeswaran. Fuzzy β - subalgebras of β-algebras, International J. of Math. Sci. Engg. Appls. (IJMSEA)., 7(5)(2013), 239-249 .
[2] K.T. Atanassov. Intuitionistic Fuzzy sets, Fuzzy Sets and Systems, 20(1)(1986), 87-96.
[3] Kyong.Ho.Kim. Intuitionistic (T,S) normed Fuzzy subalgebras of BCK-algebras, J. Chungcheong Math. Soc., 20(3)(2007), 279-286.
[4] J.Neggers and Kim Hee Sik. On B-algebras, Math. Vesnik., 54(1-2)(2002), 21-29.
[5] J.Neggers and Kim Hee Sik. On β--algebras, Math. Solvaca, 52(5)(2002), 517-530.
[6] X.Ougen. Fuzzy BCK-algebras, Math. Japaninca., 36(5)(1991), 935-942.
[7] A.Rosenfeld. Fuzzy Groups, J.Math.Anal.Appl., 35(3)(1971), 512-517.
[8] K.Sujatha, M.Chandramouleeswaran and P.Muralikrishna. On Intuitionistic fuzzy β-subalgebras of β-algebras, Global J. Pure Appl. Math., 9(6)(2013), 559-566
[9] L.A.Zadeh, Fuzzy sets, Inform. Control, 8(3)(1965), 338-353.
Received by editors 27.10.2016; Available online 20.02.2017.
PG \& Research Department of Mathematics, Muthurangam Government Arts College (Autonomous), Vellore-632002, India

E-mail address: pmkrishna@rocketmail.com
Department of Mathematics, Saiva Bhanu Kshathriya College, Aruppukottai 626101, India

E-mail address: ksujatha203@gmail.com
Department of Mathematics, Saiva Bhanu Kshathriya College, Aruppukottai 626101, India

E-mail address: moulee59@gmail.com

[^0]: 2010 Mathematics Subject Classification. 06F35, 03G25, 08A72, 03 E 72.
 Key words and phrases. β-algebra, Fuzzy β-algebra, Intuitionistic Fuzzy β-algebra, (S,T) norm.

