BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 353-361 DOI: 10.7251/BIMVI1702353M

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

(S,T)-NORMED INTUITIONISTIC FUZZY β -SUBALGEBRAS

P Muralikrishna, K Sujatha, and M Chandramouleeswaran

ABSTRACT. This paper deals about Intuitionistic Fuzzy β -subalgebras of β -algebras using (S,T) norms. Further the notion of product and level subset on Intuitionistic Fuzzy β -subalgebras of β -algebras using (S,T) norms are introduced. Some interesting and elegant related results are being discussed.

1. Introduction

In 2002, J.Neggers and Kim [4], [5] introduced new class of algebras: β - algebras arising from the classical and non-classical propositional logic. In 1965, L.A.Zadeh [9] introduced a notion of fuzzy sets. The notion of fuzzy algebraic structures was initiated by A.Rosenfeld [7], K.T.Atanassov [2], introduced the notion of intuitionistic fuzzy set a generalization of fuzzy set.

Recently, in 2013 the authors introduced the concept of Fuzzy β -subalgebras of β -algebras [1]. Motivated by this the authors [8] introduced Intuitionistic Fuzzy β -subalgebras. *T*-norms were introduced by Schweizer and Sklar in 1961. In 2007, Kyong. Ho. Kim, introduced Intuitionistic (T, S) normed subalgebras of BCK-algebras [3]. In this paper, we introduce (S, T) normed Intuitionistic Fuzzy β -subalgebras and some properties and simple results.

The paper has been organised as follows: Section 2 provides the preliminaries. In section 3 (S,T) - Intuitionistic fuzzy β - subalgebra is discussed, in section 4, Product of (S,T) - Intuitionistic fuzzy β - subalgebras is studied and section 5 gives the notion of Level subset of (S,T) Intuitionistic fuzzy β -subalgebras. Finally the section 6 ends with the conclusion.

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25, 08A72, 03E72.

Key words and phrases. β -algebra, Fuzzy β -algebra, Intuitionistic Fuzzy β -algebra, (S,T) norm.

2. Preliminaries

In this section we recall some basic definitions that are required in the sequel.

DEFINITION 2.1. A β -algebra is a non-empty set X with a constant 0 and two binary operations + and - satisfying the following axioms:

(1) x - 0 = x

(2) (0-x) + x = 0

(3)
$$(x-y) - z = x - (z+y) \forall x, y, z \in X$$
.

EXAMPLE 2.2. From the following Caley's tables, $(X = \{0, 1, 2\}, +, -, 0)$ is a β - algebra.

+	0	1	2		—	0	1	2
0	0	1	2		0	0	2	1
1	1	2	0	-	1	1	0	2
2	2	0	1	-	2	2	1	0

DEFINITION 2.3. The function $S: [0,1] \times [0,1] \rightarrow [0,1]$ is called a S-norm, if it satisfies the following conditions,

(1) S(x,1) = x

(2) S(x,y) = S(y,x)

(3) S(S(x,y),z) = S(x,S(y,z))

- (4) $S(x,y) \leq S(x,z)$ if $y \leq z \forall x,y,z \in [0,1]$.
- If norm S has the property, S(x, y) = min(x, y), then
 - (1) S(x,0) = 0
 - $(2) \ S(S(u,v),S(x,y)) = S(S(u,x),S(v,y)) \ \forall \ x,y,u,v \ \in \ [0,1]$
 - (3) S(x,x) = x.

DEFINITION 2.4. The function $T: [0,1] \times [0,1] \rightarrow [0,1]$ is called a T-norm, if it satisfies the following conditions,

- (1) T(x,0) = x
- (2) T(x,y) = T(y,x)

(3) T(T(x,y),z) = T(x,T(y,z))

(4) $T(x,y) \leq T(x,z)$ if $y \leq z \forall x,y,z \in [0,1]$.

If norm T has the property, T(x, y) = max(x, y), then

- (1) T(x,0) = x
- (2) $T(T(u,v), T(x,y)) = T(T(u,x), T(v,y)) \ \forall \ x, y, u, v \in [0,1]$
- (3) T(x,x) = x.

DEFINITION 2.5. Let (X, *, 0) be any algebra. Let μ be a fuzzy set with respect to S-norm [T-norm] is said to be a S - Fuzzy subalgebra[T - Fuzzy subalgebra] of X, if $\mu(x * y) \ge S(\mu(x), \mu(y))$ [$\mu(x * y) \le T(\mu(x), \mu(y))$], $\forall x, y \in X$.

DEFINITION 2.6. Let (X, *, 0) be any algebra. An Intuitionistic fuzzy set $A = \{x, \mu_A(x), \nu_A(x) \mid x \in X\}$ is called a (S,T) Intuitionistic Fuzzy subalgebra of X, if it satisfies the following conditions,

(1)
$$\mu_A(x*y) \ge S(\mu_A(x), \mu_A(y))$$

(2)
$$\nu_A(x * y) \leq T(\nu_A(x), \nu_A(y)), \forall x, y \in X$$
, where $0 \leq \mu_A(x) + \nu_A(x) \leq 1$

DEFINITION 2.7. Let A be an Intuitionistic Fuzzy subaset of X, and $s, t \in [0, 1]$. Then $A_{s,t} = \{x, \mu_A(x) \ge s, \nu_A(x) \le t \mid x \in X\}$ where $0 \le \mu_A(x) + \nu_A(x) \le 1$ is called a level intuitionistic fuzzy subset of X.

3. (S,T)- Intuitionistic fuzzy β - subalgebras

In this section we introduce the notion of (S,T)- Intuitionistic fuzzy β - subalgebra of a β - algebra and prove some related results. Also, in the rest of the paper, X is a β -algebra unless, otherwise specified.

DEFINITION 3.1. Let (X, +, -, 0) be a β algebra. An Intuitionistic fuzzy set $A = \{x, \mu_A(x), \nu_A(x) \mid x \in X\}$ is called a (S,T)- Intuitionistic fuzzy β subalgebra of X, if it satisfies the following conditions.

- (1) $\mu_A(x+y) \ge S(\mu_A(x), \mu_A(y))$ and $\nu_A(x+y) \le T(\nu_A(x), \nu_A(y))$
- (2) $\mu_A(x-y) \ge S(\mu_A(x), \mu_A(y))$ and $\nu_A(x-y) \le T(\nu_A(x), \nu_A(y)), \forall x, y \in X$, where $0 \le \mu_A(x) + \nu_A(x) \le 1$.

EXAMPLE 3.2. Let $X = \{0, 1, 2, 3\}$ be a β -algebra with constant 0 and two binary operations + and - are defined on X with the Cayley's table

+	0	1	2	3	-	- 0	1	2	
0	0	1	2	3	0	0 0	1	3	
1	1	0	3	2	1	1 1	0	2	
2	2	3	1	0	2	2 2	3	0	
3	3	2	0	1	3	3 3	2	1	

Now, A is defined as,

$$\mu_A(x) = \begin{cases} ..7 \quad x = 0, 1\\ .6 \quad otherwise \end{cases} \quad and \quad \nu_A(x) = \begin{cases} ..1 \quad x = 0, 1\\ .3 \quad otherwise \end{cases}$$

Then A is (S,T) Intuitionistic fuzzy β -subalgebra of X.

THEOREM 3.3. Let A be (S,T) Intuitionistic fuzzy β - subalgebra of X. Let $\chi_A = \{\mu(x) = \mu(0) \text{ and } \nu(x) = \nu(0)\}$. Then χ_A is a β - subalgebra of X.

PROOF. For any $x, y \in \chi_A$, we have $\mu(x) = \mu(0) = \mu(y)$ and $\nu(x) = \nu(0) = \nu(y)$. Now,

$$\mu_A(x+y) \ge S(\mu_A(x), \mu_A(y)) = S(\mu_A(0), \mu_A(0)) = \mu(0) \cdots (1)$$

and

$$\mu_A(x-y) \ge S(\mu_A(x), \mu_A(y)) = S(\mu_A(0), \mu_A(0)) = \mu(0) \cdots (2)$$

$$\mu_A(0) = \mu(0+0) \ge S(\mu_A(0), \mu_A(0)) = S(\mu_A(x), \mu_A(y)) = \mu_A(x+y) \cdots (3)$$

$$\mu_A(0) = \mu(0-0) \ge S(\mu_A(0), \mu_A(0)) = S(\mu_A(x), \mu_A(y)) = \mu_A(x-y) \cdots (4)$$

(1) and (3) implies $\mu_A(x+y) = \mu_A(0)$, and (2) and (4) implies $\mu_A(x-y) = \mu_A(0)$. Hence $\mu_A(x-y) = \mu_A(0) = \mu_A(x+y)$. Similarly, we can prove for non membership function, $\nu_A(x-y) = \nu_A(0) = \nu_A(x+y)$. Thus x + y and $x - y \in \chi_A$ proving that χ_A is β - subalgebra of X.

From above theorem we can obtain the following

COROLLARY 3.4. Let A be (S,T) Intuitionistic fuzzy β - subalgebra of X. Let $\chi_A = \{\mu(x) = \mu(0) \text{ and } \nu(x) = 1 - \nu(0)\}$. Then χ_A is a β - subalgebra of X.

One can easily prove the following

THEOREM 3.5. Let A and B be (S,T) Intuitionistic fuzzy β - subalgebras of X. Then $A \cap B$ is also a (S,T) Intuitionistic fuzzy β - subalgebra of X. In general, the intersection of a family of (S,T) Intuitionistic fuzzy β - subalgebras of X is also a (S,T) Intuitionistic fuzzy β - subalgebra of X.

THEOREM 3.6. If A is (S,T) Intuitionistic fuzzy β - subalgebra of X, then $\mu(x) \leq \mu(x-0)$ and $\nu(x) \geq \nu(x-0)$.

Proof.

$$\mu_A(x-0) \geq S(\mu_A(x), \mu_A(0))
= S(\mu_A(x), \mu_A(x-x))
\geq S\{(\mu_A(x), S(\mu_A(x), \mu_A(x)))\}
= S(\mu_A(x), \mu_A(x))
= \mu_A(x).$$

Corresponding to T-norm, we can prove that, $\nu_A(x-0) \leq \nu_A(x)$.

THEOREM 3.7. If A is a (S,T) Intuitionistic fuzzy β -subalgebraof X, then μ_A and $\overline{\nu}_A$ are S-fuzzy β -subalgebras of X.

PROOF. Let $A = (\mu, \nu)$ be a (S, T) Intuitionistic fuzzy β -subalgebra of X. Clearly, μ_A is a S-fuzzy β -subalgebra of X. For every $x, y \in X$, we have

$$\overline{\nu}_A(x+y) = 1 - \nu_A(x+y)$$

$$\leqslant 1 - T \{\nu_A(x), \nu_A(y)\}$$

$$\geqslant S \{1 - \nu_A(x), 1 - \nu_A(y)\}$$

$$\geqslant S \{\overline{\nu}_A(x), \overline{\nu}_A(y)\}$$

Similarly, we can prove that $\overline{\nu}_A(x-y) \ge \min \{\overline{\nu}_A(x), \overline{\nu}_A(y)\}$. Hence $\overline{\nu}_A$ is a S-fuzzy β -subalgebra of X.

THEOREM 3.8. If μ_A and $\overline{\nu}_A$ are S-fuzzy β -subalgebras of X, then $A = (\mu_A, \nu_A)$ is a (S, T) IF β -subalgebra of X.

PROOF. Let μ_A and $\overline{\nu}_A$ be S-fuzzy β -subalgebras of X. We get $\mu_A(x+y) \ge S \{\mu_A(x), \mu_A(y)\}$ and $\mu_A(x-y) \ge S \{\mu_A(x), \mu_A(y)\}$ Now, for every $x, y \in X$, we

have

$$1 - \nu_A(x + y)$$

$$= \overline{\nu}_A(x + y)$$

$$\geq S \{\overline{\nu}_A(x), \overline{\nu}_A(y)\}$$

$$= S \{1 - \nu_A(x), 1 - \nu_A(y)\}$$

$$= 1 - T \{\nu_A(x), \nu_A(y)\}$$

That is, $\nu_A(x+y) \leq T \{\nu_A(x), \nu_A(y)\}$. Similarly, we can prove that, $\nu_A(x-y) \leq T \{\nu_A(x), \nu_A(y)\}$. Hence $A = (\mu_A, \nu_A)$ is a (S,T) Intuitionistic fuzzy β -subalgebras of X. \Box

DEFINITION 3.9. Let $f: X \to Y$ be a β -homomorphism. Let A and B be two (S,T) Intuitionistic fuzzy β -subalgebras in X and Y respectively. Then inverse image of B under f is defined by

 $f^{-1}(B) = \left\{ f^{-1}(\mu_B(x)), f^{-1}(\nu_B(x)) | x \in X \right\}$ such that $f^{-1}(\mu_B(x)) = (\mu_B(f(x)))$ and $f^{-1}(\nu_B(x)) = (\nu_B(f(x)))$.

THEOREM 3.10. Let $f : X \to Y$ be a β -homomorphism. If A is a (S,T) IF β -subalgebra of Y, then $f^{-1}(A)$ is a (S,T) IF β -subalgebra of X.

PROOF. Let A be a (S,T) IF β -subalgebra of $Y, x, y \in Y$.

$$\begin{aligned} f^{-1}(\mu_A(x+y)) &= & \mu_A(f(x+y)) \\ &= & \mu_A(f(x)+f(y)) \\ &\geqslant & S\left\{\mu_A(f(x)), \mu_A(f(y))\right\} \\ &= & S\left\{f^{-1}(\mu_A(x)), f^{-1}(\mu_A(y))\right\} \end{aligned}$$

and $f^{-1}(\mu_A(x-y)) \ge S\left\{f^{-1}(\mu_A(x)), f^{-1}(\mu_A(y))\right\}$. Similarly, we can prove,

$$f^{-1}(\nu_A(x+y)) = \nu_A(f(x+y)) = \nu_A(f(x) + f(y)) \leqslant T \{\nu_A(f(x)), \nu_A(f(y))\} = T \{f^{-1}(\nu_A(x)), f^{-1}(\nu_A(y))\}$$

and $f^{-1}(\nu_A(x-y)) \leq T\{f^{-1}(\nu_A(x)), f^{-1}(\nu_A(y))\}$. Hence $f^{-1}(A)$ is a (S,T) IF β -subalgebra of X.

THEOREM 3.11. Let X and Y be two β -subalgebras. Let $f : X \to Y$ be an endomorphism of β -algebra. If A is (S,T) IF β -subalgebra of X, then f(A) is a (S,T) IF β -subalgebra of Y.

PROOF. Let A be a (S,T) IF β -subalgebra of $Y, x, y \in X$.

$$\begin{array}{lll} \mu_f(x+y) &=& \mu(f(x+y)) \\ &=& \mu(f(x)) + \mu(f(y)) \\ &\geqslant & S \left\{ \mu(f(x)), \mu(f(y)) \right\} \\ &=& S \left\{ \mu_f(x), \mu_f(y) \right\} \end{array}$$

and $(\mu_f(x-y)) \ge S \{\mu_f(x)\}, \mu_f(y)\}$ Similarly, we can prove that

ι

$$\begin{aligned}
\nu_f(x+y) &= \nu(f(x+y)) \\
&= \nu(f(x)) + \nu(f(y)) \\
&\leqslant T \{\nu(f(x)), \nu(f(y))\} \\
&= T \{\nu_f(x), \nu_f(y)\}
\end{aligned}$$

and $\nu_f(x-y) \leq T \{\nu_f(x), \nu_f(y)\}$. Hence f(A) is a (S,T) IF β -subalgebra of Y. \Box

4. Product of (S,T)- Intuitionistic fuzzy β - subalgebras

In this section, we discuss the product of (S, T)- Intuitionistic fuzzy β - subalgebras

DEFINITION 4.1. Let $A = \{x, \mu_A(x), \nu_A(x) \mid x \in X\}$ and $B = \{x, \mu_B(x), \nu_B(x) \mid x \in Y\}$ be two (S, T)- Intuitionistic fuzzy β - subalgebras of X and Y respectively. Then we define

$$A \times B = \{(\mu_A \times \mu_B)(x, y) \text{ and } (\nu_A \times \nu_B)(x, y) \mid x, y \in X \times Y\}$$

where

$$(\mu_A \times \mu_B)(x, y) = S(\mu_A(x), \mu_B(y))$$
 and $(\nu_A \times \nu_B)(x, y) = T(\nu_A(x), \nu_B(y)).$

THEOREM 4.2. Let A and B be (S,T) Intuitionistic fuzzy β - subalgebras of X and Y respectively. Then $A \times B$ is a (S,T)- Intuitionistic fuzzy β - subalgebra of $X \times Y$.

PROOF. Take $x = (x_1, x_2), y = (y_1, y_2) \in X \times Y$ and $\mu = \mu_A \times \mu_B$ and $\nu = \nu_A \times \nu_B$.

$$\begin{array}{lll} \mu(x+y) &=& \mu((x_1,x_2)+(y_1,y_2)) \\ &=& (\mu_A \times \mu_B)(x_1+y_1), (x_2+y_2)) \\ &=& \min \left\{ \mu_A(x_1+y_1), \mu_B(x_2+y_2) \right\} \\ &\geqslant& \min \left\{ S(\mu_A(x_1), \mu_A(y_1)), S(\mu_B(x_2), \mu_B(y_2)) \right\} \\ &=& \min \left\{ S(\mu_A(x_1), \mu_B(x_2)), S(\mu_A(y_1), \mu_B(y_2)) \right\} \\ &=& S \left\{ (\mu_A \times \mu_B)(x_1, x_2), (\mu_A \times \mu_B)(y_1, y_2) \right\} \\ &=& S \left\{ (\mu_A \times \mu_B)(x), (\mu_A \times \mu_B)(y) \right\} \end{array}$$

Similarly, $\mu(x-y) \ge S\{(\mu_A \times \mu_B)(x), (\mu_A \times \mu_B)(y)\}$. Analogously, we can prove for the non-membership function,

$$\nu(x+y) \leqslant T\left\{(\nu_A \times \nu_B)(x), (\mu_A \times \nu_B)(y)\right\}$$

and $\nu(x-y) \leq T\{(\nu_A \times \nu_B)(x), (\mu_A \times \nu_B)(y)\}$ proving the theorem.

COROLLARY 4.3. Let A_1, \dots, A_n be (S,T) Intuitionistic fuzzy β - subalgebras of X_1, \dots, X_n respectively. Then $\prod_{i=1}^n A_i$ is also a (S,T) Intuitionistic fuzzy β -subalgebra of $\prod_{i=1}^n X_i$.

5. Level subset of (S,T) Intuitionistic fuzzy β -subalgebras

In this section we intend to apply the notion level intuitionistic fuzzy subset on (S,T) Intuitionistic fuzzy β -subalgebras.

DEFINITION 5.1. Let A be (S,T) Intuitionistic fuzzy β -subalgebras of X. Let $\alpha, \beta \in [0,1]$. Then

 $A_{\alpha,\beta} = \{x, \mu_A(x) \ge \alpha, \nu_A(x) \le \beta \mid x \in X\},\$

where $0 \leq \mu_A(x) + \nu_A(x) \leq 1$, is called a level subset of (S, T) IF- β subalgebra A. The level subset of (S, T) IF β -subalgebra $A \times B$ of $X \times X$ is defined as,

 $(A \times B)_{\alpha,\beta} = \{ (\mu_A \times \mu_B)(x,y) \ge \alpha \text{ and } (\nu_A \times \nu_B)(x,y) \le \beta \mid x,y \in X \times Y \}$ where $(\mu_A \times \mu_B)(x,y) = S(\mu_A(x),\mu_B(y))$ and $(\nu_A \times \nu_B)(x,y) = T(\nu_A(x),\nu_B(y)).$

THEOREM 5.2. If $A = \{x, \mu_A(x), \nu_A(x) \mid x \in X\}$ is a (S,T) IF β -subalgebra of X, then the set $A_{\alpha,\beta}$ is β -subalgebra of X, for every $\alpha, \beta \in [0,1]$.

PROOF. Let $x, y \in A_{\alpha,\beta}$. It is implies $\mu_A(x) \ge \alpha$, $\mu_A(y) \ge \alpha$ and $\nu_A(x) \le \beta$, $\nu_A(y) \le \beta$. Further on, have

$$\mu_A(x+y) \ge S \{\mu_A(x), \mu_A(y)\} \ge S \{\alpha, \alpha\} = \alpha \cdots (1), \\ \nu_A(x+y) \le T \{\nu_A(x), \nu_A(y)\} \le T \{\beta, \beta\} = \beta \cdots (2).$$

From (1) and (2) we get $x + y \in A_{\alpha,\beta}$. In a similar way one can prove that $x - y \in A_{\alpha,\beta}$, proving that $A_{\alpha,\beta}$ is β -subalgebra of X.

The converse of the above theorem is also true as seen from the following

THEOREM 5.3. Let $A = \{x, \mu_A(x), \nu_A(x) \mid x \in X\}$ is an IF set in X such that $A_{\alpha,\beta}$ is subalgebra of X for every $\alpha, \beta \in [0,1]$. Then A is (S,T) Intuitionistic fuzzy β -subalgebra of X.

Combining the two results above we obtain

THEOREM 5.4. Any β -subalgebra of X can be realized as a level of β -subalgebra for some (S,T) Intuitionistic fuzzy β -subalgebra of X.

THEOREM 5.5. Let $A_{s,t}$ and B_{s_1,t_1} two level set of (S,T) Intuitionistic fuzzy β -subalgebras A and B where $s \leq s_1$ and $t \geq t_1$ of X. If $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$, then $A \subseteq B$.

PROOF. Now,

$$A_{s,t} = \{x, \mu_A(x) \ge s \text{ and } \nu_A(x) \le t \mid x \in A\}$$

and

$$B_{s_1,t_1} = \{x, \mu_B(x) \ge s_1 \text{ and } \nu_B(x) \le t_1 \mid x \in B\}.$$

If $x \in \mu_B(s_1)$, then $\mu_B(x) \ge s_1 \ge s \implies x \in \mu_A(s)$. Therefore $\mu_B(x) \ge \mu_A(x)$. And if $x \in \nu_B(t_1)$, then $\nu_B(x) \le t_1 \le t \implies x \in \nu_A(t)$. Therefore $\nu_B(x) \le \nu_A(x)$. Hence $A \subseteq B$.

One can easily prove the following

THEOREM 5.6. Let A be a (S,T) Intuitionistic fuzzy β -subalgebra of $X, \alpha \in [0,1]$. Then

- (1) if $\alpha = 1$, then upper-level set $U(\mu_A, \alpha)$ is either empty or β -subalgebra of X.
- (2) if $\beta = 0$, then lower-level set $L(\nu_A, \beta)$ is either empty or β -subalgebra of X.
- (3) if $S = \min$, then upper-level set $U(\mu_A, \alpha)$ is either empty or β -subalgebra of X.
- (4) if T = max, then lower-level set $L(\nu_A, \beta)$ is either empty or β -subalgebra of X.

THEOREM 5.7. Let $A_{\alpha,\beta}$ and $B_{\alpha,\beta}$ be two level (S,T) Intuitionistic fuzzy β -subalgebras of X and Y respectively. Then the level of $(A \times B)_{\alpha,\beta}$ is also a level (S,T) Intuitionistic fuzzy β -subalgebra of X × Y.

PROOF. Take $X = (x_1, x_2), y = (y_1, y_2) \in X \times X$ and $\mu = \mu_A \times \mu_B$

$$\begin{split} \mu(x+y) &= & \mu((x_1, x_2) + (y_1, y_2)) \\ &= & (\mu_A \times \mu_B)(x_1 + y_1), (x_2 + y_2)) \\ &= & S \left\{ \mu_A(x_1 + y_1), \mu_B(x_2 + y_2) \right\} \\ &\geqslant & S \left\{ S(\mu_A(x_1), \mu_A(y_1)), S(\mu_B(x_2), \mu_B(y_2)) \right\} \\ &= & S \left\{ S(\mu_A(x_1), \mu_B(x_2)), S(\mu_A(y_1), \mu_B(y_2)) \right\} \\ &= & S \left\{ (\mu_A \times \mu_B)(x_1, x_2), (\mu_A \times \mu_B)(y_1, y_2)) \right\} \\ &= & S \left\{ (\mu_A \times \mu_B)(x), (\mu_A \times \mu_B)(y) \right\} \\ &= & S \left\{ \alpha, \alpha \right\} \\ &= & \alpha \end{split}$$

Similarly, $\mu(x-y) \ge \alpha$ and also, we can prove that, $\nu(x-y) \le \beta$. Hence the Cartesian product of $A \times B$ is also level (S,T) Intuitionistic fuzzy β - subalgebra of $X \times Y$.

6. Conclusion

An investigation on (S, T) Intuitionistic fuzzy β - subalgebra of β -algebra is done and several interesting results are observed. One can extend this concept for various substructures of a β -algebra.

References

- M.Aub Ayub Anasri and M.Chandramouleeswaran. Fuzzy β- subalgebras of β-algebras, International J. of Math. Sci. Engg. Appls. (IJMSEA)., 7(5)(2013), 239-249.
- 2] K.T. Atanassov. Intuitionistic Fuzzy sets, Fuzzy Sets and Systems, 20(1)(1986), 87-96.
- [3] Kyong.Ho.Kim. Intuitionistic (T,S) normed Fuzzy subalgebras of BCK-algebras, J. Chungcheong Math. Soc., 20(3)(2007), 279-286.
- [4] J.Neggers and Kim Hee Sik. On B-algebras, Math. Vesnik., 54(1-2)(2002), 21-29.
- [5] J.Neggers and Kim Hee Sik. On β --algebras, Math. Solvaca, 52(5)(2002), 517-530.
- [6] X.Ougen. Fuzzy BCK-algebras, Math. Japaninca., 36(5)(1991), 935-942.
- [7] A.Rosenfeld. Fuzzy Groups, J.Math.Anal.Appl., **35**(3)(1971), 512-517.

- [8] K.Sujatha, M.Chandramouleeswaran and P.Muralikrishna. On Intuitionistic fuzzy β -subalgebras of β -algebras, Global J. Pure Appl. Math., 9(6)(2013), 559-566
- [9] L.A.Zadeh, Fuzzy sets, Inform. Control, 8(3)(1965), 338-353.

Received by editors 27.10.2016; Available online 20.02.2017.

PG & RESEARCH DEPARTMENT OF MATHEMATICS, MUTHURANGAM GOVERNMENT ARTS COL-LEGE (AUTONOMOUS), VELLORE-632002, INDIA *E-mail address*: pmkrishna@rocketmail.com

Department of Mathematics, Saiva Bhanu Kshathriya College, Aruppukottai - $626101,\,{\rm India}$

E-mail address: ksujatha2030gmail.com

Department of Mathematics, Saiva Bhanu Kshathriya College, Aruppukottai - 626101, India

 $E\text{-}mail\ address:\ \texttt{moulee59@gmail.com}$