PERMUTING TRI- f-DERIVATIONS ON ALMOST DISTRIBUTIVE LATTICES

G.C.RAO and K RAVI BABU

Abstract

In this paper, we introduce the concept of permuting tri- f-derivation in an Almost Distributive Lattice ($A D L$) and derive some important properties of permuting tri- f-derivation in $A D L \mathrm{~s}$.

1. Introduction

The notion of derivation in lattices was first given in G. Szasz [14] in 1974. Several authors worked on derivations in Lattices ([1], [2], [3], [4], [5], [6], [15], [16] and [17]). The concept of derivation in an $A D L$ was introduced in our earlier paper [8]. Further, in an $A D L$ we worked on f-derivations in [9], symmetric biderivations in [10], symmetric bi- f-derivations in [11] and permuting tri-derivations in [12]. The concept of permuting tri- f-derivations in lattices was introduced by H. Yazarli and M. A. Öztürk [17] in 2011.

In this paper, we introduce the concept of permuting tri- f-derivations in an $A D L$ and investigate some important properties. If m is a maximal element in an $A D L L$, then we prove that $D(x, y, z)=f x$ when $f x \leqslant D(m, y, z)$ and if $f m$ is also a maximal element of L, then we prove that $D(x, y, z) \geqslant D(m, y, z)$ when $f x \geqslant D(m, y, z)$. Also. we prove that $f x \wedge D(x \vee w, y, z)=D(x, y, z)$ when D is an isotone map and $f x \wedge D(x \vee w, y, z) \leqslant D(x, y, z)$ when f is either a join preserving or an increasing function on L. We establish a set of conditions which are sufficient for a permuting tri- f-derivation on an $A D L$ with a maximal element to become an isotone when f is a homomorphism. Also, we prove

$$
d(x \wedge y)=(f y \wedge d x) \vee D(x, x, y) \vee D(x, y, y) \vee(f x \wedge d y)
$$

[^0]where d is the trace of a permuting tri- f-derivation on an associative $A D L L$. Finally, we prove that the set $F_{d}(L)=\{x \in L / d x=f x\}$ is a weak ideal in an associative $A D L L$ where f is a join preserving map on L.

2. Preliminaries

In this section, we recollect certain basic concepts and important results on Almost Distributive Lattices.

Definition 2.1. [7] An algebra (L, \vee, \wedge) of type $(2,2)$ is called an Almost Distributive Lattice, if it satisfies the following axioms:
$L_{1}:(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)(R D \wedge)$
$L_{2}: a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)(L D \wedge)$
$L_{3}:(a \vee b) \wedge b=b$
$L_{4}:(a \vee b) \wedge a=a$
$L_{5}: a \vee(a \wedge b)=a$ for all $a, b, c \in L$.
Definition 2.2. [7] Let X be any non-empty set. Define, for any $x, y \in L, x \vee$ $y=x$ and $x \wedge y=y$. Then (X, \vee, \wedge) is an $A D L$ and such an $A D L$, we call discrete ADL.

Through out this paper L stands for an $A D L(L, \vee, \wedge)$ unless otherwise specified.

Lemma 2.1. [7] For any $a, b \in L$, we have:
(i) $a \wedge a=a$
(ii) $a \vee a=a$.
(iii) $(a \wedge b) \vee b=b$
(iv) $a \wedge(a \vee b)=a$
(v) $a \vee(b \wedge a)=a$.
(vi) $a \vee b=a$ if and only if $a \wedge b=b$
(vii) $a \vee b=b$ if and only if $a \wedge b=a$.

Definition 2.3. [7] For any $a, b \in L$, we say that a is less than or equal to b and write $a \leqslant b$, if $a \wedge b=a$ or, equivalently, $a \vee b=b$.

Theorem 2.1. [7] For any $a, b, c \in L$, we have the following
(i) The relation $\leqslant i$ a partial ordering on L.
(ii) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) .(L D \vee)$
(iii) $(a \vee b) \vee a=a \vee b=a \vee(b \vee a)$.
(iv) $(a \vee b) \wedge c=(b \vee a) \wedge c$.
(v) The operation \wedge is associative in L.
(vi) $a \wedge b \wedge c=b \wedge a \wedge c$.

Theorem 2.2. [7] For any $a, b \in L$, the following are equivalent.
(i) $(a \wedge b) \vee a=a$
(ii) $a \wedge(b \vee a)=a$
(iii) $(b \wedge a) \vee b=b$
(iv) $b \wedge(a \vee b)=b$
(v) $a \wedge b=b \wedge a$
(vi) $a \vee b=b \vee a$
(vii) The supremum of a and b exists in L and equals to $a \vee b$
(viii) There exists $x \in L$ such that $a \leqslant x$ and $b \leqslant x$
(ix) The infimum of a and b exists in L and equals to $a \wedge b$.

Definition 2.4. [7] L is said to be associative, if the operation \vee in L is associative.

Theorem 2.3. [7] The following are equivalent:
(i) L is a distributive lattice.
(ii) The poset (L, \leqslant) is directed above.
(iii) $a \wedge(b \vee a)=a$, for all $a, b \in L$.
(iv) The operation \vee is commutative in L.
(v) The operation \wedge is commutative in L.
(vi) The relation $\theta:=\{(a, b) \in L \times L \mid a \wedge b=b\}$ is anti-symmetric.
(vii) The relation θ defined in (vi) is a partial order on L.

Lemma 2.2. [7] For any $a, b, c, d \in L$, we have the following:
(i) $a \wedge b \leqslant b$ and $a \leqslant a \vee b$
(ii) $a \wedge b=b \wedge a$ whenever $a \leqslant b$.
(iii) $[a \vee(b \vee c)] \wedge d=[(a \vee b) \vee c] \wedge d$.
(iv) $a \leqslant b$ implies $a \wedge c \leqslant b \wedge c, c \wedge a \leqslant c \wedge b$ and $c \vee a \leqslant c \vee b$.

Definition 2.5. [7] An element $0 \in L$ is called zero element of L, if $0 \wedge a=0$ for all $a \in L$.

Lemma 2.3. [7] If L has 0 , then for any $a, b \in L$, we have the following:
(i) $a \vee 0=a$, (ii) $0 \vee a=a$ and (iii) $a \wedge 0=0$.
(iv) $a \wedge b=0$ if and only if $b \wedge a=0$.

Definition 2.6. [13] Let L be a non-empty set and $x_{0} \in L$. If for $x, y \in L$ we define
$x \wedge y=y$ if $x \neq x_{0}$
$x \wedge y=x$ if $x=x_{0}$ and
$x \vee y=x$ if $x \neq x_{0}$
$x \vee y=y$ if $x=x_{0}$,
then $\left(L, \vee, \wedge, x_{0}\right)$ is an $A D L$ with x_{0} as zero element. This is called discrete $A D L$ with zero.

An element $x \in L$ is called maximal if, for any $y \in L, x \leqslant y$ implies $x=y$.
We immediately have the following.
Lemma 2.4. [7] For any $m \in L$, the following are equivalent:
(1) m is maximal
(2) $m \vee x=m$ for all $x \in L$
(3) $m \wedge x=x$ for all $x \in L$.

Definition 2.7. [7] A nonempty subset I of L is said to be an ideal if and only if it satisfies the following:
(1) $a, b \in I \Rightarrow a \vee b \in I$
(2) $a \in I, x \in L \Rightarrow a \wedge x \in I$.

Definition 2.8. [7] A nonempty subset I of L is said to be an initial segment of L if, $a \in L$ and $x \in L$ such that $x \leqslant a$ imply that $x \in L$.

Definition 2.9. [10] A nonempty subset I of L is said to be a weak ideal if and only if it satisfies the following:
(1) $a, b \in I \Rightarrow a \vee b \in I$
(2) I is an initial segment of L.

Observe that every ideal of L ia weak ideal, but not converse.
Definition 2.10. [7] A function $f: L \rightarrow L$ is said to be an ADL homomorphism if it satisfies the following:
(1) $f(x \wedge y)=f x \wedge f y$,
(2) $f(x \vee y)=f x \vee$ fy for all $x, y \in L$.

Definition 2.11. A function $d: L \rightarrow L$ is called an isotone, if $d x \leqslant d y$ for any $x, y \in L$ with $x \leqslant y$.

3. Permuting tri- f-derivations in ADLs.

We begin this paper with the following definition of a permuting map in an $A D L$.

Definition 3.1. [12]
(i) A map $D: L \times L \times L \rightarrow L$ is called permuting map if $D(x, y, z)=D(x, z, y)=D(y, z, x)=D(y, x, z)=D(z, x, y)=D(z, y, x)$ for all $x, y, z \in L$.
(ii) D is called an isotone map if, for any $x, y, z, w \in L$ with $x \leqslant w, D(x, y, z) \leqslant$ $D(w, y, z)$.
(iii) The mapping $d: L \rightarrow L$ defined by $d x=D(x, x, x)$ for all $x \in L$, is called the trace of D.

Definition 3.2. [12] A permuting map $D: L \times L \times L \rightarrow L$ is called a permuting tri-derivation on L, if

$$
D(x \wedge w, y, z)=[w \wedge D(x, y, z)] \vee[x \wedge D(w, y, z)]
$$

for all $x, y, z, w \in L$.
Now, the following definition gives the notion of permuting tri- f-derivation in an $A D L$.

Definition 3.3. A permuting map $D: L \times L \times L \rightarrow L$ is called a permuting tri-f-derivation on L, if there exists a function $f: L \rightarrow L$ such that
$D(x \wedge w, y, z)=[f w \wedge D(x, y, z)] \vee[f x \wedge D(w, y, z)]$ for all $x, y, z, w \in L$.
Observe that a permuting tri- f-derivation D on L also satisfies

$$
\begin{gathered}
D(x, y \wedge w, z)=[f w \wedge D(x, y, z)] \vee[f y \wedge D(x, w, z)] \text { and } \\
D(x, y, z \wedge w)=[f w \wedge D(x, y, z)] \vee[f z \wedge D(x, y, w)]
\end{gathered}
$$

for all $x, y, z, w \in L$.
Example 3.1. Every permuting tri-derivation on L is a permuting tri- f derivation, where $f: L \rightarrow L$ is the identity map.

Example 3.2. Let L be an $A D L$ with 0 and $0 \neq a \in L$. If we define a mapping $D: L \times L \times L \rightarrow L$ by $D(x, y, z)=a$ for all $x, y, z \in L$ and $f: L \rightarrow L$ by $f x=a$ for all $x \in L$, then D is a permuting tri- f-derivation on L but not a permuting tri-derivation on L..

Example 3.3. Let L be an $A D L$ with atleast two elements. If we define a mapping $D: L \times L \times L \rightarrow L$ by $D(x, y, z)=(x \vee y) \vee z$, then D is not a permuting tri- f-derivation on L, since it is not a permuting map on L.

Example 3.4. Let L be an $A D L$ with at least three elements and $a \in L$. If we define the mapping $D: L \times L \times L \rightarrow L$ by $D(x, y, z)=(x \vee y \vee z) \wedge a$ for all $x, y, z \in L$ and $f: L \rightarrow L$ by $f x=a$ for all $x \in L$, then D is a permuting tri- f-derivation on L but, not a permuting tri-derivation on L.

Lemma 3.1. Let D be a permuting tri-f-derivation on L. Then the following identities hold:
(1) $D(x, y, z)=f x \wedge D(x, y, z)=f y \wedge D(x, y, z)=f z \wedge D(x, y, z)$ for all $x, y, z \in L$
(2) If L has 0 and $f 0=0$, then $D(0, y, z)=0$ for all $y, z \in L$
(3) $(f x \vee f y) \wedge D(x \wedge w, y, z)=D(x \wedge w, y, z)$ for all $x, y, z, w \in L$
(4) $f x \wedge d x=d x$ for all $x \in L$.

Proof. Let $x, y, z, w \in L$.
(1) $D(x, y, z)=D(x \wedge x, y, z)=[f x \wedge D(x, y, z)] \vee[f x \wedge D(x, y, z)]=f x \wedge D(x, y, z)$. Similarly, $f y \wedge D(x, y, z)=D(x, y, z)=f z \wedge D(x, y, z)$.
(2) Suppose L has 0 and $f 0=0$. Now by (1) above, $D(0, y, z)=f 0 \wedge D(0, y, z)=$ $0 \wedge D(0, y, z)=0$.
(3) $(f x \vee f w) \wedge D(x \wedge w, y, z)=(f x \vee f w) \wedge[[f w \wedge D(x, y, z)] \vee[f x \wedge D(w, y, z)]]=$ $[f w \wedge D(x, y, z)] \vee[f x \wedge D(w, y, z)]=D(x \wedge w, y, z)$.
(4) By (1) above, we get that $f x \wedge D(x, x, x)=D(x, x, x)$. Thus $f x \wedge d x=d x$.

Theorem 3.1. Let D be a permuting tri-f-derivation on L and m be a maximal element in L. Then the following hold:
(1) If $x, y, z \in L$ such that $f x \leqslant D(m, y, z)$, then $D(x, y, z)=f x$.
(2) If $x, y, z \in L$ such that $f x \geqslant D(m, y, z)$ and $f m$ is a maximal element in L, then $D(x, y, z) \geqslant D(m, y, z)$.
Proof. (1) Let $x, y, z \in L$ with $f x \leqslant D(m, y, z)$. Then $D(x, y, z)=D(m \wedge$ $x, y, z)=[f x \wedge D(m, y, z)] \vee[f m \wedge D(x, y, z)]=f x \vee[f m \wedge D(x, y, z)]=(f x \vee$ $f m) \wedge[f x \vee D(x, y, z)]=(f x \vee f m) \wedge f x=f x$, by Lemma 3.1.
(2) Let $x, y, z \in L$ with $f x \geqslant D(m, y, z)$. Then $D(x, y, z)=D(m \wedge x, y, z)=$
$[f x \wedge D(m, y, z)] \vee[f m \wedge D(x, y, z)]=D(m, y, z) \vee D(x, y, z)$. Thus $D(x, y, z) \geqslant$ $D(m, y, z)$.

Theorem 3.2. Let D be a permuting tri-f-derivation on L where f is an increasing function on L. If $x, y, z \in L$ such that $w \leqslant x$ and $D(x, y, z)=f x$, then $D(w, y, z)=f w$.

Proof. Let $x, y, z \in L$ with $w \leqslant x$ and $D(x, y, z)=f x$. Since f is an increasing function on $L, f w \leqslant f x$. Now $D(w, y, z)=D(x \wedge w, y, z)=[f w \wedge D(x, y, z)] \vee$ $[f x \wedge D(w, y, z)]=[f w \wedge f x] \vee[f x \wedge f w \wedge D(w, y, z)]=f w \vee[f w \wedge D(w, y, z)]=$ $f w$.

Theorem 3.3. Let D be a permuting tri-f-derivation on L. Then for any $x, y, z, w \in L$, the following hold:
(1) If D is an isotone map on L, then $f x \wedge D(x \vee w, y, z)=D(x, y, z)$.
(2) If f is either a join preserving or an increasing function on L, then $f x \wedge$ $D(x \vee w, y, z) \leqslant D(x, y, z)$.
Proof. Let $x, y, z, w \in L$.
(1) Suppose D is an isotone map on L. Then $D(x, y, z) \leqslant D(x \vee w, y, z)$. Now $D(x, y, z)=D((x \vee w) \wedge x, y, z)=[f x \wedge D(x \vee w, y, z)] \vee[f(x \vee w) \wedge D(x, y, z)]=$ $[f x \wedge D(x \vee w, y, z)] \vee[f(x \vee w) \wedge D(x, y, z) \wedge D(x \vee w, y, z)]=[f x \vee[f(x \vee w) \wedge$ $D(x, y, z)]] \wedge D(x \vee w, y, z)=[[f x \vee f(x \vee w)] \wedge f x] \wedge D(x \vee w, y, z)=f x \wedge D(x \vee w, y, z)$.
(2) Case(i): Suppose f is a join preserving map on L. Then
$D(x, y, z)=D((x \vee w) \wedge x, y, z)=[f x \wedge D(x \vee w, y, z)] \vee[f(x \vee w) \wedge D(x, y, z)]=$ $[f x \wedge D(x \vee w, y, z)] \vee[(f x \vee f w) \wedge f x \wedge D(x, y, z)]=[f x \wedge D(x \vee w, y, z)] \vee D(x, y, z)$. Thus $f x \wedge D(x \vee w, y, z) \leqslant D(x, y, z)$.
Case(ii): Suppose f is an increasing function on L. Then $f x \leqslant f(x \vee w)$. Now $D(x, y, z)=D((x \vee w) \wedge x, y, z)=[f x \wedge D(x \vee w, y, z)] \vee[f(x \vee w) \wedge D(x, y, z)]=[f x \wedge$ $D(x \vee w, y, z)] \vee[f(x \vee w) \wedge f x \wedge D(x, y, z)]=[f x \wedge D(x \vee w, y, z)] \vee[f x \wedge D(x, y, z)]=$ $[f x \wedge D(x \vee w, y, z)] \vee D(x, y, z)$. Hence $f x \wedge D(x \vee w, y, z) \leqslant D(x, y, z)$.

Theorem 3.4. Let D be a permuting tri-f-derivation on L and m be a maximal element in L. If f is a homomorphism on L, then the following are equivalent.
(1) D is an isotone map on L
(2) $D(x, y, z)=f x \wedge D(m, y, z)$ for all $x, y, z \in L$
(3) D is a join preserving map on L
(4) D is a meet preserving map on L.

Proof. Let f be a homomorphism on L and $x, y, z \in L$.
$(1) \Rightarrow(2): D(x, y, z)=D(m \wedge x, y, z)=[f x \wedge D(m, y, z)] \vee[f m \wedge D(x, y, z)]$. Thus $f x \wedge D(m, y, z) \leqslant D(x, y, z)$. On the other hand,
$f x \wedge D(x \wedge m, y, z)=f x \wedge[[f m \wedge D(x, y, z)] \vee[f x \wedge D(m, y, z)]]=[f x \wedge f m \wedge$ $D(x, y, z)] \vee[f x \wedge D(m, y, z)]=[f m \wedge f x \wedge D(x, y, z)] \vee[f x \wedge D(m, y, z)]=[f(m \wedge$ $x) \wedge D(x, y, z)] \vee[f x \wedge D(m, y, z)]=[f x \wedge D(x, y, z)] \vee[f x \wedge D(m, y, z)]=D(x, y, z) \vee$ $[f x \wedge D(m, y, z)]=D(x, y, z)$. Since D is an isotone map on $L, D(x \wedge m, y, z) \leqslant$ $D(m, y, z)$. Thus $D(x, y, z)=f x \wedge D(x \wedge m, y, z) \leqslant f x \wedge D(m, y, z)$. Hence
$D(x, y, z)=f x \wedge D(m, y, z)$.
$(2) \Rightarrow(3): D(x \vee w, y, z)=f(x \vee w) \wedge D(m, y, z)=(f x \vee f w) \wedge D(m, y, z)=$ $(f x \wedge D(m, y, z)) \vee(f y \wedge D(m, y, z))=D(x, y, z) \vee D(w, y, z)$. Thus D is a join preserving map on L.
$(2) \Rightarrow(4): D(x \wedge w, y, z)=f(x \wedge w) \wedge D(m, y, z)=f x \wedge f w \wedge D(m, y, z)=$ $D(x, y, z) \wedge D(w, y, z)$. Thus D is a meet preserving map on L.
$(3) \Rightarrow(1)$ and $(4) \Rightarrow(1)$ are trivial.
Theorem 3.5. Let d be the trace of the permuting tri-f-derivation D on an associative $A D L$ L. Then $d(x \wedge y)=(f y \wedge d x) \vee D(x, x, y) \vee D(x, y, y) \vee(f x \wedge d y)$ for all $x, y, z \in L$.

Proof. Let $x, y, z \in L$. Then
$f y \wedge D(x, x \wedge y, x \wedge y)=f y \wedge[[f y \wedge D(x, x, x \wedge y)] \vee[f x \wedge D(x, y, x \wedge y)]]=$ $[f y \wedge D(x, x, x \wedge y)] \vee D(x, y, x \wedge y)=[f y \wedge[[f y \wedge D(x, x, x)] \vee[f x \wedge D(x, x, y)]]] \vee$ $[[f y \wedge D(x, y, x)] \vee[f x \wedge D(x, y, y)]]=(f y \wedge d x) \vee D(x, x, y) \vee D(x, y, x) \vee D(x, y, y)=$ $(f y \wedge d x) \vee D(x, x, y) \vee D(x, y, y)$.

Again, $f x \wedge D(y, x \wedge y, x \wedge y)=f x \wedge[[f y \wedge D(y, x, x \wedge y)] \vee[f x \wedge D(y, y, x \wedge y)]]=$ $D(y, x, x \wedge y) \vee[f x \wedge D(y, y, x \wedge y)]=[f y \wedge D(y, x, x)] \vee[f x \wedge D(y, x, y)] \vee[f x \wedge[[f y \wedge$ $D(y, y, x)] \vee[f x \wedge D(y, y, y)]]]=D(y, x, x) \vee D(y, x, y) \vee D(y, y, x) \vee(f x \wedge d y)=$ $D(y, x, x) \vee D(x, y, y) \vee(f x \wedge d y)$.

Thus $d(x \wedge y)=D(x \wedge y, x \wedge y, x \wedge y)=[f y \wedge D(x, x \wedge y, x \wedge y)] \vee[f x \wedge D(y, x \wedge$ $y, x \wedge y)]=(f y \wedge d x) \vee D(x, x, y) \vee D(x, y, y) \vee(f x \wedge d y)$.

Theorem 3.6. Let d be the trace of the join preserving permuting tri-f-derivation D on an associative $A D L L$. If f is a join preserving map on L, then $F_{d}(L)=$ $\{x \in L \mid d x=f x\}$ is a weak ideal in L.

Proof. Suppose f is a join preserving map on L. Let $x \in L, y \in F_{d}(L)$ and $x \leqslant y$. Since f is a join preserving, f is an increasing function on L and hence $f x \leqslant f y$. Now, by Theorem 3.5,
$d x=d(y \wedge x)=(f x \wedge d y) \vee D(y, y, x) \vee D(y, x, x) \vee(f y \wedge d x)=f x \vee D(y, y, x) \vee$ $D(y, x, x) \vee(f y \wedge d x)=f x \vee(f y \wedge d x)=f y \wedge f x=f x$. Thus $x \in F_{d}(L)$.

Let $x, y \in F_{d}(L)$. Then $d(x \vee y)=D(x \vee y, x \vee y, x \vee y)=D(x, x \vee y, x \vee y) \vee$ $D(y, x \vee y, x \vee y)=D(x, x, x \vee y) \vee D(x, y, x \vee y) \vee D(y, x, x \vee y) \vee D(y, y, x \vee y)=$ $d x \vee D(x, x, y) \vee D(x, y, x) \vee D(x, y, y) \vee D(y, x, x) \vee D(y, x, y) \vee D(y, y, x) \vee d y=$ $d x \vee D(x, x, y) \vee D(x, y, y) \vee D(x, x, y) \vee D(x, y, y) \vee d y=f x \vee D(x, x, y) \vee D(x, y, y) \vee$ $D(x, x, y) \vee D(x, y, y) \vee f y=f x \vee f y=f(x \vee y)$. Thus $x \vee y \in F_{d}(L)$. Hence $F_{d}(L)$ is a weak ideal in L.

Lemma 3.2. Let L be an associative $A D L$ with 0 and D a join preserving permuting tri-f-derivation on L and d the trace of D. If $d x=0$ for all $x \in L$, then $D=0$.

Proof. Suppose $d x=0$ for all $x \in L$. Let $x, y, z \in L$. Then we have $d(x \vee y)=$ $D(x \vee y, x \vee y, x \vee y)=d x \vee D(x, x, y) \vee D(x, y, y) \vee d y$. Thus $D(x, x, y) \vee D(x, y, y)=0$.

Therefore $D(x, x, y)=0$ for all $x, y \in L$. In particular, $D(x \vee z, x \vee z, y)=0$ and hence $D(x, y, z)=0$. Therefore $D=0$.

Let us recall the definition of a prime $A D L$ in the following.
Definition 3.4. [12] An ADL L with 0 is said to be a prime $A D L$ if, for $a, b \in L, a \wedge b=0$ implies either $a=0$ or $b=0$.

Theorem 3.7. Let L be an associative prime $A D L$ and d_{1}, d_{2} be the traces of join preserving permuting tri- f_{1}, tri- f_{2}-derivations D_{1}, D_{2} on L, respectively. If $d_{1} x \wedge d_{2} x=0$ for all $x \in L$, then either $D_{1}=0$ or $D_{2}=0$.

Proof. Suppose $d_{1} x \wedge d_{2} x=0$ for all $x \in L$. Assume that $d_{1} \neq 0$ and $d_{2} \neq 0$. Then $d_{1} y \neq 0$ and $d_{2} z \neq 0$ for some $y, z \in L$. Now, $d_{1}(y \vee z)=$ $D_{1}(y \vee z, y \vee z, y \vee z)=d_{1} y \vee D_{1}(y, y, z) \vee D_{1}(y, z, z) \vee d_{1} z \neq 0$ and $d_{2}(y \vee z)=$ $D_{2}(y \vee z, y \vee z, y \vee z)=d_{2} y \vee D_{2}(y, y, z) \vee D_{2}(y, z, z) \vee d_{2} z \neq 0$. But, by our assumption $d_{1}(y \vee z) \wedge d_{2}(y \vee z)=0$. This is a contradiction, (since L is a prime $A D L$). Thus $d_{1}=0$ or $d_{2}=0$ and hence by Lemma 3.2, either $D_{1}=0$ or $D_{2}=0$.

Finally we conclude this paper with the following theorem.
TheOrem 3.8. Let L be an associative prime $A D L$ and d_{1}, d_{2} be the traces of join preserving permuting tri- f_{1}, tri- f_{2}-derivations D_{1}, D_{2} on L, respectively such that $d_{1} o f_{2}=d_{1}$ and $f_{1} o d_{2}=d_{2}$. Suppose one of the following condition hold
(1) $D_{1}\left(d_{2} x, f_{2} x, f_{2} x\right)=0$ for all $x \in L$
(2) $D_{1}\left(d_{2} x, d_{2} x, f_{2} x\right)=0$ for all $x \in L$
(3) d_{1} od $d_{2}=0$, then either $D_{1}=0$ or $D_{2}=0$.

Proof. (1) Suppose $D_{1}\left(d_{2} x, f_{2} x, f_{2} x\right)=0$ for all $x \in L$. Let $x \in L$. Since $f_{2} x \wedge d_{2} x=d_{2} x$, we get that $\left[f_{1}\left(d_{2} x\right) \wedge D_{1}\left(f_{2} x, f_{2} x,, f_{2} x,\right)\right] \vee\left[f_{1}\left(f_{2} x\right) \wedge D_{1}\left(d_{2} x, f_{2} x, f_{2} x\right)\right]=D_{1}\left(f_{2} x \wedge d_{2} x, f_{2} x, f_{2} x\right)=$ 0 . Thus $\left(f_{1} \circ d_{2}\right) x \wedge\left(d_{1} \circ f_{2}\right) x=0$. Therefore $d_{2} x \wedge d_{1} x=0$.
(3) Suppose $D_{1}\left(d_{2} x, d_{2} x, f_{2} x\right)=0$ for all $x \in L$. Let $x \in L$. Again since $f_{2} x \wedge d_{2} x=$ $d_{2} x$, we get that $\left[f_{1}\left(d_{2} x\right) \wedge D_{1}\left(f_{2} x, d_{2} x, f_{2} x\right)\right] \vee\left[f_{1}\left(f_{2} x\right) \wedge D_{1}\left(d_{2} x, d_{2} x, f_{2} x\right)\right]=$ $D_{1}\left(f_{2} x \wedge d_{2} x, d_{2} x, f_{2} x\right)=0$. Thus $\left(f_{1} o d_{2}\right) x \wedge D_{1}\left(f_{2} x, d_{2} x, f_{2} x\right)=0$. Therefore $d_{2} x \wedge D_{1}\left(f_{2} x, d_{2} x, f_{2} x\right)=0$. Thus $\left[d_{2} x \wedge f_{1}\left(d_{2} x\right) \wedge\left(d_{1} o f_{2}\right) x\right] \vee\left[d_{2} x \wedge f_{1}\left(f_{2} x\right) \wedge\right.$ $\left.D_{1}\left(f_{2} x, d_{2} x, f_{2} x\right)\right]=d_{2} x \wedge D_{1}\left(f_{2} x, f_{2} x \wedge d_{2} x, f_{2} x\right)=0$. Therefore $d_{2} x \wedge\left(f_{1} o d_{2}\right) x \wedge$ $\left(d_{1} \circ f_{2}\right) x=0$ and hence $d_{2} x \wedge d_{1} x=0$.
(2) Suppose d_{1} od $d_{2}=0$. Then $d_{1}\left(d_{2} x\right)=0$ for all $x \in L$. So that, $D_{1}\left(d_{2} x, d_{2} x, d_{2} x\right)=$ 0 for all $x \in L$. Let $x \in L$. Again since $f_{2} x \wedge d_{2} x=d_{2} x$, we get that $\left[f_{1}\left(d_{2} x\right) \wedge\right.$ $\left.D_{1}\left(d_{2} x, d_{2} x, f_{2} x\right)\right] \vee\left[f_{1}\left(f_{2} x\right) \wedge D_{1}\left(d_{2} x, d_{2} x, d_{2} x\right)\right]=D_{1}\left(d_{2} x, d_{2} x, f_{2} x \wedge d_{2} x\right)=0$. Therefore $d_{2} x \wedge D_{1}\left(d_{2} x, d_{2} x, f_{2} x\right)=0$. Thus $\left[d_{2} x \wedge f_{1}\left(d_{2} x\right) \wedge D_{1}\left(d_{2} x, f_{2} x, f_{2} x\right)\right] \vee$ $\left[d_{2} x \wedge f_{1}\left(f_{2} x\right) \wedge D_{1}\left(d_{2} x, d_{2} x, f_{2} x\right)\right]=d_{2} x \wedge D_{1}\left(d_{2} x, f_{2} x \wedge d_{2} x, f_{2} x\right)=0$. Hence $d_{2} x \wedge D_{1}\left(d_{2} x, f_{2} x, f_{2} x\right)=0$. So that $\left[d_{2} x \wedge f_{1}\left(d_{2} x\right) \wedge\left(d_{1} o f_{2}\right) x\right] \vee\left[d_{2} x \wedge f_{1}\left(f_{2} x\right) \wedge\right.$ $\left.D_{1}\left(f_{2} x, d_{2} x, f_{2} x\right)\right]=d_{2} x \wedge D_{1}\left(f_{2} x, f_{2} x \wedge d_{2} x, f_{2} x\right)=0$ and hence $d_{2} x \wedge d_{1} x=0$. Therefore, $d_{2} x \wedge d_{1} x=0$ for all $x \in L$ in all three cases. By Theorem 3.7, we get that either $D_{1}=0$ or $D_{2}=0$.

The authors express their sincere thanks to the referee for his valuable comments and suggestions.

References

[1] N. O. Alshehri. Generalized Derivations of Lattices, Int. J. Contemp. Math. Sciences, 5(13)(2010), 629-640.
[2] Y. Ceven and M. A. Öztürk. On f-derivations of lattices, Bull. Korean Math. Soc., 45(4)(2008), 701-707.
[3] Y. Ceven. Symmetric Bi-derivations of lattices, Quaestiones Mathematicae, 32(2)(2009), 241-245.
[4] K. H. Kim. Symmetric Bi-f-derivations in lattices, Int. J. Math. Archive, 3(10)(2012), 36763683.
[5] M. Asci and S. Ceran, Generalized (f, g)-Derivations of Lattices, Math. Sci. Appl., E-notes, 1(2)(2013), 56-62.
[6] M. A. Öztürk, H. Yazarli and K. H. Kim. Permuting Tri-derivations in lattices, Quaestiones Mathematcae, 32(3)(2009), 415-425.
[7] G. C. Rao. Almost Distributive Lattices. Doctoral Thesis, Dept. of Mathematics, Andhra University, Visakhapatnam, (1980).
[8] G. C. Rao and K. Ravi Babu. The theory of Derivations in Almost Distributive Lattices, Bull. Inter. Math. Virtual Inst., $7(2)(2017), 203-216$.
[9] G. C. Rao and K. Ravi Babu. f-derivations in Almost Distributive Lattices, Int. J. Math. Archive, 7 (5)(2016), 134-140.
[10] G. C. Rao and K. Ravi Babu. Symmetric bi-derivations in Almost Distributive Lattices, Discussiones Mathematicae - Genaral Algebra and Applications, 36(2)(2016), 169-177.
[11] G. C. Rao and K. Ravi Babu. Symmetric bi- f-derivations in Almost Distributive Lattices, Int. J. Math. Archive, $\mathbf{7}(7)(2016), 14-20$.
[12] G. C. Rao and K. Ravi Babu. Permuting tri-derivations in Almost Distributive Lattices, Accepted for publication in the journal Southeast Asian Bulletin of Mathematics.
[13] U. M. Swamy and G. C. Rao. Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), 31(1981), 77-91.
[14] G. Szasz. Derivations of lattices, Acta Sci. Math.(Szeged), 37(1975), 149-154.
[15] X. L. Xin, T. Y. Li and J. H. Lu. On derivations of lattices*, Information Science, 178(2)(2008), 307-316.
[16] X. L. Xin, The fixed set of derivations in lattices, Fixed Point Theory Appl (2012) 2012: 218. doi:10.1186/1687-1812-2012-218.
[17] H. Yazarli and M. A. Öztürk. Permuting Tri-f-derivations in lattices, Commun. Korean Math. Soc., 26(1)(2011), 13-21.

Received by editors 22.11.2016; Revised version 25.01.2017; Available online 30.01.2017.
Department of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh, India - 530003

E-mail address: gcraomaths@yahoo.co.in
Department of Mathematics, Govt. Degree College, Sabbavaram, Visakhapatnam, Andhra Pradesh, India-531035

E-mail address: ravikavuru.99@gmail.com

[^0]: 2010 Mathematics Subject Classification. 06D99, 06D20.
 Key words and phrases. Almost Distributive Lattice ($A D L$), permuting tri-derivation, permuting tri- f-derivation, isotone permuting tri- f-derivation and weak ideal .

