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Abstract  Öz 

A hybrid simulation-optimization approach is developed in this study 
for optimally designing the booster chlorination systems in water 
distribution networks. In the developed approach, chlorine residuals in 
the demand locations are determined by using the response matrix (RM) 
approach. The generated RM is then integrated to an optimization 
model where a hybrid HS–Solver optimization approach is used.  
HS-Solver is a recently proposed hybrid approach which integrates the 
harmony search (HS) algorithm and a spreadsheet Solver as the global 
and local optimizers, respectively. The objective of the HS-Solver in the 
developed approach is for optimally designing the booster stations by 
maintaining the chlorine residuals within desired limits. The 
applicability of the developed approach is tested on a real water 
distribution network. Identified results indicate that the developed  
HS-Solver based solution approach determined similar or better results 
than those obtained by using the different solution approaches in 
literature. 

 Bu çalışmada, su dağıtım şebekelerindeki ek klorlama istasyonlarının 
optimum tasarımı amacıyla bir hibrit simülasyon-optimizasyon 
yaklaşımı geliştirilmiştir. Geliştirilen yaklaşımda, talep noktalarındaki 
bakiye klor konsantrasyonları tepki matrisi yaklaşımı ile belirlenmiştir. 
Oluşturulan tepki matrisi ardından hibrit HS-Solver optimizasyon 
yaklaşımının kullanıldığı bir optimizasyon modeline entegre edilmiştir. 
HS-Solver, armoni araştırması ile elektronik tablolama programlarında 
kullanılan Solver eklentisinin sırasıyla global ve lokal optimizasyon 
aracı olarak kullanıldığı yeni önerilmiş bir optimizasyon yaklaşımıdır. 
Geliştirilen yaklaşımda HS-Solver’ın amacı bakiye klor 
konsantrasyonlarını arzu edilen limitlerde tutacak şekilde ek klorlama 
istasyon sisteminin optimum tasarımını yapmaktır. Geliştirilen 
yaklaşımın uygulanabilirliği gerçek bir su dağıtım şebekesi üzerinde 
test edilmiştir. Elde edilen sonuçlar, geliştirilen HS-Solver tabanlı çözüm 
yaklaşımı ile literatürde verilenlerle uyumlu veya daha iyi sonuçlar elde 
edilebildiğini göstermiştir. 

Keywords: Booster chlorination stations, HS-Solver, Simulation–
optimization, Water distribution networks 

 Anahtar Kelimeler: Ek klorlama istasyonlari, HS-Solver,  
Simülasyon-Optimization, Su dağitim şebekeleri 

1 Introduction 

Disinfection of water within the water distribution systems is 
an important problem to protect the public health. A 
conventional way of disinfection is to inject a large quantity of 
chlorine from the outlet of the water purification plants to 
maintain chlorine residuals at the critical locations of the 
network. Although this is a commonly considered application 
procedure, it may create excessive chlorine residuals in the 
vicinity of the injection point. That cannot only cause the taste 
and odor problems, but it can also result in the formation of 
carcinogenic disinfection-by-products (DBPs) [1]. On the other 
hand, reduced chlorine injections at the injection point may not 
be sufficient to kill bacteria at the remote points of the network 
[2]. These problems can be alleviated by installing booster 
chlorination stations in the critical locations where low 
chlorine residuals are observed. 

The advantage of booster chlorination stations is the ease in 
maintaining the chlorine residuals within desired limits 
throughout the network. More specifically, the following 
objectives can be defined for utilizing the booster chlorination 
stations [3]: 

 

i) To minimize the total disinfectant dose, 

ii) To minimize DBPs, 

iii) To minimize the investment and operation costs;  

iv) To maximize the volume of water supplied to 
consumers within desired concentration limits.  

Regarding these objectives, the following questions can be 
asked: How many booster chlorination stations should be 
installed and where on the network? What should be the best 
chlorine injection pattern for maintaining the chlorine 
residuals within desired limits in the network? Answers to 
these questions should be evaluated by decision makers when 
installing the best booster chlorination station network. 
Therefore, identification of the numbers, locations, and 
chlorine injection schedule of the booster stations becomes a 
challenging engineering optimization problem. 

The current literature includes various solution approaches to 
solve the booster station optimization problems by means of 
the deterministic and heuristic solution approaches. 
Deterministic approaches include linear programming (LP) [4], 
mixed integer LP (MILP) [5], quadratic programming (QP) [1], 
mixed integer QP (MIQP) [6], etc. Similarly, heuristic 
optimization approaches include genetic algorithms (GA) [2], 
[7],[8], genetic immune algorithm (GIA) [9], ant colony 
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optimization (ACO) [10], particle swarm optimization (PSO) 
[11], harmony search (HS) [12], and differential evolution (DE) 
[13], etc. Among the deterministic approaches, Bocelli et al. [4] 
first described the problem of booster station optimization by 
developing an LP formulation. The objective of their LP 
formulation is defined as the minimization of the chlorine 
injection dosages at pre-defined injection points by 
maintaining the chlorine residuals in all demand locations and 
measurement times. One of the most important outcomes of 
their study is that chlorine residuals at demand locations 
linearly changes with the injected chlorine concentrations in 
case of the first-order wall and bulk reaction kinetics. By using 
this relationship, the chlorine residuals at demand locations 
can be calculated by means of the response matrix (RM) 
approach. As an extension, Tryby et al. [5] used an RM approach 
to determine both locations and chlorine injection dosages of 
the booster stations by using an MILP based solution approach. 
Propato and Uber [1] developed a linear least square (LLS) 
problem to determine the chlorine injection dosages by means 
of a QP model. Utilizing the same LLS formulation, Propato and 
Uber [6] determined the locations and the chlorine injection 
dosages of the booster stations by using the MIQP based 
solution approach. 

Heuristic optimization approaches were also applied to the 
solution of booster station optimization problems. These 
approaches can be used to solve linear or nonlinear 
optimization problems without taking the special initial 
solutions to start the search process. Also, they do not require 
derivative information of the objective function to find a search 
direction. Therefore, they can handle the optimization 
problems with both continuous and discrete decision variables. 
There are many studies in literature which considered heuristic 
optimization approaches to solve the booster station 
optimization problems. Munavalli and Mohan Kumar [2] 
applied a GA to determine the disinfectant dosages at the  
pre-defined booster locations. Prasad et al. [3] applied a multi-
objective GA model to find the booster locations and the 
corresponding injection dosages. Ozdemir and Ucaner [8] 
applied a GA model for determining the booster locations as 
well as the input concentrations. Ostfelt and Solomons [7] 
applied a GA model to solve two optimization problems where 
the first deals with the design/operation of the booster station 
to satisfy the minimum cost condition, and the second aims to 
maximize the health protection. Chu et al. [9] developed a 
solution methodology which applied a GIA-based optimization 
approach for solving the optimal scheduling problems of the 
booster disinfection station. Wang and Guo [10] employed an 
ACO-based optimization model to find the location and 
injection dosages of the booster stations on a hypothetical 
water distribution network. Gokce and Ayvaz [12] developed a 
solution methodology which considered HS to solve the booster 
station scheduling problems. Similarly, Gokce and Ayvaz [13] 
applied DE to find the locations as well as the chlorine injection 
concentrations of the booster stations. 

It should be noted that although heuristic optimization 
approaches can be used to obtain efficient results in terms of 
the locations as well as the chlorine injection dosages of the 
booster stations, they usually require a high number of model 
simulations to find a feasible solution. In order to handle this 
difficulty, implementation of the hybrid optimization 
approaches is widely preferred to complex optimization 
problems. Note that hybrid optimization approaches consist of 
the mutual integration of the heuristic and deterministic 

optimization approaches. In this integration, global exploration 
process starts using the heuristic approach with multiple 
starting points, and then, a deterministic approach finds the 
optimal solution by getting the best of the multiple solutions as 
the starting point [14]. This kind of a solution methodology 
makes obtaining the global optimum solution easier than both 
heuristic and deterministic optimization approaches by 
themselves [15]. Regarding this hybridization scheme,  
Ayvaz and Kentel [16] integrated a binary GA with a LP based 
optimization model to determine numbers, locations and 
chlorine injection dosages of the booster stations. In this 
integration, a GA is used to determine the numbers and the 
locations of the booster stations, and LP is used to determine 
the corresponding chlorine concentrations for each booster 
location. Although their proposed GA-LP approach can 
successively solve the booster station optimization problems, 
implementation of these two algorithms can require advanced 
programming skills especially for the researchers who are not 
familiar with the complex coding/decoding tasks in GA. 

The main objective of this study is to propose a new simulation-
optimization methodology to solve the booster station 
optimization problems in water distribution networks. In the 
simulation part of the proposed methodology, water quality 
response of the given network to a specific chlorination 
schedule is calculated based on the RM approach which is 
proposed by Bocelli et al. [4]. In order to use this approach, the 
required response coefficients are calculated by modeling the 
given water distribution network on EPANET model [17]. The 
developed simulation part is then integrated to an optimization 
model where a hybrid HS–Solver optimization approach is 
used. HS-Solver is a recently proposed hybrid optimization 
approach which both integrates the heuristic harmony search 
algorithm and a spreadsheet Solver add-in as the global and 
local optimizers, respectively. The objective of the HS–Solver 
based solution methodology is to determine the locations as 
well as the chlorine concentrations of the booster stations by 
maintaining the chlorine residuals within the desired limits at 
all the demand locations and measurement times. The 
performance of the proposed methodology is evaluated by 
solving an existing water distribution network on both HS and 
HS–Solver. Comparison of the identification results indicated 
that the proposed HS–Solver based simulation-optimization 
methodology finds similar or better results than those obtained 
by using the stand-alone HS and different optimization 
approaches in literature. 

2 Model development 

2.1 Problem formulation 

Locations and chlorine injection dosages of the booster stations 
are determined by using an optimization model. The primary 
goal of the proposed model is defined as the minimization of the 
injected chlorine mass to the system by maintaining chlorine 
residual limits for all demand locations and measurement 
periods. This problem can be mathematically defined as 
follows: 

Let 𝑛𝑚 be the number of demand locations where chlorine 
residuals are monitored, 𝑛ℎ be the number of observation time 
periods, 𝑡 be the starting time of the observation, 𝑉𝑗

𝑚 be the 

volumetric demand [𝐿3] satisfying the chlorine residual limits 
at location 𝑗 in observation period 𝑚, 𝑉 be the total volume of 
water demand [𝐿3] for a given hydraulic period, 𝑄𝑗

𝑚 be the 

demand [𝐿3𝑇−1] at location 𝑗 in observation period 𝑚, ∆𝑡 be the 
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length of the observation time step [𝑇], 𝑐𝑗
𝑚 be the chlorine 

residual [𝑀𝐿−3] at observation location 𝑗 and time 𝑚, 𝑐𝑗
min and 

𝑐𝑗
max be the lower and upper bounds of the chlorine residuals 

[𝑀𝐿−3] at observation location 𝑗, 𝑛𝑏 be the number of booster 
disinfection stations, 𝑛𝑘 be the number of chlorine injection 

time steps, 𝑢𝑖
𝑘 be the injected chlorine dosage [𝑀𝐿−3] from 

booster station 𝑖 at injection period 𝑘, and �̃�𝑖 be the total 
outflow [𝐿3𝑇−1] at location 𝑖. Given these definitions, the 
objective function and the constraints can be formulated as 
follows: 

𝑧 = min (∑ ∑ 𝑢𝑖
𝑘�̃�𝑖

𝑛𝑘

𝑘=1

𝑛𝑏

𝑖=1

) (1) 

subject to 

𝑢𝑖
𝑘 ≥ 0 

𝑖 = 1,2,3,∙∙∙, 𝑛𝑏   ;   𝑘 = 1,2,3,∙∙∙, 𝑛𝑘 
(2) 

𝑐𝑗
min  ≤ 𝑐𝑗

𝑚 ≤ 𝑐𝑗
max 

𝑗 = 1,2,3,∙∙∙, 𝑛𝑚  ;  𝑚 = 𝑡,∙∙∙, 𝑡 + 𝑛ℎ − 1 
(3) 

Where 𝑧 is the objective function which represents the chlorine 
injection mass rate [𝑀𝑇−1]. The constraint in Equation (2) is 
used to maintain the non-negativity condition of the injection 
dosages. Similarly, Equation (3) is used to control the chlorine 
residuals within the specified lower and upper bounds. For this 
purpose, the value of 𝑐𝑗

𝑚 should be calculated for all the demand 

locations and measurement times. Note that this task is usually 
conducted by directly linking the EPANET model to the 
optimization approaches to calculate the value of 𝑐𝑗

𝑚 for the 

generated chlorination schedule. Although this is an effective 
approach, running the EPANET model for each optimization 
cycle may require long computational times for the networks 
having long simulation times and big dimensions. Therefore, 
the RM approach is used to calculate the chlorine residuals at 
demand locations. According to Bocelli et al. [4], the value of 𝑐𝑗

𝑚 

can be calculated as follows: 

𝑐𝑗
𝑚 = ∑ ∑ 𝛼𝑖𝑗

𝑘𝑚𝑢𝑖
𝑘

𝑛𝑘

𝑘=1

𝑛𝑏

𝑖=1

 

𝑗 = 1,2,3,∙∙∙, 𝑛𝑚   ;    𝑚 = 𝑡,∙∙∙, 𝑡 + 𝑛ℎ − 1    

(4) 

Where 𝛼𝑖𝑗
𝑘𝑚 is the composite response coefficient which is 

determined by using 𝛼𝑖𝑗
𝑘𝑚 = 𝜕𝑐𝑗

𝑚 𝜕𝑢𝑖
𝑘⁄ . Note that values of 𝛼𝑖𝑗

𝑘𝑚 

are computed by means of the EPANET. For this purpose, 
EPANET model is separately executed for each potential 
booster location by assigning the unit chlorine injections over 
there. 

As indicated previously, the optimization formulation given in 
Equations (1) to (3) is solved by using the hybrid HS–Solver 
optimization approach. Since HS is an unconstrained heuristic 
optimization approach, violation of the constraint in Equation 
(3) is evaluated by means of the penalty function approach. 
Based on this approach, the objective function in Equation (1) 
is transformed to the penalized form as follows: 

𝑧′ = min (𝑧 + 𝜆1𝑃(𝑐min) + 𝜆2𝑃(𝑐max)) (5) 

𝑃(𝑐min) = {
|𝑐𝑗

min − 𝑐𝑗
𝑚|   if   𝑐𝑗

𝑚 < 𝑐𝑗
min 

      0              otherwise   
 (6) 

𝑃(𝑐max) = {
|𝑐𝑗

𝑚 − 𝑐𝑗
max|   if   𝑐𝑗

𝑚 > 𝑐𝑗
max

      0              otherwise   
 (7) 

Where 𝑃(𝑐min) and 𝑃(𝑐max) are the penalty functions for 

maintaining lower and upper chlorine residual limits, 
respectively and 𝜆1 and 𝜆2 are the associated penalty 
coefficients which are used to adjust the magnitudes of the 

𝑃(𝑐min) and 𝑃(𝑐max). Note that several trial runs are conducted 

before executing the proposed approach. According to the 
results of these runs, values of 𝜆1 and 𝜆2 are taken as 10.000 
and 1.000, respectively. Although the penalty functions given 
above are used to prevent violation of the constraints during 
the HS solution, they are not required for the Solver since it can 
solve the constrained optimization problems through its built-
in constraint module. 

2.2 Optimization model 

As indicated previously, the optimization problem given above 
is solved by using the hybrid HS–Solver optimization approach. 
HS–Solver, proposed by Ayvaz et al. [14], is a powerful and 
user-friendly optimization approach which integrates the 
global exploration feature of the HS and strong local search 
capability of a spreadsheet Solver. Using this integration, 
various unconstrained, constrained, and structural 
optimization problems were previously solved in Ayvaz et al. 
[14]. Also, Ayvaz and Elçi [18], [19] applied HS-Solver to the 
solutions of two groundwater management problems; one is 
related to pumping maximization and the other was developed 
to solve pumping cost minimization problems on the same 
watershed. Note that HS is a heuristic optimization algorithm 
inspired from the musical improvisation process. In musical 
processes, a pleasing harmony can be obtained by following 
three rules:  

i) Playing a note randomly, 

ii) Playing a note from harmony memory, 

iii) Playing a note which is close to another one stored in 
harmony memory. 

Geem et al [20] first adapted these musical rules to solve 
engineering optimization problems as: 

i) New decision variable values are selected randomly 
from the possible range, 

ii) New decision variable values are selected from 
harmony memory, 

iii) New decision variable values are further replaced with 
other ones which are close to their current values. 

Combinations of these rules in an optimization framework 
allow obtaining a global optimum solution in HS optimization 
algorithm because these rules together make a stochastic 
derivative which shows a direction to the global optimum 
solution [21]. This stochastic derivative, which is based on 
collective intelligence of musicians’ experiences, is even 
applicable to discrete variables that cannot have derivative 
information from traditional differential calculus approach. 

Nowadays, electronic spreadsheets have become necessary 
tools to perform various engineering computations. Almost all 
the commercially available spreadsheet products such as 
Excel® include a built-in “Solver” module to solve 
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unconstrained and constrained optimization problems [22]. 
Solver can solve the linear and nonlinear optimization 
problems by means of the Simplex and Generalized Reduced 
Gradient methods, respectively. Since Solver works on Excel®, 
all its computational features are accessible from the Visual 
Basic for Applications (VBA) platform. Therefore, HS and Solver 
processes have been hybridized on VBA platform by developing 
three separate VBA modules. The first module is for the stand 
alone HS and can be directly used to solve any optimization 
problem. The second module is developed for calling the Solver, 
which is created by using the macro recording feature of 
Excel®. The last module is used to integrate the HS and Solver 
modules to generate a hybrid optimization approach. Note that 
there are two options to integrate the HS and Solver processes 
in the last module. In the first option, the entire search space is 
explored by HS, then Solver gets the best result of HS as a 
starting point to precisely find the global optimum solution. In 
the second option, both HS and Solver run simultaneously such 
that all the solutions of HS are subjected to local search by 
Solver based on a probability of 𝑃𝑐 [14]. For the second option, 
previous experiences state that use of a small probability is 
sufficient for solving many engineering optimization problems. 
Therefore, the second option is considered by setting the 
probability of 𝑃𝑐 = 0.10 for all the solutions. The flowchart of 
the hybrid HS–Solver optimization approach is given in  
Figure 1. As can be seen, the required solution parameters are 
given in the first step which are the harmony memory size 
(HMS), harmony memory considering rate (HMCR), pitch 
adjusting rate (PAR), fret width (fw), and the probability of 𝑃𝑐 . 
A detailed description of this parameters and HS can be found 
in [14] and [20]. 

 

Figure 1: Flowchart of the HS–Solver optimization approach. 

3 Numerical application 

In order to evaluate the performance of the proposed 
simulation-optimization approach, water distribution network 
of the Cherry Hill-Brushy Plains, CT, USA is used. This network 
is previously used in different studies in literature to solve the 
booster station optimization problems [1],[2],[4]-[6],[12], 

[13],[16]. Figure 2 shows the layout of the water distribution 
network under consideration. 

 

Figure 2: Water distribution network under consideration. 

As can be seen from Figure 2, the network consists of a pumping 
station at the 1st junction, a storage tank at the 26th junction, 34 
demand locations from 2nd to 25th and 27th to 36th junctions, and 
47 pipes which have the total length of 11.26 km. The network 
also includes 6 hypothetical junctions to locate booster stations 
which are also shown in Figure 2 as junctions A-F. The reason 
of considering these hypothetical junctions in the previous 
studies was to inject the disinfectant without considering any 
water demand at the same points. Note that these junctions are 
also considered in this study in order to obtain comparable 
results with those obtained in literature. Figure 3(a) and (b) 
show the base demands and the associated demand multipliers 
of the 34 demand locations. A pumping station at the 1st 
junction is operated with a flow rate of 43.81 l/s based on the 
pump demand multipliers given in Figure 3(c). Using these 
data, the network’s hydraulic behavior which is given in  
Figure 4 is determined by modeling the network on EPANET. It 
is clearly seen that the hydraulic behavior of the network is 
controlled by the pumping station in the 1st and the 3rd six hour 
time period of a day. For the 2nd and the 4th six hour time 
periods, the tank is used since the pump does not work at those 
times. This situation results with the change of the flow 
directions in the network for six hour time periods. 

Since the chlorine residuals in the demand locations are 
determined by utilizing the RM approach, it is required to 
execute the EPANET model to determine the composite 

response coefficients of 𝛼𝑖𝑗
𝑘𝑚 before starting the search process. 

In these model runs, a unit chlorine concentration is injected 
from each potential booster location and the corresponding 
chlorine residuals are collected at demand locations to compute 

𝛼𝑖𝑗
𝑘𝑚 values [23]. Note that this kind of a solution approach 

requires a periodically changed hydraulic behavior which is 
observed when chlorine residuals at two successive days are 
exactly same. Satisfaction of this condition can be possible in 
cases of long simulation times. Thus, simulation time is taken as 
288 hours since the periodically changed hydraulic behavior is 
observed after 264th hour in the system. After this process, the 

coefficients of 𝛼𝑖𝑗
𝑘𝑚 are calculated by using the chlorine 

residuals at the last 24 hour of the 288 hour time period. The 
bulk and wall decay coefficients are assumed to be 0.50 1/d and 
0 in these computations.  
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Figure 3: Variation of the (a): Baseline demand values of the 
consumer nodes; (b): Global baseline demand multipliers;  

(c): Pump demand multipliers. 

 

Figure 4: Hydraulic behavior of the network. 

After calculation of the composite response coefficients, the 
proposed simulation-optimization approach is executed for 
different booster station numbers. For these runs, the number 
of the injection periods is taken as 1 which indicates a uniform 
chlorine injection through a 24-hour time period from the flow-
paced booster locations. The number of potential booster 
locations is taken as 42 which includes 34 demand locations,  
6 hypothetical nodes, storage tank, and pumping station. The 
objective of the HS–Solver is to locate booster stations into 
these potential locations by minimizing the injected chlorine 
dosages over there. In order to solve this optimization problem, 
chlorine residuals at 34 consumer points and a 24-hour time 

period are used as the observation data. Note that values of 𝑐𝑗
min 

and 𝑐𝑗
max (𝑗 = 1,2,3,∙∙∙ ,34) are assumed to be 0.20 and  

4.00 mg/L, respectively in order to obtain comparable results 
with those given in literature. The related solution parameters 
of HS–Solver are taken as HMS = 10, HMCR = 0.85, PAR = 0.20, 

𝑓𝑤 = (𝑐𝑗
max − 𝑐𝑗

min)/300. Note that values of these parameters 

are all empirically based and taken by considering the previous 
experiences and recommendations in literature. Using these 
parameter ranges, the HS–Solver based optimization model 
searches for the best booster configurations through 20.000 HS 
improvisations. Note that, in HS–Solver, although HS can be 
used to determine the values of both continuous (chlorine 
injection dosages) and discrete (booster locations) decision 
variables, the same situation cannot be possible in Solver since 
it cannot solve the discrete optimization problems. Therefore, 
only chlorine injection dosages are used as the decision 

variables in the Solver module during the hybrid optimization 
process. For a different number of booster stations, Figure 5 
compares the convergence profiles of the stand-alone HS and 
hybrid HS–Solver during the solution of the same problem.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5: Comparison of the convergence profiles of HS and 
HS–Solver algorithms for. (a): 𝑛𝑏 = 1; (b): 𝑛𝑏 = 2; (c): 𝑛𝑏 = 3; 

(d): 𝑛𝑏 = 4; (e) 𝑛𝑏 = 5; (f) 𝑛𝑏 = 6. 
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As can be seen from Figure 5, the optimization process is 
performed by using the same random number seeds that is why 
both HS and HS–Solver start from the same initial solutions. 
When the identified results of HS and HS–Solver are compared, 
it can be seen that HS–Solver requires less improvisations than 
HS to minimize the total mass. As an example, for 𝑛𝑏 = 1, 
improvement of the objective function value remains constant 
after about 2.109th improvisation in HS. However, the same 
objective function value is obtained after about the 89th 
improvisation in HS–Solver. When the results for different 
booster station numbers are compared, it is shown that 
inclusion of the additional booster stations significantly 
improves the objective function values as an expected behavior. 
For a different number of booster stations, Table 1 compares 
the results of HS and HS–Solver in terms of the identified 
booster locations and injected chlorine concentrations. As can 
be seen, for 𝑛𝑏 = 1, both HS and HS–Solver identified the 2nd 
junction as a booster location which is located in just 
downstream of the pumping station. For this location, both 
models determined the same chlorine concentrations of  
1.780 mg/L. For 𝑛𝑏 = 2, both models placed the second booster 
station next to tank in order to supply chlorine to the network 
in the second and the fourth 6-hour time period of a day. For 
other solutions, both HS and HS–Solver determined the same or 
nearly the same booster stations having the similar injection 
patterns. Table 2 compares the final identified chlorine 
injection mass rates for HS and HS-Solver with those obtained 
by using MIQP and DE solution approaches. As can be seen, for 

𝑛𝑏 = 1 HS and HS–Solver obtained the same chlorine mass rate 
(3.010 g/day). For the remaining solutions, although the results 
are very close to each other, HS-Solver provides slightly lower 
chlorine mass rates than HS. When the results of the HS–Solver 
are compared with those obtained by using DE and MIQP, it can 
be seen that HS–Solver provides identical results with DE and 
better results than MIQP. For this table, another comparison is 
conducted in terms of the computation loads of the proposed 
approaches. As can be seen, the required number of 
improvisations in HS-Solver is lower than HS. For example, 
while HS required 2,109 improvisations to find a chlorine mass 
rate of 3.010 g/day for 𝑛𝑏 = 1, the same result is obtained after 
89 improvisations in HS-Solver. Same situations are also 
observed in other solutions such that HS-Solver provided better 
results in fewer improvisations than the stand-alone HS. Note 
that since HS-Solver resulted with the identical chlorine mass 
rates with DE, comparison of their computation loads is a 
crucial step. Table 2 lists the required number of generations in 
DE to find the given chlorine mass rates. As can be seen, for 
𝑛𝑏 = 1, DE required 47 generations which corresponds to  
940 simulation runs whereas the identical result is obtained in  
HS-Solver in 89 improvisations. This difference significantly 
increases as the complexity of the problem increases. 

For both HS and HS-Solver, statistical evaluation of the chlorine 
residuals in terms of the mean, minimum and maximum values 
is given in Table 3. 

 

Table 1: Locations and the chlorine concentrations of the identified booster stations for different station numbers. 

𝑛𝑏 

Chlorine Concentrations (mg/L) 

(Locations of the Identified Booster Stations) 

HS  HS–Solver 

1 
1.780 

- - - - - 
 1.780 

- - - - - 
(2)  (2) 

2 
0.514 0.370 

- - - - 
 0.517 0.349 

- - - - 
(2) (26)  (2) (26) 

3 
0.451 0.350 0.044 

- - - 
 0.433 0.372 0.054 

- - - 
(2) (26) (29)  (2) (26) (29) 

4 
0.351 0.209 0.146 0.077 

- - 
 0.351 0.209 0.143 0.077 

- - 
(2) (26) (29) (33)  (2) (26) (29) (33) 

5 
0.284 0.050 0.171 0.163 0.196 

- 
 0.284 0.052 0.220 0.160 0.197 

- 
(2) (8) (22) (26) (29)  (2) (8) (22) (26) (29) 

6 
0.284 0.052 0.220 0.160 0.197 0.050  0.256 0.066 0.661 0.163 0.207 0.019 

(2) (8) (22) (26) (29) (33)  (2) (8) (22) (26) (29) (32) 

Table 2: Comparison of the identified chlorine injection rates for different solution approaches. 

𝑛𝑏 

MIQP 1  DE 2  HS  HS–Solver 

Total Mass  Total Mass Number of  Total Mass Number of  Total Mass Number of 

(g/day)  (g/day) Generations 3  (g/day) Improvisations  (g/day) Improvisations 

1 3.116  3.010 47 (940)  3.010 2.109  3.010 89 

2 1.260  1.213 316 (6.320)  1.227 7.511  1.213 1.253 

3 1.155  1.094 951 (19.020)  1.102 12.822  1.094 4.558 

4 835  799 1.653 (33.060)  800 15.964  799 5.971 

5 830  645 3.512 (70.240)  647 17.009  645 8.738 

6 703  614 8.352 (167.040)  646 18.462  614 9.649 

1: Results of Propato and Uber [6], 

2: Results of Gokce and Ayvaz [13], 

3: Values in the brackets correspond to the number of EPANET model simulations. 
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Table 3: Statistical evaluation of the chlorine residuals. 

𝑛𝑏 

Chlorine Residuals (mg/L) 

HS  HS-Solver 

Mean Minimum Maximum  Mean Minimum Maximum 

1 1.07 0.20 3.52  1.07 0.20 3.52 
2 0.45 0.20 1.02  0.45 0.20 1.02 

3 0.41 0.20 0.89  0.41 0.20 0.86 

4 0.31 0.20 0.69  0.31 0.20 0.69 

5 0.27 0.20 0.56  0.27 0.20 0.56 

6 0.27 0.20 0.56  0.29 0.20 0.89 

 

It is clearly seen that the mean of the chlorine residuals is in a 
decreasing trend with the number of booster stations. 
Minimum of the chlorine residuals is determined to be equal to 
the minimum residual limit of 20 mg/L for all the solutions. 
Note that when the maximum chlorine residuals for both HS 
and HS-Solver are compared with the injected chlorine 
concentrations in Table1, it can be seen that almost all the 
maximum residuals are greater than the identified values in 
Table 1. This situation is related to the network’s hydraulic 
behavior such that the flow directions in the network change in 
6-hour time periods of a day. Regarding this issue, Figure 6 
compares the flow directions in the first and the second 6-hour 
time periods. 

  

(a) (b) 

Figure 6: (a): Flow directions in the 1st and the 3rd six hour 
time period; (b): Flow directions in the 2nd and the 4th six hour 

time period. 

As can be seen from Figure 6(a), the chlorinated water by the 
flow paced booster station in the 2nd junction moves from 2nd to 
the 3rd and the 5th junctions. Since the flow direction changes in 
the second 6 hour time period as given in Figure 6(b), the 
chlorinated water returns from 5th to 2nd junction. Since the 
booster station in the 2nd junction works continuously through 
24 hour time period, there is an additional chlorine injection to 
the previously chlorinated water that is why maximum chlorine 
residuals are obtained higher than the injected ones. 
Comparisons of the identified booster locations by using HS and 
HS–Solver and those obtained by using DE and MIQP are given 
in Figures 7. As can be seen, the identified locations of HS and 
HS–Solver are all the same except for 𝑛𝑏 = 6 where only one 
booster station is located to a different demand location. The 
identified locations for HS–Solver and DE are all the same as a 
result of the chlorine injection patterns given in Table 2. When 

the model results for MIQP is examined in detail, it can be seen 
that the MIQP located the 1st booster station to the junction A 
whereas the 2nd junction is selected for all the solutions in HS–
Solver. The remaining booster stations are located to the same 
junctions in 𝑛𝑏 = 2 to 4 and close locations in 𝑛𝑏 = 5 and 6. 

4 Discussions and conclusions 

A hybrid simulation-optimization approach is proposed to 
solve the booster station optimization problems in water 
distribution networks. In the proposed approach, chlorine 
residuals in the demand locations are determined by means of 
the RM approach in the simulation part. The locations as well as 
the chlorine injection dosages of the booster stations are 
determined by integrating the RM based simulation part to an 
optimization model where the hybrid HS–Solver optimization 
approach is used. The objective of the HS–Solver is to minimize 
the total injected chlorine mass rates by maintaining the 
chlorine residual limits for all the consumer nodes and 
measurement times. The applicability of the proposed 
approach is evaluated by using an existing water distribution 
network for different booster station numbers. Identified 
results indicated the proposed approach does not only 
efficiently determine the locations and chlorine injection 
dosages of the booster stations in fewer improvisations, but it 
also provides identical or slightly better results than those 
obtained by using different approaches found in literature. The 
following conclusions and discussions can be drawn from the 
proposed approach: 

The main advantage of using the hybrid HS-Solver optimization 
approach is its easy computational structure compared to other 
hybrid algorithms in literature. After programming the HS on 
VBA platform of the MS Excel® spreadsheet, a user can easily 
integrate the HS and Solver processes to create a hybrid 
optimization approach without requiring any advanced 
programming skills. However, this kind of an integration may 
require high computation times especially for the big problems 
since default Solver add-in of Excel® has some limitations. 
However, these limitations can be handled if premium or 
professional versions of the Solver add-in are used since they 
can solve the optimization problems 100 times faster than 
default Solver add-in (Frontline Systems, 2016). Using this 
improved version of HS-Solver, various engineering 
optimization problems can be solved without big computation 
time limitations. 

In the proposed approach, chlorine residuals at the demand 
locations of the network are calculated by means of the RM 
approach. Although use of this approach significantly reduces 
the required computation time, it can only be used for the 
problems where first-order bulk and wall reactions kinetics are 
observed. However, if these conditions are not satisfied in the 
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system, a water quality simulation model such as EPANET 
should be directly integrated with the HS-Solver to calculate the 
chlorine residuals at the demand locations. Such an integration 
may require high computation times especially for the big 
networks and/or long simulation times. For such cases, LLS 
based solution model given in [1] and [6] may be used. 

In this study, a single chlorine injection period is considered for 
all the simulations. Also, all the calculations are conducted by 
taking the flow paced booster (FPB) into account. Therefore, 
solution of the problem by considering different booster types 
and multiple injection periods should be considered as a future 
research. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 7: Comparison of the identified booster locations for different optimization algorithms (orange diamond: HS–Solver, blue 
diamond: HS, red diamond: DE [13], green diamond: MIQP [6]): (a) 𝑛𝑏 = 1; (b) 𝑛𝑏 = 2; (c) 𝑛𝑏 = 3; (d) 𝑛𝑏 = 4; (e) 𝑛𝑏 = 5; (f) 𝑛𝑏 = 6. 
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