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Abstract  Öz 

The problem of locating naval platforms in the operation region with 
the aim of maximizing both total radar coverage and critical radar 
coverage is solved by using Multiobjective Evolutionary Algorithms 
(MOEA). Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and  
S-Metric Selection Evolutionary Multiobjective Optimization Algorithm 
(SMS-EMOA) procedures are implemented. Experiments show that 
evolutionary algorithms provide good and diverse alternatives that 
are considered to be very close to Pareto-optimal front. The 
performances of NSGA-II and SMS-EMOA approaches are compared 
employing the hypervolume indicator technique. The performance of 
NSGA-II is found better in terms of both convergence and diversity. 

 Donanma platformlarının, radar toplam kapsama alanları ve radar 
kritik kapsama alanlarının ençoklanması amacı ile harekât bölgesinde 
konuşlandırılması problemi çok amaçlı evrimsel algoritmalar 
kullanılarak çözülmüştür. Bu kapsamda, literatürde Non-Dominated 
Sorting Genetic Algorithm-II (NSGA-II) ve S-Metric Selection 
Evolutionary Multiobjective Optimization Algorithm (SMS-EMOA) adı 
verilen yöntemler kullanılmıştır. Deney uygulamasında, bu 
yöntemlerin Pareto-optimal cepheye oldukça yakın olduğu 
değerlendirilen iyi ve istendiği gibi birbirinden farklı çözümler ürettiği 
görülmüştür. Kullanılan yöntemlerin performansları hipervolüm 
gösterge tekniği kullanılarak karşılaştırılmış, NSGA-II yönteminin 
daha iyi performans gösterdiği tespit edilmiştir. 

Keywords: Fleet location, Optimal sensor placement, Multiobjective 
evolutionary algorithms 

 Anahtar kelimeler: Filo konumlandırma, Optimal sensör yerleşimi, 
Çok amaçlı evrimsel algoritmalar 

1 Introduction 

Usage of fixed sensors as surveillance and reconnaissance 
assets is a common practice in military operations. Any 
stationary sensor, such as radar installations or naval 
platforms not in motion can be used to provide situational 
awareness in a certain area. These fixed sensors are placed at 
predetermined locations but may be moved between uses [1]. 

In this study, the problem involves optimization of locating 
sensor carrying units with the restrictions caused by terrain’s 
geographical structure. The objective is maximizing both of 
total sensor coverage and critical region sensor coverage. The 
problem is motivated by the requirement of establishing and 
maintaining the surface picture just before the possible 
engagements start in a naval battle space which has several 
lands that prevent radar emmisions to reach their utmost 
extent. 

The problem of determining an optimal configuration of 
sensors is a challenging problem when there are several 
constraints related to geographical terrain and the structure of 
configuration itself, even when the available number of these 
sensors and their ranges are determined and given as 
parameters of the problem. 

The scope of this study is adapting and applying a widely 
known Multiobjective Evolutionary Algorithm (MOEA), Non-
Dominated Sorting Genetic Algorithm (NSGA-II) [2], and a 
relatively new approach, S-Metric Selection Evolutionary 
Multiobjective Optimization Algorithm (SMS-EMOA) [3], on 
the two-objective sensor coverage problem in order to provide 

decision maker with several non-dominated solutions close to 
true Pareto-optimal front. We also compare these two 
approaches for our problem. 

Computational intelligence methods like genetic algorithms, 
multiobjective genetic algorithms, swarm intelligence, and 
operations research techniques has been widely used in the 
analyses of sensor networks. These analyses include 
determining sensor placements, number and type of sensors, 
optimization of power usage, clustering, network topology and 
routing [1]. Using optimization techniques to determine 
sensor placement can improve the effectiveness of the sensor 
suites. In the problems found in relevant literature, different 
objectives are considered for different types of sensors, like 
maximizing the probability of detection, minimizing the time 
to detect, maximizing the coverage of the sensors, etc. While 
some studies use multiobjective optimization methods to find 
a set of non-dominated solutions [4], [5], others use weights to 
have a combined objective function [6], [7]. Most of the studies 
in the literature address wireless sensors which have limited 
lifetime. Therefore, most of them consider the tradeoffs 
between coverage and lifetime. A broad review of 
multiobjective optimization in wireless sensor networks is 
recently given by Fei et al. [8]. 

It has been shown by previous works that MOEA approaches 
can successfully address the problem of optimal organization 
and formation of teams of sensors. Bugajska and Schultz [9] 
study the co-evolution of the form and function for 
autonomous agents. Characteristics that can be evolved are 
the number of sensors in a sensor suite and the coverage area 
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of each sensor. The possible locations for the sensors are kept 
fixed and the maximum number of sensors is limited. In 
another study [10], they add a new characteristic: the 
detection angle and the placement of the sensors.  

An algorithm is presented by Chaudhry et al. [11] that uses an 
MOEA approach to solve sensor placement optimization 
problem when the number of sensor nodes is not fixed and the 
limit on the number of nodes is not given.  

Martins et al. [12] propose a multiobjective hybrid 
optimization algorithm for solving a sensor coverage and 
connectivity problem. They use a multiobjective genetic 
algorithm to improve the solution. Khalesian and Delavar [13] 
propose a constrained MOEA to maximize the sensor coverage 
and minimize energy consumption while maintaining 
connectivity. Another recent study by Jameii et al. [14] 
consider conflicting objectives of lifetime, coverage and 
connectivity simultaneously and they employ NSGA-II to solve 
the problem. 

Sakr and Wesolkowski [4] use multiobjective genetic 
algorithm to maximize total coverage, minimize total cost and 
minimize coverage overlap, assuming a fixed number of 
sensors.  

Sengupta et al. [15] propose a multiobjective optimization 
algorithm for scheduling nodes of a sensor network while 
maximizing lifetime. They focus on the probabilistic coverage 
on regions with different level of sensing requirements. The 
algorithm attemps to find a good tradeoff among coverage, 
lifetime and energy consumption. In another study, Sengupta 
et al. [16] utilize the same algorithm in solving another 
problem which has one more additional objective of 
minimizing the number of deployed sensor nodes. 

Bara’a et al. [17] use NSGA-II to solve the problem which 
integrates the coverage maximization of mobile sensor 
networks with efficient routing that maximizes network 
lifetime. 

In the context of military situational awareness, Ball and 
Wesolkowski [18] apply NSGA-II to determine the sensor 
locations with the objectives of maximizing number of 
detected vehicles, minimizing number of coverage 
discontinuities and minimizing network cost. 

The problem which is closely related to ours is proposed by 
Küçükali [19]. The author applies a single objective genetic 
algorithm in order to maximize sensor coverage without 
sacrificing the strategic zones. He worked on a very similar 
case as the one studied in this work, but with more 
assumptions and restrictions on certain parameters. In his 
work, two objectives are linearly combined into a single 
objective. 

To the best of our knowledge, no study using multiobjective 
methods is reported before in the literature, which analyzes 
the problem of maximization of total and critical coverage in 
an environment where these two objectives conflict. In this 
sense, the contribution of this study is application of two 
evolutionary multiobjective solution methods to an interesting 
problem which is not studied except once [19], and 
comparison of their performances. 

Next section outlines the problem environment and explains 
the applied algorithms. Sections 3 and 4 present the findings 
related to our experiment and the conclusion of this study, 
respectively. 

2 Problem statement and solution methods 

In this section, the problem and two different evolutionary 
methods employed for solving our problem are explained. 

2.1 Problem definition and decision space 

The problem environment is a naval battlespace with several 
islands which can be considered as two-dimensional plane 
with obstacles. Since all of the radar carrying platforms are 
ships and emissions of these radars cannot go over the 
obstacles, a point that is behind an obstacle cannot be covered. 
In this environment, some regions like critical straits, naval 
bases or harbors are of more importance. Since these regions 
are very close or adjacent to the lands, two objectives of the 
problem, maximization of total coverage and maximization of 
critical coverage, have conflict with each other. 

The sensor carrying units have to be partitioned into smaller 
groups that form the fleets and each fleet have its own flagship 
which serves as the tactical commander of that fleet. 
Moreover, because of tactical warfare requirements, each ship 
must remain in a predetermined range of the flagship of the 
fleet to which it is assigned. While the flagships remain 
unchanged, the fleets can exchange their members which may 
have different range of sensors. Since the number of fleets is 
not that flexible in the formation of a naval force, the algorithm 
is not allowed to evolve on this characteristic. 

The decision space is a digital image file which represents the 
map of a possible operation region. In this map, sea, land and 
the critical region at sea are represented by certain different 
colors for identification of the pixels. The location of each unit 
is encoded as coordinate values. Although it is unlikely, as 
there is no restriction, multiple units may have the same 
location. The probability of this case to occur increases as the 
islands forms a circle-like shape around a fleet and/or the 
allowed maximum distance between flagships and the other 
ships decreases. Even if this case occurs, it may be considered 
as a feasible solution as long as the real size of a pixel allow the 
ships to have same coordinates. Any infeasible solution that 
might be generated, like locating a unit on land, is blocked in 
the implementation of the algorithms. Since all of our 
constraints are considered to be hard and avoided, the 
constraint handling techniques of MOEA are not employed. 

2.2 Solution representation 

Each candidate solution in the population specifies the 
arrangement of the given set of units encoded as 
chromosomes formed by genes. Each gene representing a fleet 
keeps evolvable coordinate values (x and y) of the flagship (f) 
and the other ships in that fleet. Another parameter, range, 
indicates the sensor range associated with the corresponding 
ship. 

An example for a chromosome representing an individual in 
the population is shown in Figure 1. The solution in this 
example have M fleets in total, n1+1 ships in the first fleet and 
n2+1 ships in the second fleet. 

 

Figure 1: Representation of a solution. 
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2.3 Algorithms 

In applying NSGA-II (see Figure 2) which uses an explicit 
diversity-preserving mechanism for the goal of maintaining 
diversity on the obtained pseudo Pareto-optimal front, the 
individuals of the initial population are generated by random 
selection from the coordinates at sea. Objective values and 
crowding distance values of these initial chromosomes are 
calculated and assigned before the start of iterations. 
Crowding distance is a measure of the density of solutions 
surrounding a particular solution on a front. In our case which 
is a 2-objective problem, this measure is equal to L1 distance 
between neighboring two solutions. 

At each iteration, firstly, the mating pool is populated by 
crowded tournament selection operation [2]. The crowded 
tournament operator compares two solutions and returns the 
winner of the tournament. A solution wins a tournament with 
another solution, if it has a better non-domination rank, or if 
both have the same rank but it has a better crowding distance. 

After filling up the mating pool, ensuring that each individual 
participated in the tournament for two times, the offspring are 
generated by crossover and mutation operations. First, a 
uniform crossover operation is applied to each member of the 
mating pool and then all of those members are mutated with 
respect to a uniform probability distribution. If a gene is 
selected for mutation, the coordinates of the flagship is 
assigned randomly. The other ships (escortships) of the fleet 
that is represented by the mutated gene are also assigned 
coordinates probabilistically with respect to a probability 
distribution function which linearly favors farther points 
within the specified distance interval of the flagship. This 
interval has an upper limit due to tactical conditions and a 
lower limit which is equal to the difference between sensor 
ranges of the considered flagship and escortship, assuming 
that flagship has greater sensor range. 

After exploration operations are applied, objective values and 
crowding distances are assigned to new offspring. Non-
dominated sorting and crowding distance sorting in each non-
dominated front is applied to the merged population of parent 
and offspring chromosomes. The non-dominated sorting is 
used to classify the entire population consisting of parent and 
offspring solutions that is output of the last iteration. After the 
non-dominated sorting is over, the new parent population is 
formed by best non-dominated fronts. When the last allowed 
front is considered, the number of remaining slots may be less 
than the number of solutions on the front. This case, which is 
very likely to occur after a number of iterations, is handled by 
crowding distance sort method to choose the members of the 
last front [2]. This method chooses the solutions which reside 
in the least crowded region within non-dominated front. 
During the conversion of the population to the Pareto-optimal 
front, this algorithm ensures a better diversity among the 
individuals on the solution space. New generation is selected 
from the sorted list according to the allowed population size 
which is half of the merged population size in this algorithm. 
When the predetermined final iteration is reached, the 
algorithm generates the output of the first front solutions for 
presentation to decision maker. 

Most of the computational cost is incurred in the computation 
of objective values. The coverage and critical coverage of each 
chromosome is calculated by union of the sets of pixels 
covered by each unit of that chromosome. For each unit, the 
pixels are checked for each line of sight originating from its 

coordinates until a point of land is encountered or maximum 
range of sensor is reached. The computational time, for each 
unit, increases proportional to the square of its sensor range. 
Therefore, the number of units, sensor ranges, the size of 
population and the layout of lands on the decision space 
collectively determine the computational time of the 
algorithm. 

As an alternative approach, SMS-EMOA is applied. This 
approach combines the ideas from NSGA-II and archiving 
strategies presented by Knowles et al. [20] and Knowles and 
Corne [21]. This steady state algorithm ranks the solutions by 
non-dominated sorting. The hypervolume procedure is 
applied in order to discard the solution having the least 
hypervolume contribution to the worst non-dominated front 
[3]. At each iteration, a new solution generated by crossover 
and mutation operators, becomes a member of the population 
if this replacement with another individual is accepted with 
respect to the criteria given in the SMS-EMOA algorithm 
presented in Figure 3. After the application of non-dominated 
sorting, a reduction procedure is called in order to eliminate 
the worst individual [3]. In this procedure, the individual 
which is dominated by most of the other individuals is 
discarded. If there is only one front, S-metric (also known as 
hypervolume measure) is used [3]. Hypervolume (or 
hypervolume indicator (HI)) is a quality measure for a set S 
consisting of solutions which do not dominate each other. In 
our case, which is a 2-objective maximization problem, this 
measure is the area of the region which is simultaneously 
dominated by the solutions in S and bounded below by a 
reference point on two dimensional solution space. 

2.4 Evaluation of objective functions 

For a given coordinates of a unit, (a, b), with a sensor range of 
R NMs and a map width of W NMs, total coverage and critical 
coverage of the unit is found by the algorithm presented as 
follows:  

Let the length of an edge of a square pixel be 
w (w=W/max_x, where max_x is the width of the map in terms 
of pixels) and the radar range in terms of pixel edge length be 
r (integer number obtained by rounding down the ratio R/w). 
Let the color attribute indicates whether a pixel is in non-
critical sea region, or in critical sea region (red), or on land 
(green). 

Step 1. : Construct S, the set of pixels those form the 
square which has pixel (a, b) at its center and 
edge length of 2r. Set C to 0 where C 
represents the set of pixels covered by radar 
at pixel (a, b). 

Step 2. : Set (a’, b’) as (a, b). Choose any one of the 
pixels (x, y) in set S if there is any, o.w. 
terminate. 

Step 3. : Choose the closest pixel, let say pixel (z, w) 
among eight neighbor pixels of the pixel 
(a’, b’) to the pixel (x, y). 

Step 4. : If (z, w) is within the range of r and at sea 
(determined by checking its color attribute), 
then C:= C U (z, w) and (a’, b’):= (z, w) and go 
to step 3. Else S:=S\(x, y) and go to step 2. 

An example for objective function evaluation is illustrated in 
Figure 4. White circle, with radius equal to r, represents the 
boundary of coverable region with respect to radar range. 
Gray rectangle is the boundary of the set of pixels those form 
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the square which has pixel (a, b) at its center and edge length 
of 2r. Gray area around pixels (a, b) and (z, w) represents 
neighbor pixels.  

The union of covered pixels by all of the units in the 
chromosome are counted and the area of this union which 

represents the first objective value is calculated in square 
NMs. The second objective function value is equal to the area 
of critical (red) pixels within the set of all covered pixels. 

 

Figure 2: Flowchart of NSGA-II. 

 
Figure 3: Flowchart of SMS-EMOA. 

 

Figure 4: Illustration of objective function evaluation. 
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3 Experiment 

As a decision space, a map of Eastern Aegean Sea, presented in 
Figure 5, is used with assumptive critical regions close to the 
coast of Turkish main land. It is obvious that the performance 
of any algorithm must be strictly dependent on the decision 
space represented by a geographical structure and critical 
regions composed on it. 

 
Figure 5: The map of Eastern Aegean Sea used in the 
experiment (real width=240 NM, 240 x 327 pixels). 

Number of flagships and escortships (for each flagship), radar 
range for each of the units, the maximum distance between an 
escortship and the flagship to which it is assigned are the 
parameters specific to the problem. In the experiment, we set 
the number of flagships to 5, and their sensor ranges to 25 NM. 
We assume that, 4 of the flagships need 2 escortships, while 
one of them needs 3. The sensor ranges of 4 escortships out of 
11 are set to 10 NM, while the sensor ranges of others are set 
to 7 NM. Maximum distance of an escortship to the flagship to 
which it is assigned is allowed to be 30 NM. A feasible solution 
to this problem instance is presented in Figure 6. In the maps 
given in Figures 5 and 6, non-critical sea region, critical sea 
region and land is painted in blue, red and yellow, 
respectively. In Figure 6, covered region in the solution is 
painted in gray, while the points within covered region 
represent the locations of units, where flagships are indicated 
by bigger points. 

 
Figure 6: A feasible solution to the experimented problem 

instance. 

30 runs with 100 iterations of NSGA-II and 30 runs with 1000 
iterations of SMS-EMOA are executed. We set population size 
to 20, crossover and mutation probability to 0.5. In Figures 7 
and 8, each plot represents the averages of population average 
values and population best values for two objective functions 
(f1: total coverage and f2: critical coverage) within each 
iteration for the first hundred iterations. These graphs give an 
idea about the convergence performance of two approaches. 

In the experiments with NSGA-II, consistently most of the 
convergence observed at first iterations. As iteration number 
increases, as expected, convergence slows down and finding 
better solutions which are closer to the true Pareto-optimal 
front requires more and more iterations. This pattern is also 
valid for SMS-EMOA as seen on Figure 9. However since  
SMS-EMOA convergence rate is lower, much more iterations 
are needed in order to have convergence as much as that of 
NSGA-II attains in hundred iterations. On the other hand, since 
NSGA-II requires a number of offspring to be evaluated at each 
iteration, this algorithm is slower than SMS-EMOA approach. 
For the case studied, an NSGA-II iteration is about 10 times 
slower than an SMS-EMOA iteration. 

 

Figure 7: Plots of best values of objective functions  
(average of 30 runs). 

 

Figure 8: Plots of average values of objective functions 
(average of 30 runs). 

 

Figure 9: Plots of population best and population average 
values of 1000 iterations of SMS-EMOA (average of 30 runs). 

Our experiments show that the size of the final non-dominated 
population differs considerably from one run to another for 
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both of the approaches. This number is usually smaller for 
SMS-EMOA approach (between 5 to 11 out of 20 
chromosomes) when compared to that of NSGA-II (between 7 
to 20 out of 20 chromosomes). The structure of the true 
Pareto-optimal front may play an important role in this 
observation.  

In order to compare the performances of two approaches, the 
HI technique, which is discussed in the explanation of SMS-
EMOA, is applied to measure both convergence and diversity 
of the obtained non-dominated front in a combined sense [22]. 
Given a finite search space and a reference point, 
maximization of the hypervolume measure is equivalent to 
finding the Pareto-optimal set [23]. It has been also 
empirically observed that for a fixed number of points, the 
maximization of the hypervolume metric yields a well 
distributed subset of the Pareto-optimal front [3]. In our 
evaluation, the point of zero is taken as the reference for both 
of the objectives. For normalizing the magnitudes of objective 
functions, the second objective function value is multiplied by 
11792/3672 which is the ratio of the maximum values 
observed for two objectives. The box plots for HI values are 
presented in Figure 10. Observing box-plots reveals that, with 
the applied settings in the experiments, most of the time 
NSGA-II approach provides more dominated hypervolume 
according to that of SMS-EMOA. 
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Figure 10: Boxplots for HI values. 

The front with the highest dominated hypervolume is seen on 
Figure 11. In order to create a benchmark, five runs with 500 
iterations of NSGA-II are executed and the non-dominated 
front of the combination of obtained solutions is plotted. 

 

Figure 11: Non-dominated fronts. 

4 Conclusion 

In this study, MOEA methodology is applied to support the 
decision maker in the problem of stationing radar carrying 
naval platforms for establishing the most efficient surface 
picture in the strained period before a possible engagement. 

The measure of efficiency has two dimensions, total coverage 
of radars and the coverage of critical regions. 

The application locates the platforms in fleet formation on a 
digital map of operation area on which critical regions are 
plotted. As the algorithms evolve, while the set of available 
escortships is kept fixed, any escortship can change its fleet. In 
order to approximate the efficient front of the two-
dimensional solution space, NSGA-II and SMS-EMOA 
approaches are implemented. The performance of NSGA-II for 
the experimental problem is found better than that of SMS-
EMOA in terms of both convergence and diversity. However, 
while SMS-EMOA evaluates only one offspring at each 
iteration, NSGA-II calculates objective function values of a 
number of offspring, as many as parent population, which 
takes considerably much time. 

As a further research, in locating the escortships with respect 
to a probability distribution within fixed distance limits of the 
flagship, a local search method can be developed. Local search 
is expected to improve the solution quality of the approaches 
presently used in this study, while increasing their running 
time. 

Another improvement idea may be employing a pre-
processing step to identify promising regions of the decision 
space. Moreover, a post-processing step which includes a local 
search is always applicable after obtaining the final set of non-
dominated solutions. 
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